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Abstract
We present new conditions that guarantee the existence of mechanisms with a unique or essentially
unique equilibrium in auction and public goods problems with quasi-linear utility functions. These
conditions bear only on the information structures of the agents.
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1. Introduction

The main problem raised by the multiplicity of noncooperative equilibria in strategic form games
– that is the difficulty for the players to coordinate their actions properly – has its counterpart in
mechanism design. Even if a mechanism has an equilibrium outcome with some desirable property,
it may have other equilibrium outcomes and a lack of coordination may lead to undesirable ones.
However, in mechanism design, by the very definition of the exercise, the selection arguments used
for games may be supplemented by some adequate modification of the constructed mechanism.
Starting from a given mechanism with multiple equilibrium outputs, a new mechanism could be
constructed having the “good” outcome as the unique equilibrium.

Since Maskin (1977, 1986) contributions on Nash implementation – introducing this line of
research – much effort has been oriented towards the identification of conditions that characterize,
for various classes of environments, unique (or full) implementation of desirable social outcomes
via mechanisms, under both complete and incomplete information. For Bayesian implementation,
most of the work has dealt with the extension of Maskin’s monotonicity condition, namely Bayesian
monotonicity.1 Palfrey (1992) presents a good survey of the state of the literature on this topic.
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1. This was introduced by Postlewaite and Schmeidler (1986).
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Bayesian monotonicity restricts jointly the utilities and the probabilities. But, in the same paper,
Palfrey shows (for direct mechanisms and allowing unlimited transferability of the utilities) that
unique implementation may reduce to incentive compatibility under some conditions imposed on the
belief structure only. One of these conditions, however, is specially restrictive by requiring that at least
one agent to be uninformed (i.e. of a single possible type), thus allowing the “modified” mechanism
to base the elimination of undesirable equilibria on this agent’s behavior. The modification of the
direct mechanism relies on an augmentation of the message space to specific non-type messages, of
the kind already introduced in Ma et al. (1988) and used by Mookherjee and Reichelstein (1990).

In the present paper, while keeping transferable utility and using the same kind of augmented
mechanism to “selectively eliminate” undesirable equilibria, we get unique implementation under a
weaker set of belief restrictions that do not require the presence of an uninformed agent. We first
consider the traditional auction problem, with independent valuations. With no additional assumption,
a modification of the rules of the auction – implying a larger message space – guarantees to the
seller the desired expected revenue. This is a property of essentially unique implementability. More
precisely, taking any auction, and a “good” equilibrium of this auction for the seller, we construct an
other auction in which every equilibrium provides him the same expected payoff.

Then, for direct auction mechanisms and without restricting to independent beliefs, we show that
unique implementation obtains under simple (and generic) condition on the variability of the beliefs.
In fact it will appear that this result is not linked to the auction interpretation of the model. It applies
to a wide class of environments. As we finally show, this includes the provision of a public good by a
central planner, imposing transfers and balancing its budget.

2. Auctions with independent valuations: essentially unique implementation

2.1 Beliefs and utilities

We consider a situation in which a seller denoted 0, sells an object to a number of potential buyers
N = {1, . . . , i, . . . , n}. The characteristic, or type, of buyer i ∈ N , takes values in a finite set Ai.
We denote A = ×i∈NAi the set of states of nature (and A−i = ×j 6=iAj). An outcome is a vector
x = (x1, . . . , xi, . . . , xn) ∈ Ren+, where xi ≥ 0 is the probability that buyer i ∈ N gets the object,
assuming

∑
i∈N xi ≤ 1 (there is a probability that the seller keeps the object). Let X be the set

of possible vectors x. The valuation for buyer i ∈ N is given by the real-valued function ui(x;α),
x ∈ X , α ∈ A. Valuations are measured in money and the payoff for agent i ∈ N making a payment
yi ∈ Re when the outcome is x ∈ X and α ∈ A is the state of nature is ui(x;α) + yi. Observe that
the utility of each buyer, as defined, might be affected by the types of all others. A standard case in
auction theory, however, where this influence disappears, is given by ui(x;α) = xiWi(αi), where
Wi(αi) stands for the willingness to pay for the object of player i when of type αi (this is the case
used in the example below in 2.4). To make things simple we consider that the object has no value
for the seller who only collects the payments from the buyers (although the reader will easily see
that this does not change the results at all). The seller is an uninformed player, whereas buyers have
private information about their own types.

