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1. Introduction: incomplete information and Bayesian incentive compatibility

In many contexts, it is a requirement that collective decision making preserve some kind of decen-
tralization and be a function of the information that each individual agent privately controls. To the
extent that the private information affects the decision, any individual agent may find it advantageous
to distort the information he reveals in a way which cannot be sanctioned. However, this phenomenon
may cause some global inefficiencies to the collectivity. Hence it is a relevant question to consider
whether it is in general possible to construct some decision schemes which would give each individual
the ‘correct’ incentives, namely to reveal all the information that he controls undistorted. The purpose
of this paper is to show that this ‘incentive’ question is mainly a problem of incomplete information
and that one can fruitfully apply to it the theory of games with incomplete information.

1.1 The basic collective decision problem and the communication game

We consider a set N of n players (or individual agents) who have to choose among a set X of
alternatives. We assume X is some subset of RK (K is any positive integer). In addition we
introduce a commodity called money in order to allow any kind of transfers among the agents.1 Such
a transfer is an element y = (y1, . . . , yn) of Rn. Thus, an outcome will always be an element of
X × Rn. Also, we suppose that the players agree to delegate the choice of a particular outcome
to some Central Agency according to some well-specified rules. In particular these rules will have
to take into account in some way the characteristics αi of each individual player. By assumption
each αi belongs to some subset Ai of RL (L is any positive integer). We shall call αi the type of
player i. Finally, to each player i ∈ N we associate a function Vi(·;αi) from RK × Rn to R where
Vi(x, y;αi) denotes player i’s payoff in the situation where (x, y) ∈ X ×Rn is the outcome selected.
For the following we shall introduce a separability requirement, namely

Separability For every i ∈ N , there exists a function Ui(·;αi) from RK to R such that, for every
x ∈ X and every y ∈ Rn: Vi(x, y;αi) = Ui(x;αi) + yi.

∗. This work was partially supported by Cordes no. 136-77.
Chapter 15 in Aggregation and Revelation of Preferences, edited by Jean-Jacques Laffont, North-Holland Publishing
Company, 1979 (CORE Reprint no. 363).

1. In Section 3 we will explicitly put some feasibility restrictions on these transfers.
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With the feasibility requirement on the transfers that we shall introduce in Section 3 this assump-
tion will simply amount, in game theoretic terms, to admit unrestricted side-payments with full
transferability.

To characterize the decentralized information structure in this model, we assume that the type αi

of player i is known to i but unknown to the Central Agency. However, all the sets Ai and all the
functions Vi and Ui, as defined respectively on X × Rn × Ai and on X × Ai, are supposed to be
‘common knowledge’.2

Within this framework, the Central Agency must rely upon communication by the players of their
private information, which is characterized by their type αi. Specifically we assume that each agent i
has to publicly announce some type ai ∈ Ai as being his own type αi. We call such an announcement
by agent i a message of agent i. However, before sending any message, each individual agent is
supposed to know the mechanism ruling the agency behaviour. Letting A =×i∈N Ai, we call
mechanism any function m = (d, t) from A to X × Rn where

(i) d is a function from A to X called a decision rule and giving the alternative selected d(a) = x
in X if a ∈ A is the n-tuple of individual messages, and

(ii) t is a function from A to Rn called a transfer scheme and such that t(a) = y is the vector of
individual transfers which are designed if a ∈ A is the n-tuple of individual messages.

We denote by M the set of all possible mechanisms. In the subsequent sections we shall put
important restrictions on M . However, it is already clear that, given a mechanism m ∈ M , the
existence of some kind of communication process between the agents and the Central Agency
introduces strategic considerations. Indeed, a strategy of player i ∈ N consists in announcing some
particular message ai ∈ Ai as being his own type. Suppose that α ∈ A is the n-tuple of the individual
agents’ types. Then, for every n-tuple of messages a ∈ A, the payoffs are defined by

∀ i ∈ N, ∀ a ∈ A,Wm
i (ai;αi) = Vi(m(a);αi)

= Ui(d(a);αi) + ti(a).

