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Abstract

We present axiomatically an index of aggregate power in organizations, by measuring the

overall ability of the agents to induce a change through coalition formation. The axioms are

closely related to those used for the Shapley Value. The resulting formula appears as the

sum, taken over all possible coalitions, of the products of two probabilities of each coalition:

its probability to form and its probability to become winning.

JEL Classification: 025, 213, 612

Introduction

The game-theoretic approach has represented an important step forward in the quantitative

analysis of the individual power to influence or to control aggregate outcomes. In the context of

cooperative games, the so-called characteristic function has received two types of interpretation.1

∗Reprinted from Journal of Economic Theory, 43(1), 184-191, 1987.

The authors thanks Lloyd Shapley and Abraham Neyman for helpful comments and the referee for suggesting an

alternative proof inspired from [3].
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1As recently stated by Aumann [2], “cooperative solution concepts can be thought of as a sort of average or

expected outcome, or an a priori measure of power.”
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The first one in terms of results (or payoffs) to the different groups (or coalitions) of participants.

In this approach, various solution concepts have been proposed, the main one being the core.

The second type of interpretation is given in terms of the ability for coalitions to obtain a certain

result. This interpretation is already suggested by von Neumann and Morgenstern for the class

of “simple games” when the characteristic function only indicates which coalitions are capable

of “winning”. Better than the concept of core, the Shapley-Shubik index has been considered

as a particularly adequate vehicle, in this type of interpretation, for measuring the power of an

individual participant in a given organization. The power is the individual capacity to bring

about the passage of an issue or more generally, to effect a change in the outcome, by making a

coalition successful. However, when comparing two (hypothetical or existing) legislative bodies,

boards of corporate managers or markets, measuring individual power is not sufficient to know

which of the two ranks higher in terms of the overall ability of their participants to induce a

change through coalition formation. What would be required is a measure allowing to estimate

the probability of such a change. This note suggests an approach which directly axiomatizes

some functions expressing this type of aggregate power, the adopted axioms being closely related

to those used for the Shapley value [6]. After some definitions and the statement of the axioms,

a formula is characterized leading to a basic interpretation. The aggregate power existing in a

given organization is measured by the sum, taken over all possible coalitions, of the products

of two probabilities for each coalition: its probability to form and its probability to become

winning. Finally, starting from a certain class of voting games the measure is further specified

and leads to a particular interpretation.

1 Formal definitions and axioms

In the context just described it is natural to consider the following class of characteristic func-

tions. A characteristic function is a pair (N, v), where N = 1, 2, · · · , n represents the set of

agents and v is a function from the set of subsets of N , called coalitions, to the interval [0, 1]

such that: v(∅) = 0 and, for any S and T , if S ⊂ T ⊂ N than v(S) ≤ v(T ).
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In the present framework, given a characteristic function (N, v), the number v(S) may be

interpreted as the probability for S to change, let us say, the structure of control within the

organization – if the coalition S happens to form.

Whenever the range of the function v reduces to the set {0, 1}, then (N, v) is called a simple

characteristic function and the coalitions such that v(S) = 1 are called winning coalitions. A

winning coalition is minimal if no proper subcoalition is winning. Thus, by extension, for any

characteristic function (N, v), the probability v(S) that S change the structure of control may be

taken as the probability that S be a winning coalition. A particular class of simple characteristic

functions consists of those, denoted (N, vM ), where M is the single minimal winning coalition.

Finally, for any characteristic function (N, v), we shall (as usual) call null any agent i who

does not affect the probability that any coalition be winning; i.e., for all S ⊂ N , v(S∪{i}) = v(S).

With these definitions, our aim is now to construct some aggregate power index F , associat-

ing to each characteristic function (N, v) the probability F (N, v) that, within the corresponding

organization, the structure of control will be changed by some successful coalition. This is done

using axioms very similar to the ones used for the Shapley value. The first two axioms assert,

respectively, that the agents’ names do not matter and that null agents do not affect the aggre-

gate measure.

I. Symmetric Axiom. For any permutation π of N (i.e., a one-to-one function from

N onto N) and for any two characteristic functions (N, v) and (N,w), if, for all S ⊂ N ,

w(π(S)) = v(S), then F (N, v) = F (N,w).

II. Null Agent Axiom. If (N, v) and (N ′, w) are characteristic functions such that N ′ =

N ∪ {n′}, with n′ a null agent in (N ′, w), and if, for all S ⊂ N , w(S) = v(S), then F (N, v) =

F (N ′, w).

The third axiom can be interpreted in terms of lotteries. Indeed, given two characteristic

functions (N, v) and (N,w), one may consider the composite function (N,α v+(1−α)w), where

a lottery chooses at random the function v with probability α ∈ [0, 1] and the function w with
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probability (1 − α). Clearly the overall probability of a change of regime is then αF (N, v)+

(1− α)F (N,w). Thus, the

III. Linearity Axiom. For any two characteristic functions (N, v) and (N,w), for any

α ∈ [0, 1],

F (N,α v + (1− α)w) = αF (N, v) + (1− α)F (N,w).