Before the auction starts, the seller has a probability distribution p over the set A of states of
nature. The buyer i ∈ N knows his true type αi ∈ Ai and we assume that his beliefs over A−i given
αi are consistent with p and given by p(α−i | αi). We also assume (without loss of generality) that
for every i ∈ N and αi ∈ Ai, the marginal pi(αi) =

∑
α−i

p(α−i, αi) is strictly positive. In this
section we concentrate on the independent case where p(α) = ×i∈Npi(αi).
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An auction problem is given by (A, p,X, (ui)i∈N ), where (A, p) is also called the belief structure.

2.2 Auction mechanisms

The auction is conducted as follows. Each potential buyer i ∈ N reports a bid to the seller. This bid
is a message mi ∈ Mi in a finite set Mi. For m = (m1, . . . ,mn) ∈ M = ×i∈NMi, bidder i pays
an amount ti(m) and receives the object with probability si(m).

An auction mechanism is a triple (M, s, t) where s : M → X is called the outcome function
and t : M → ReN is the payment scheme. Note that we are making no assumption about the type of
auction.

An auction mechanism determines a game with incomplete information. A Bayesian equilibrium
is a vector of strategies m̃ = (m̃1, . . . , m̃i, . . . , m̃n) where, for every i ∈ N , m̃i is a function from
Ai into Mi and

∀ i ∈ N, ∀αi ∈ Ai, ∀mi ∈Mi :∑
α−i

(ui(s(m̃(α));α) + ti(m̃(α)))p(α−i | αi)

≥
∑
α−i

(ui(s(mi, m̃−i(α−i));α) + ti(mi, m̃−i(α−i)))p(α−i | αi).

(1)

2.3 Essentially unique implementation

Given an auction mechanism, the associated game of incomplete information may have several
equilibria leading to more or less advantageous expected payoff to the seller. For instance, following
Myerson (1981) the optimal auction that leads to the maximum expected revenue to the seller can
be computed. However, this maximum expected revenue is only obtained for one equilibrium, and
nothing guarantees that this equilibrium will obtain. In this section we show how to build a new
(associated) mechanism in which all equilibria give the same revenue to the seller than the “good”
equilibrium.

Formally, consider a mechanism (M, s, t) and an equilibrium m̃ where the seller’s expected pay-
off is given by the expected revenue

∑
α(
∑

i ti(m̃(α))p(α). Another auction mechanism (M, σ, τ)
is said to implement essentially uniquely the equilibrium m̃ of (M, s, t) if, for all equilibria µ̃ of
(M, σ, τ) the expected revenue of the seller is the same:∑

α

(∑
i

τi(µ̃(α))

)
p(α) =

∑
α

(∑
i

ti(m̃(α))

)
p(α). (2)

Proposition 2.1 Take any equilibrium m̃ associated to any auction mechanism (M, s, t). With
independent beliefs, there exists an auction mechanism (M, σ, τ) that implements m̃ essentially
uniquely.

Proof Let Θi be the set of all functions θi : M−i → Re such that either θi(m−i) = 0 for all
m−i ∈ M−i or

∑
α−i

θi(m̃−i(α−i))p(α−i) < 0. That is θi belongs to Θi if at the truthtelling
equilibrium of the original auction, it would either be identically 0, or would yield strictly negative
expected payoff to bidder i.