Thus, the communication process between the individual agents and the center may be formalized as
an n-person game in normal form, which is conditional to α ∈ A and is denoted

Γm(α) =
{
{Ai, i ∈ N}, {Wm

i (·;αi);αi ∈ N}
}
.

This game is called the communication game.

1.2 The incomplete information hypothesis

The analysis of the game Γm(α) is essential in the formulation of the incentive problem. Indeed,
the question is to determine whether, knowing mechanism m ∈ M , it is advantageous for every
player to reveal his type. Now, such a property may have different characterizations according to the
alternative informational specifications which can be made relative to the game Γm(α).

A first specification would be to say that even though the Central Agency has to take into account
only the individual messages, the individual agents themselves are completely informed about the

2. This notion is taken in the sense of Aumann (1975), i.e. no one can consciously disagree with some one else about
what they are.
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game Γm(α) at the time of the communication process. In other words, every type αi is known to
all players but, still, the Central Agency can only base its selection on the messages of the players.
Hence the communication game Γm(α) is played as a game under complete information.3 Such a
specification leads to a first ‘incentive compatibility property’. Namely a mechanism m ∈M is said
to be incentive compatible (under complete information) iff the n-tuple of strategies α ∈ A, where
every player announces his own type, is a Nash-equilibrium for Γm(α).

The relevancy of this first incentive compatibility notion crucially depends on the complete
information assumption. Generally, however, in decentralized contexts it seems better to assume that
every agent has incomplete information concerning the types αi of all other agents, i.e. every agent
j does not know which type αi in Ai is the type of agent i, for any i 6= j. In probabilistic forms,
for every j ∈ N , the type of i, i 6= j, is a random phenomenon with Ai as its sample space. As a
consequence given a mechanism m ∈M , every player j has only partial knowledge of what are the
other players’ payoff functions. Consequently, also, although he knows that there exists, for every
α ∈ A, a communication game Γm(α), player j ignores which one exactly is to be played. Hence,
when he wants to characterize the behaviour of any other player i, player j must consider not only
what message ai player i announces but also what type αi could be player i’s true type. In particular,
every player j may want to characterize, for every other player, the behaviour consisting in revealing
his true type.

For this reason we have to introduce a more sophisticated strategy concept. For every i ∈ N , a
normalized strategy of player i4 is a decision rule a∗i associating a unique strategy choice ai ∈ Ai

to each of his possible types αi ∈ Ai. Formally, a∗i is simply a function from Ai to Ai. We denote
by A∗i the set of all admissible normalized strategies for i. For example, the strategy consisting in
declaring the true value of his parameter in the communication process (the ’truth strategy’) is a
normalized strategy for each player. It is denoted â∗i for player i ∈ N and such that

∀αi ∈ Ai, â
∗
i (αi) = αi.

Now, to treat the incentive problem in the incomplete information framework, we may distinguish
two approaches, each one associated with a different information assumption concerning the commu-
nication process. The first approach considers that for every player i ∈ N , the other players’ space of
types A−i =×j 6=NAj is a space of states of nature for which player i satisfies, as a decision-maker,
the ‘complete ignorance’ postulate.5 In this case define, for m ∈M ,

G(m)
def
=
{
{Γm(α);α ∈ A}, {A∗i ; i ∈ N}

}
.

According to this approach, all the games belonging to G(m) have to be considered simultaneously
by all agents.

Take now any mechanism m ∈ M and consider the game collection G(m). For notation
convenience let

a∗(α) =
(
a∗1(α1), . . . , a

∗
n(αn)

)
, a∗ ∈ A∗ = ×

i∈N
A∗i ,

and
a∗−i(α−i) =

(
a∗1(α1), . . . , a

∗
i−1(αi−1), a

∗
i+1(αi+1), . . . , a

∗
n(αn)

)
,

3. It seems to us that this would be the best interpretation of the model presented by Roberts (1979), Schoumaker (1976)
and Henry (1979).

4. This is Harsanyi (1967-68) terminology.
5. See Luce and Raiffa (1957), p. 294.
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where α−i = (α1, . . . , αi−1, αi+1, . . . , αn) is an element of

A−i = ×
j∈N
j 6=i

Aj

and a∗−i = (a∗1, . . . , a
∗
i−1, a

∗
i+1, . . . , a

∗
n) is an element of

A∗−i = ×
j∈N
j 6=i

A∗j .