The next axiom says that if, for every coalition S, its probability v(S) of success increases,

the overall probability of success should rise. This is a monotonicity condition which we state

here in its weakest form.

IV. Monotonicity Axiom. If (N, v) and (N,w) are characteristic functions such that, for

every nonempty coalition S ⊂ N , w(S) ≥ v(S), then F (N,w) ≥ F (N, v).

Now, defining the characteristic functions (N, vN
0 ) and (N, vN

1 ) by

vN
0 (S) = 0 and vN

1 (S) = 1,

for every nonempty coalition S ⊂ N , it may be checked that the previous axioms imply that,

for any characteristic function (N, v),

F (N, vN
0 ) ≤ F (N, v) ≤ lim

#N→∞
F (N, vN

1 ) = sup
(M,w)

F (M,w).

The interpretation of F as a probability leads naturally to require the following:

V. Normalization Axiom. infN,v) F (N, v) = 0 and sup(N,v) F (N, v) = 1.

2 The formula

We can give the following characterization of an aggregate index F satisfying the above axioms.

In the following derivations we shall denote #N , #S, #T , etc., respectively, by n, s, t, etc.
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Theorem 1 The function F defined on the set of all characteristic functions (N, v) by the

formula

F (N, v) =
∑
S⊂N

[∫ 1

0
αs(1− α)n−sdµ(α)

]
v(S), (1)

where µ is a probability measure on (0, 1], satisfies Axioms I-V. Moreover any function satisfying

Axioms I-V can be written in this form for some probability measure µ on (0, 1].

Proof. Using Axioms III, IV, and V, the index F is a linear function of the v(S)’s, say∑
S⊂N αN,Sv(S), such that the coefficients αN,X ’s are non-negative and sum up to no more

than 1. Let the difference to 1 be αN,∅(v(∅) = 0 anyway); then the coefficients become a

probability vector on subsets of {1, · · · , n}; i.e., a probability distribution on {0, 1}n. Axiom II

implies consistency of those probability distributions (for N ′ as in II and each S ⊂ N , αN,S =

αN ′,S + αN ′,S∪{n′}); hence Kolmogorov’s consistency theorem [5, p.123] asserts they all derive

from some probability distribution on {0, 1}∞. Let Xn denote the nth coordinate mapping on

{0, 1}∞. Axiom I implies exchangeability of the Xn’s. By the Finetti’s theorem [5, p.228], there

exists a probability distribution µ on [0, 1] such that

αN,S =
∫ 1

0
αs(1− α)n−sdµ(α).

Finally, Axiom V implies that limn→∞ αN,∅ = 0, hence µ({0}) = 0. Since it is easy to verify

that, for any probability µ on (0, 1], formula (1) satisfies Axioms I-V, the result follows.

Formula (1) shows that, if one chooses a coalition S at random by first selecting α according

to µ, and, second, by letting every player i independently join the random coalition S with

probability α, then F (N, v) = E(v(S)), where E is the mathematical expectation operator.

This formula appears as a product of two probabilities, the probability that a coalition will

form times the probability that it will be winning. Concerning the first one, our axiom of

monotonicity implies that all other things being equal the smaller is the required size of a

coalition to be winning, and the larger is the number of possible winning coalitions, the higher

is this probability. The second probability,2 v(S), expresses the ability of the coalition S of
2As suggested in the introduction an alternative interpretation is to consider v(S) as the value of coalition S:

it is then the “wealth” available to the coalition S, so that the measure corresponds to the expected payoff of the
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agents to induce an overall change of outcome or its capacity to take a decision affecting the

whole organization. Hence the aggregate index, which combines these two probabilities, can be

viewed as the expected capacity of an organization to decide. This is very much like what is

called “decisiveness” in the social choice literature.

In terms of a legislative body consisting of a finite number of members, the measure could

then be used to express the probability of a given change of legislation. Similarly, in the frame-

work of oligopoly theory,3 the index can be viewed as the probability that a given coalition S

will be able to change the competitive situation, from price-taking to price-making.

3 Further specification and interpretation

To realize the need for further specification of the above formula let us concentrate on simple

characteristic functions, i.e., voting situations. Consider, for instance, all three-agent superad-

ditive majority games. Among these games one can distinguish those having only one minimal

winning coalition (of size 1, 2, or 3), those having two intersecting minimal winning coalitions

(of size 2) and the simple majority case (with minimal winning coalitions {1, 2}, {2, 3}, {3, 1}).