We consider the auction mechanism (M, σ, τ) where Mi = Mi ×Θi and for every i ∈ N ,

σi((m1, θ1), . . . (mn, θn)) = si(m1, . . . ,mn),
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and
τi((m1, θ1), . . . , (mn, θn)) = ti(m) + θi(m−i).

Since, in the extended auction mechanism, a nonzero transfer θi gives a negative expected payoff
to bidder i, it is an equilibrium for every bidder i ∈ N of type αi ∈ Ai to play (m̃i(αi), 0) ∈ Mi.
Then, the expected revenue of the seller is the same as at the original equilibrium of the original
auction mechanism.

We now show that all equilibria of the new mechanism satisfy condition (2). In fact we shall
show something stronger: All equilibria of (M, σ, τ) generate the same distribution on M as that
induced by the good equilibrium of the original mechanism. Assume that this were not the case for
some equilibrium denoted µ̃′ = (m̃′, θ̃′), with m̃′i : Ai →Mi and θ̃′i : Ai → Θi. There would then
exist i, m+

i and m−i such that ∑
{αi:m̃i(αi)=m

+
i }

pi(αi) > H+ >
∑

{αi:m̃
′
i(αi)=m

+
i }

pi(αi),

∑
{αi:m̃i(αi)=m

−
i }

pi(αi) < H− <
∑

{αi:m̃
′
i(αi)=m

−
i }

pi(αi).

For any j 6= i, let

θj(m
+
i ,m−{i,j}) = −KH−,

θj(m
−
i ,m−{i,j}) = KH+,

θj(m) = 0, if mi /∈ {m+
i ,m

−
i }.

Then for any K > 0, the function θj is an acceptable second component of the announcement by
bidder j, as ∑

{αi:m̃i(αi)=m
−
i }

pi(αi)H
+ −

∑
{αi:m̃i(αi)=m

+
i }

pi(αi)H
− < 0.

Furthermore given that ∑
{αi:m̃

′
i(αi)=m

−
i }

pi(αi)H
+ −

∑
{αi:m̃

′
i(αi)=m

+
i }

pi(αi)H
− > 0,

bidder j will find it profitable to deviate, for K large enough, since any loss of utility stemming from
the change in the allocation of the good will be more than offset by the increase in his income. This
eliminates the “bad” equilibrium.

In this proof the original mechanism is transformed by augmenting the message spaces. Each
bidder i is allowed to propose an additional transfer scheme, as long as these transfers give him
negative expected payoff in the original equilibrium. The seller, being the mechanism designer,
should play the role of a guarantee for these transfers. Since this at the same time ensures the
realization of the “good” equilibrium, where no additional transfers are made, it is in his own interest,
as illustrated by the simple example that we present next.
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2.4 An example

In this example we use the technique described above on a first price auction to eliminate bad
equilibria. There are two bidders, each with valuation equal to 0 or 1, with probability 1/2 each.
In the optimal first price auction, they are allowed to make a closed bid of 0 or 2/3. We have the
standard rules of a first price auction with the good being allocated to each bidder with probability
1/2 if they bid the same amount. With these rules, there are two equilibria. With obvious notation in
the “good” equilibrium

m̃i(0) = 0, m̃i(1) = 2/3, for all i,

and in the bad equilibrium
m̃i(0) = m̃i(1) = 0.

It is easy to see that the bad equilibrium is better from the viewpoint of the bidders.
Change now the rules as follows. Each bidder is allowed to give a special signal to the seller

(raise a “flag”, for example) amounting to propose an additional transfer scheme. When one bidder
raises flag, the auction goes on as before but the bidder who raises the flag receives 10 from the seller,
if the other bid is 0, and pays 12 to the seller, if the other bid is 2/3. In the good equilibrium, it does
not pay to raise a flag, but it does in the bad equilibrium, which is therefore eliminated. It is possible
to show that no new equilibrium is introduced.