We say that the mechanism m ∈ M is incentive compatible (under complete ignorance) iff the
n-tuple of normalized strategies â∗ ∈ A∗ (the truth strategies) is a Nash-equilibrium for every game
Γm(α) in G(m) in the sense that

∀α ∈ A, ∀ i ∈ N, ∀ ai ∈ Ai,W
m
i âi, â

∗
−i(α−i), αi) ≤Wm

i (â∗(α);αi).

This first approach has already been extensively studied in the literature.6 In the following section
we present another approach to incomplete information which we shall use from now on, in all the
rest of the paper.

1.3 Bayesian incentive compatible mechanisms

The second approach to incomplete information takes explicitly into account the ‘beliefs’ that any
player may have concerning the other players types. Formally, we shall represent the beliefs as
follows.

Let, for every i ∈ N , Ii be a σ-algebra on Ai and

I−i =
⊕
j∈N
j 6=i

Ij

be the product σ-algebra on A−i. We assume that the beliefs of players i ∈ N are represented by a
family Pi = {Pi(· | αi ∈ Ai} where, for every αi ∈ Ai, Pi(· | αi) is a probability over (A−i, I−i).
We also consider that all beliefs {Pi; i ∈ N} are common knowledge but that in general player
i ∈ N beliefs are completely known only when his type αi ∈ Ai is also known.

Now, to each mechanism m ∈M we may associate the game (with incomplete information):7

Γ(m) =
{
{Γm(α);α ∈ A}, {A∗i ; i ∈ N}, {Pi; i ∈ N}

}
.

In such a game every player i ∈ N is going to choose a message in terms of his expected payoff
conditional on αi and given the choice of some normalized strategy by every other player. Hence, we

6. This concept which is primarily due to Hurwicz (1972) has been used in particular by Groves (1973), Groves and Loeb
(1975) and Green and Laffont (1976). Notice that Ledyard (1979) when he refers to complete information actually
studies the present complete ignorance situation. Notice also that several authors have introduced an apparently
stronger concept by requiring that the n-tuple â∗ be an equilibrium in dominating strategies for G(m). As shown in
d’Aspremont and Gérard-Varet (1979) the two concepts actually coincide. This last paper contains other results in the
complete ignorance framework.

7. See Harsanyi (1967-68).
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shall write the payoffs

∀ i ∈ N, ∀αi ∈ Ai,∀ a∗−i ∈ A∗−i, ∀ ai ∈ Ai,

W
m
i (ai, a

∗
−i;αi) =

∫
A−i

Wm
i (ai, a

∗
−i(α−i);αi)Pi(dα−i | αi).

In this paper we shall assume that such an expression is always well-defined.
Now, a mechanism m ∈ M is said to be Bayesian incentive compatible iff the n-tuple of

normalized strategies â∗ ∈ A∗ (the ‘truth’ strategies) is a Bayesian equilibrium for Γ(m) in the sense
that

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai,

W
m
i (ai, â

∗
−i;αi) ≤W

m
i (â∗i (αi), â

∗
−i;αi).

The purpose of this article is to study admissible subsets of the set M of all possible mechanisms
which are Bayesian incentive compatible.

2. Outcome efficiency and Bayesian incentive compatibility

We shall concentrate first on the subset in M of all mechanisms that are ‘outcome efficient’ and
examine in this subset those that are Bayesian incentive compatible.

2.1 Outcome efficient mechanisms

For any mechanism m = (d, t) ∈M we say that it is outcome efficient iff we have

∀ a ∈ A, d(a) ∈ P(a)
def
=

{
x∗ ∈ X;

∑
i∈N

Ui(x
∗; ai) = sup

x∈X

∑
i∈N

Ui(x; ai)

}
.

In order for such a requirement to be meaningful one has to impose some regularity hypothesis.
One of these is:

H1: X is compact and for every a ∈ A,
∑

i∈N Ui(·; ai) is upper semi-continuous on X .