Whatever the measure µ, the axioms allow to rank them as follows: simple unanimity is less

decisive than a single minimal winning coalition of size 2, which is less decisive than two minimal

winning coalitions of size 2, which is less decisive than both the simple majority case and the case

of a single minimal winning coalition of one agent (“dictatorship”). However, it is not possible to

compare these last two situations without specifying the measure µ. Now consider the majority

games (N, vq) with quota q and with a large set of agents N ; i.e., vq(S) = I(s/n ≥ q). According

to the random α being strictly greater of strictly smaller than the quota q, the random coalition

S will be winning or losing with probability close to 1. Thus,

F (N, vq) ∼= Prob({α ≥ q}) = µ([q, 1]).

whole game. In this case, however, the normalization axiom has to be adapted because there is no reason to have

v(S) ∈ [0, 1].
3Such a framework is considered in d’Aspremont and Jacquemin [1].
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This gives a direct interpretation in terms of decisiveness for the measure µ, and the axioms

determine F uniquely for all characteristic functions from its values for the majority games with

a large number of agents.4

To show that let us consider two different types of voting situations. In the first one the

quota is supposed to be less than 1
2 . It is then clear that a vote on any kind of issue should be

decisive. Therefore, for all q ≤ 1
2 , F (N, vq) ∼= µ([q, 1]) = 1, hence µ([0, 1

2)) = 0. In the second

type the quota is supposed to be strictly greater than 1
2 . Then one might have nondecisive votes

and this depends upon the issues on the agenda. This leads to two interpretations. A general

one is to see F as a characteristic of the whole set of issues: the value of F for a certain quota

q is equal to the proportion of issues for which the number of favorable votes is at least q%.

The higher is this proportion the higher is F . A more requiring interpretation is to consider

F as the probability that no issue at all on the agenda will be blocked. Then if we assume
4Let us remark that formula (1) seems to have a close relationship to a formula which has been discovered by

Dubey et al. [3] for the semivalue. And indeed, any aggregate index F can be decomposed as a sum of semivalues.

To see this, it is enough to replace v(S) in formula (1) by the sum of the Shapley values of the same characteristic

function restricted to S. Easy computations then lead to the other formula

F (N, v) =
X
i∈N

Fi(N, v), (2)

where, for every i ∈ N , Fi is defined by

Fi(N, v) =
X

T⊂N\{i}

24 t!(n− t− 1)!

n′

Z 1

0

NX
s=t+1

0@ n

s

1Aαs(1− α)n−sdµ(α)

35 [v(T ∪ {i})− v(T )].

It may be verified that Fi qualifies as a semivalue (i.e., an index satisfying the conditions (1)-(4) of [3]) if the

measure µ is renormalized adequately. On the other hand, taking any semivalue, its sum over individuals will

not in general satisfy all the axioms I-V. For instance, for the sum of the Banzhaf indices (see [4]), the weight

coefficient of the small coalitions is negative, and hence does not satisfy Axiom IV. However, if we consider a

semivalue characterized (according to formula (1.1) in [3]) by a probability measure on [0,1] having a nonincreasing

density function, then its sum over individuals satisfy our axioms. SInce any nonincreasing density on [0,1] is

a convex combination of densities of the form (1/α0)I(0 ≤ α ≤ α0), 0 ≤ α0 ≤ 1, this result is easy to verify.

In addition one may show (but this is less straightforward) that the condition of a semivalue characterized by a

probability measure having a nonincreasing density function is not only sufficient but also necessary for the result.
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that the scope of the agenda is broad enough to include at least one disputed issue (i.e., for

which no qualified majority exists), the probability of blocking must be 1. Therefore, with

q > 1
2 , F (N, vq) ∼= µ([q, 1]) = 0, hence, µ({1

2}) = 1. It results that a random coalition will be

losing or winning with probability close to 1 (with a large number of agents) according to the

quota q being strictly above or below 1
2 . To the extent that such a property might appear to be

reasonable, this would lead to a particular specification of µ and a complete characterization of

F ,

F (N, v) =
∑
S⊂N

1
2n
v(S);

i.e., F is simply the average of the v(S)’s. This means that for voting situations F is increasing

with the number of winning (not necessarily minimal) coalitions and that for two situations

having the same number of winning coalitions the value of F will be identical. For example in

the above three-agent situations, the majority case is as decisive as dictatorship.

4 Conclusion

Measuring the power characterizing an organization is a difficult task and has been the object of

much research in social science. The problem is multidimensional because various aspects such

as the nature and the objectives or organizations, the characteristics of the participants, their

strategic capabilities, and their degree of consensus can differ, at a given moment of time as well

as over time.

In this note we have proposed a measure of aggregate power which differs from the standard

approaches based on individual indices. Our measure seems well adapted to static cooperative

situations where the formation of winning coalitions plays a crucial role for the control of the

outcomes, be they passages of bills, changes in stockholders’ policies or monopolization of mar-

kets. It is an axiomatized function based on two multiplicative criteria, the probability that a

coalition will form and the probability that it will be winning.
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