3. Auctions: unique implementation

The preceding result has two limitations. First it uses a weak notion of uniqueness. Second it imposes
the strong condition of independence on the valuation distribution. In this section we consider
auctions as “direct mechanisms” and, in this simplified framework, we remove these limitations, first,
by imposing on the beliefs another condition which does not require independence and is generic,
and, second, by using a stronger notion of uniqueness.

3.1 Direct mechanisms and unique implementation

For a given auction problem (A, p,X, (ui)i∈N ), an associated direct auction mechanism is a mecha-
nism (M, s, t) where for every i, Mi = Ai. For each individual the possible bids are identified to
the set of possible valuations: A message consists in announcing a valuation. The outcome function
s and the payment scheme t are now functions of the announced valuations. By the revelation
principle, one can always associate to any chosen auction mechanism and equilibrium, respectively a
payoff-equivalent direct mechanism and the corresponding truthtelling equilibrium. The equilibrium
conditions in the direct mechanisms are specified by the following Bayesian incentive compatibility
(BIC) constraints, inducing the bidders to truthful revelation.

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai,∑
α−1

(ui(s(α), α) + ti(α))p(α−i | αi)

≥
∑
αi

(ui(s(ai, α−i), α) + ti(ai, α−i))p(α−i | αi)

(3)
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For any BIC mechanism (A, s, t), another auction mechanism (M, σ, τ) is said to implement
uniquely the truthtelling equilibrium of (A, s, t) if and only if, for all equilibria µ̃ of (M, σ, τ), we
have: σ(µ̃(α)) = s(α) and τ(µ̃(α)) = t(α) for all α.

For an auction mechanism to be BIC and to give maximal surplus to the seller, there are known
conditions imposed on the beliefs alone (see Cremer and McLean, 1988). The purpose is now to find
additional conditions, also imposed on the beliefs alone, in order to ensure unique implementation.

3.2 Conditions of unique implementation

In this section, for simplicity, we impose the following addition assumption (weaker ones could be
imposed): ∑

{αk:αk∈Ak,i 6=k 6=j}

p(α−i | αi ≡ p(αj | αi) > 0 for all αi and αj . (4)

This assumption, which holds for nearly all information structures, will allow us to prove the
following result.

Proposition 3.1 For any BIC mechanism (A, s, t), there exists an auction mechanism (M, σ, τ)
implementing uniquely the truthtelling equilibrium of (A, s, t), whenever

p(α−i | αi) 6= p(α′−i | α′i) for all i ∈ N, all α, α′ ∈ A,α 6= α′. (5)

Condition (5) holds for nearly all information structures.

The inequalities (5) plays a role2 similar to that of condition NCD (No Consistent Deceptions),
introduced by Matsushima (1990). The proof of Proposition 1 goes through the following steps:

• we introduce a new condition ACCUI (A Condition Concerning Unique Implementation),
which is of independent interest and, as proved in Lemma 1, rather transparently ensures
unique implementation for any BIC mechanism;

• we show in Lemma 2 that if condition (5) holds, condition ACCUI also holds;

• lemma 3 shows that condition (5) holds generically.

Let us start by stating the new condition:

Condition 1 (Condition ACCUI) A belief (A, p) structure satisfies condition ACCUI if and only
if for all i and all bijections3 γ : A−i → A−i, not equal to the identity mapping, there exists an α′i
such that the system 

∑
α−i∈A−i

t̃i(α−i)p(γ(α−i) | α′i) > 0

∑
α−i∈A−i

t̃i(α−i)p(α−i | αi) < 0 for all αi 6= α′i

has a solution t̃i : A−i → Re.

2. Such conditions are indispensable if we are to find conditions on information structures alone that guarantee unique
implementation. To see this, consider the case where the same utility function is attached to two different types. We
can only guarantee unique implementation if the types generate different probability distributions over the types of the
other agents.