Condition H1 implies only that, for every a ∈ A, we have P(a) 6= ∅. We shall, for some results, need
the stronger condition:

H2: X ⊆ RK is open convex; for every i ∈ N , Ai ⊆ RL is open; Ui is twice continuously
differentiable on RK × RL; for every a ∈ A,

∑
i∈N Ui(·; ai) has a critical point occurring at

a point interior to X and the quadratic form corresponding to the K ×K-matrix of second
order partial derivatives of

∑
i∈N Ui(·; ai) is negative definite for every x ∈ X .

Condition H2 implies – by using the implicit function theorem (see Fleming, 1965, p. 116) – that we
have:
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Lemma 1 Assuming H2 there is a unique outcome efficient decision rule d which is continuously
differentiable over A and such that8

∀ a ∈ A,
∑
i∈N

DxUi(d(a); ai) = 0.

2.2 Subjectively discretionary distribution mechanisms

In order to study outcome efficient mechanisms which have the Bayesian incentive compatibility
property, we shall consider first a particular subset of mechanisms.

We say of a mechanism m ∈M that it is a distribution mechanism iff the transfer scheme t is
such that

∀ i ∈ N, ∀ a ∈ A, ti(a) =
∑
j∈N
j 6=i

Uj(d(a); aj)− fi(a),

where fi is, for every i ∈ N , a real-valued function defined over A. In this case, player i ∈ N
receives from (or pays to) the Central Agency the difference between the amounts∑

j∈N
j 6=i

Uj(d(a); aj)

and fi(a), both defined in terms of the declared types. The n-tuple f = (f1, . . . , fi, . . . , fn) is called
a distribution rule.

Notice that we may, without loss of generality, restrict ourselves to distribution mechanisms,
since to every mechanism m = (d, t) one may always associate a distribution mechanism m = (d, t′)
by designing the following distribution rule f ′:

∀ i ∈ N, ∀ a ∈ A, f ′i(a) =
∑
j∈N
j 6=i

Uj(d(a); aj)− ti(a).

Now, we say of a distribution rule f that it is subjectively discretionary iff

∀ i ∈ N, ∀αi ∈ Ai,∀ ai ∈ Ai, ∀ a′i ∈ Ai,∫
A−i

fi(ai, α−i)Pi(dα−i | αi) =

∫
A−i

fi(a
′
i, α−i)Pi(dα−i | αi),

i.e. for every player i ∈ N , the expected value of fi must remain constant with respect to the player’s
messages. A subjectively discretionary distribution mechanism is a distribution mechanism for which
the associated distribution rule is subjectively discretionary.

We are interested by the class of distribution mechanisms which are both outcome efficient
and subjectively discretionary9 for the reason that it is included in the class of Bayesian incentive
compatible mechanisms.

8. Given Y1 ⊆ RL, Y2 ⊆ RM , two open sets, and a function f from RL × RM to RP , we denote by Df(y) =
(Df1(y), . . . , DfP (y))t the derivative of f at a point y = (y1, y2) ∈ Y1 × Y2, given by the Jacobian matrix of f at
y. Also we denote by Dy1f(y) = (Dy11f(y), . . . , Dy1Lf(y)) the vector of partial derivatives of f with respect to
the components of y1 at a point y = (y1, y2). Similarly for Dy2f(y). All vectors are taken with respect to the usual
basis.

9. The class of subjectively discretionary mechanisms which are outcome efficient includes the class of Groves-
mechanisms as introduced by Groves (1973).
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Theorem 1 Under assumption H1, any distribution mechanism m ∈M which is outcome efficient
and subjectively discretionary is Bayesian incentive compatible.

Proof By assumption, the individual payoffs are well-defined. We want to show that for the
mechanism m:

∀ i ∈ N, ∀αi ∈ Ai,∀ ai ∈ Ai,W
m
i (ai, â

∗
−i;αi) ≤W

m
i (αi, â

∗
−i;αi), (1)

since m is outcome efficient, we have

∀α ∈ A,∀ i ∈ N, ∀ ai ∈ Ai,

Ui

(
d(α);αi

)
;αi) +

∑
j∈N
j 6=i

Uj

(
d(α);αj) ≥ Ui

(
d(ai, α−i);αi

)
+
∑
j∈N
j 6=i

Uj

(
d(ai, α−i);αj),

which implies∫
A−i

Ui

(
d(α);αi

)
Pi(dα−i | αi) +

∫
A−i

∑
j 6=i

Uj

(
d(α);αj

)
Pi(dα−i | αi)

≥
∫
A
Ui

(
d(ai, α−i);αi

)
Pi(dα−i | αi)

+

∫
A−i

∑
j 6=i

Uj

(
d(ai, α−i);αj

)
Pi(dα−i | αi).