3. This is somewhat stronger than we need. Only the bijections γ = Πj 6=iγj where γj is a bijection from Aj into Aj

need to be considered. This is true for all the bijections we consider.
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Notice that Condition ACCUI has an equivalent dual version (by standard results on linear
systems):

Condition 2 (Condition ACCUI*) An information structure satisfies condition ACCUI* if and only
if for all i and all bijections c : A−i → A−i, not equal to the identity mapping, there exists an α′i
such that the system

p(c(α−i) | α′i) =
∑
αi∈Ai

λ(αi)p(α−i | αi), for all α−i, (6)

λ(αi) ≥ 0, for all αi (7)

does not have a solution in λ : Ai → Re.

The first step of the proof can now be performed.

Lemma 1 Consider any BIC mechanism (A, s, t). If condition ACCUI holds, there exists another
mechanism (M, σ, τ) implementing uniquely the truthtelling equilibrium of (A, s, t).

Proof To build the new auction mechanism let us define, as in the proof of Proposition 1, the set Θi

of functions θi : A−i → Re such that either

θi(α−i) = 0 for all α−i ∈ A−i

or ∑
α−i

θi(α−i)p(α−i | αi) < 0 for all αi ∈ Ai. (8)

Agent i announces a type and a function in Θi, therefore Mi ≡ Ai×Θi. If for all i ∈ N the message
is equal to (αi, θi) ∈Mi we have

x((α1, θ1), . . . , (αn, θn)) = s(α),

τi((α1, θ1), . . . , (αn, θn))ti(α) + θi(α−i) for all i.

As before, in the augmented mechanism, it is an equilibrium for every bidder i of type αi to
announce the message (αi, 0), because truthtelling is an equilibrium of the original mechanism, and
because the “extra” transfers can only yield negative expected payoffs when the other bidders tell the
truth. We now show that it is the only equilibrium when ACCUI holds.

An equilibrium strategy µ̃i of agent i will be written (α̃i, θ̃i) with α̃i: Ai → Ai and θ̃i : Ai → Θi.
The reasoning of the preceding paragraph shows that there exists no equilibrium in which all bidders
announce their true types (α̃i(αi) = αi for all i and all αi) and in which we have θ̃i not identically
zero for some bidder. Therefore in any candidate equilibrium (α̃, θ̃), with θ̃ not identically zero, at
least one bidder must lie about his type.

Assume first that there exists such a bidder j 6= i such that α̃j is not a bijection. Then some
α′′j ∈ Aj is never announced by agent j. By (4), for K large enough, the function defined by

θi(α−i) =

{
1 if αj 6= α′′j ,

−K if αj = α′′j ,
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Belongs to Θi and is a better second component of the message of i than {0}. Because bidder i will
want to announce as large a multiple of θi as possible, there is no equilibrium where the α̃j’s are not
all bijections.

Assume now that bidder j does not use the truthtelling strategy (α̃j(αj) 6= αj for some αj), and
for any i 6= j, and let γ be the inverse function of α̃−i. Then p(γ(α′−i) | α′i) is the probability that
agent i assigns to the announcement α′−i when he is of type α′i. Let θi be equal to λt̃i where λ is a
very large real and t̃i : Ai → Re is the function whose existence is guaranteed by condition ACCUI;
θi belongs to Θi. Agent i will find it a profitable second component of his message, and because the
greater the λ the better the response, we have eliminated all non-truthtelling equilibria.

We have therefore shown that, for the augmented mechanism, truthtelling is an equilibrium, and
that there is no non-truthtelling equilibrium. The lemma is proved.

The second step of the proof of Proposition 1 is given by the following lemma:

Lemma 2 If condition (5) holds, then ACCUI holds.

Proof Without loss of generality, choose a bijection γ : A−1 → A−1, not equal to the identity. Then
there exists a state of nature α′, such that

γ(α′−1) 6= α′−1 (9)

and, by condition (5), such that

p(α′−1 | α′1) > p(α−1 | α1) for all α 6= α′ such that γ(α−1) 6= α−1. (10)

From (9), and because γ and therefore γ−1 are bijections

α′−1 6= γ−1(α′−1). (11)

From (10) and (11) we obtain

p(α′−1 | α′1) > p(γ−1(α′−1) | α1) for all α1. (12)

The lemma will be proved when we will have shown that there exists an η > 0 such that the
transfer function t̃1 defined by

t̃1(γ
−1(α′−1)) = 1 (13)

t̃1(α−1) = −η for all α−1 6= γ−1(α′−1) (14)

satisfies the conditions of the definition of ACCUI. To see this note that∑
α−1∈A−1

t̃1(α−1)p(γ(α−1) | α′1)

=t̃1(γ
−1(α′−1))p(α

′
−1 | α′1)− η(1− p(α′−1 | α′−1))

=(1 + η)p(α′−1 | α′1)− η

(15)

and that for α1 6= α′1 ∑
α−1∈A−1

t̃1(α−1)p(α−1 | α1)

=t̃1(γ
−1(α′−1))p(γ

−1(α′−1) | α1)− η(1− p(γ−1(α′−1) | α1))

=(1 + η)p(γ−1(α′−1) | α1)− η.

(16)
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Equations (12), (15) and (16) imply∑
α−1∈A−1

t̃1(α−1)p(γ(α−1) | α′1) >
∑

α−1∈A−1

t̃1(α−1)p(α−1 | α′1),

and it is clear that if we take η just large enough that the left hand side of this inequality is positive
while the right hand side is negative, we will find the transfers that are we are looking for.

Lemma 3 Condition (5) holds for nearly all belief structures.

Proof It is sufficient to show that condition (5) holds for nearly all information structures such
that p(α) > 0 for all α. First, because the conditional probabilities are continuous functions of
the p(α)’s it is straightforward that the set of belief structures that satisfy (5) contains an open
neighborhood of any of its elements. Second, if some belief structure does not satisfy (5), we can
find another probability structure arbitrarily close that satisfies this property, by a proof similar to
that used in d’Aspremont et al. (1990). The proof begins by showing that we can modify slightly
any information structure that does not satisfy (5) and reduce the number of equalities between
conditional probabilities. A sequence of such reductions will lead to a belief structure that satisfies
(5).

This completes the proof of Proposition 1.

3.3 The case of free beliefs

Finally we turn to the case (implied by independence) of free beliefs:

p(α−i | αi) = p(α−i | α′i) = p(α−i), for all α ∈ A,αi ∈ Ai, i ∈ N.

In such a case the preceding result can be strengthened:

Lemma 4 Under free beliefs, condition (5) is equivalent to ACCUI.

Proof It is sufficient to show that condition ACCUI* implies condition (5). With free beliefs, the
equalities in (6) become

p(γ(α−i)) =

 ∑
αi∈Ai

λ(αi)

 p(α−i).
Summing both sides of this equation over all α−i ∈ A−i shows that

∑
αi∈Ai

λ(αi) is equal to
1, and therefore ACCUI* is equivalent to the statement: for all i and for all γ we do not have
p(γ(α−i)) = p(γ−i), which proves the result.

4. Extension to public good problems

The techniques that we have presented so far have been derived to solve auction problems. However,
it is possible to use them in many other contexts, including the design by a public planner of
mechanisms ensuring the efficient provision of some public good or service. The main difference
in such a context is the way in which the transfers are affected. In auctions, we have assumed that
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the transfers were payments made by the buyers to the seller, who designs the mechanism so as to
maximize the expected revenue. In the provision of a public good the transfers are taken to cover
the cost of the public good and to realize redistributions among the consumers. The objective is to
achieve efficiency and, may be, some redistributive objective.

Formally the problem (A, p,X, (ui)i∈N ) can be viewed as being an abstract framework and
reinterpreted as a public good problem simply by taking N to be the set of agents in the economy
and X , the set of outcomes, to be states of the economy that include the level of public goods. Still
assuming that the utilities are measured in money (perfect transferability), a mechanism (M, s, t)
and a direct mechanism (A, s, t) are defined as before. The outcome function s now associates to
every vector of announced messages (which, in a direct mechanism, are announced types) a state
x in X . The transfer scheme t, which includes the required payments for the production of public
goods, have to satisfy a budget-balance equation:∑

i∈N
ti(m) = 0, for all m ∈M.

To any mechanism (M, s, t) can be associated a game of incomplete information, and the
concept of Bayesian equilibrium is still defined by (1). For direct mechanisms, Bayesian incentive
compatibility is defined accordingly, as in (3).

Unique implementation can be obtained by adding an assumption, imposed on the beliefs only,
such as condition (5). Indeed, Proposition 2 is straightforwardly adapted to give

Proposition 4.1 For any BIC mechanism (A, s, t), there exists a mechanism (M, σ, τ) implementing
uniquely the truthtelling equilibrium of (A, s, t), whenever

p(α−i | αi) 6= p(α′−i | α′i) for all i in N , and α, α′ in A. (17)

Condition (5) holds for nearly all information structures.

Proof The proof repeats the arguments used in the proof of Proposition 2, adapted to ensure that
the constructed transfer scheme is budget-balanced. The augmented mechanism is constructed as
follows. For all agents i ∈ N a message is a vector (αi, θi) ∈ Ai ×Θi such that

σ((α1, θ1), . . . , (αn, θn)) = s(α), (as before)

τi((α1, θ1), . . . , (αn, θn)) = ti(α) + θi(α−i)−
∑
j∈N−i

1

n− 1
θj(α−j).

Hence the modified transfers are budget-balanced.

In d’Aspremont et al. (1997), we show that any outcome function s can be implemented for
generic beliefs, as long as there are at least three agents. This yields the following corollary:

Corollary 4.1 Assume that there are at least three agents. For any utility functions ui of the agents,
any outcome function s and nearly all information structures, it is possible to find a mechanism that
uniquely implement s.
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Note, finally, that we have not required, as is often done, that the outcome function s be (ex post)
efficient in the sense that

s(m̃(α)) ∈ arg max
x∈X

∑
i∈N

ui(m̃(α)).

In the present framework, efficiency can also be ensured by conditions imposed on the beliefs
only. One such (weak) condition is the “compatibility condition” introduced in d’Aspremont and
Gérard-Varet (1979).4

5. Conclusion

In implementation theory, the position of the “mechanism designer” remains fuzzy, somewhat inside
somewhat outside the game, the rules of which have to be fixed and imposed. In the design of
optimal auctions, the seller can be viewed as the mechanism designer, since the rules of the auction
are usually taken to be in the seller’s best advantage. In the public good problem, the mechanism
designer is the group of all players acting collectively through a “planner”.

For unique implementation under incomplete information via augmented revelation mechanisms
– the problem with have dealt with here –, a strengthening of the role of the mechanism designer is
required. During the play of the game, the players may strategically propose additional side-payments.
These have to be guaranteed. In the augmented auction mechanism, the seller might even have to
reward a deviating player, “acting as a stool pigeon” in order to destroy equilibria that are bad from
the seller’s point of view. In the public good context, the point of view is collective and the planner
has to require that all side-payments balance.

In this paper, we have fully exploited the power given to the mechanism designer in order to
coordinate the equilibrium selection. An alternative approach would be to introduce, with the purpose
of coordinating on a good equilibrium, a pre-play communication stage between players (as done in
Palfrey and Srivastava, 1991). The organization of such pre-play communication may be seen as a
supplementary instrument available to the mechanism designer. Maintaining the transferable utility
assumption, we have concentrated our attention on the instrument provided by transfers. In many
given contexts with nontransferable utility, more instruments are to be considered, exploiting the
specific features of the situation.
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