(2)

Since m is subjectively discretionary:

∀ i ∈ N, ∀αi ∈ Ai,∀ ai ∈ Ai,∫
A−i

fi(αi, α−i)Pi(dα−i | αi) =

∫
A−i

fi(ai, α−i)Pi(dα−i | αi).
(3)

In light of (3), condition (2) is equivalent to condition (1).

2.3 A characterization of Bayesian incentive compatibility

We are now interested in giving a characterization of the mechanisms which are simultaneously
outcome efficient and Bayesian incentive compatible. For that matter we shall restrict ourselves to the
mechanisms which are continuously differentiable. Under assumption H2, a distribution mechanism
is continuously differentiable iff the distribution rule f is continuously differentiable over A.

On the other hand we shall assume that all the players’ beliefs satisfy a restriction called the
independence condition which requires

∀ i ∈ N, ∀αi ∈ Ai, ∀α′i ∈ Ai,∀E ∈ I−i,

Pi(E | αi) = Pi(E | α′i) = Πi(E).

In that case, the beliefs are represented by the family {Πi; i ∈ N} of probabilities, where, for every
i ∈ N , Πi is a probability over (A−i, I−i) which is free with respect to the parameter αi ∈ Ai.
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Considering that the beliefs {Pi; i ∈ N} have been assumed common knowledge, this condition
appears rather restrictive. It means not only that the private information, which each individual
agent has concerning his own type, has no bearing on his information concerning the others, but also
that the beliefs of any player are not subject to strategic distortions. This strong condition could be
justified if the players’ types were known to have been selected through a random process with given
law.10 In a parallel paper we propose to weaken this condition (see d’Aspremont and Gérard-Varet,
1979).

Furthermore, for technical matters we shall restrict ourselves to the class of beliefs satisfying, in
the independent case, the following condition:

D: For every i ∈ N , Ai is open, bounded, connected and atomless (w.r.t. the Lebesgue measure)
in RL, Ii is the Borel σ-algebra, and there exists a continuous real-valued function πi over
R(n−1)L such that

∀E ∈ I−i Πi(E) =

∫
E
π(α−i) dα−i.

We have now the following preliminary result.

Lemma 2 If H2 holds, and if the beliefs are independent and satisfy condition D, for every continu-
ously differentiable distribution mechanism m, for every i ∈ N and every αi ∈ Ai, W

m
i (·; â∗−i;αi)

is differentiable over Ai.

Proof Take any i ∈ N and any αi ∈ Ai:

∀ ai ∈ Ai,W
m
i (ai, â

∗
−i;αi) =

∫
A−i

Wm
i (ai;α−i;αi)πi(α−i)dα−i.

We also have

∀ i ∈ N, ∀αi ∈ Ai,∀α−i ∈ A−i, ∀ ai ∈ Ai

Wm
i (ai, α−i;αi) =

∑
j∈N

Uj

(
d(ai, α−i);αj

)
− fi(ai, α−i).

With our assumptions, for every αi ∈ Ai and every i ∈ N , Wm
i (·;αi) is continuously differentiable

over RnL. Consequently,

∀ ai ∈ RL,∀α−i ∈ R(n−1)L,

Dai W
m
i (ai, α−i;αi) = Dai

[∑
j∈N

Uj(d(ai, α−i);αj)− fi(ai, α−i)
]

is continuous. In particular, Dai W
m
i (·;αi) is continuous over the product of the open set Ai by the

closure A−i of A−i which is compact by assumption D. Also, with assumption D, we may write

∀ i ∈ N, ∀ ai ∈ Ai,

Dai

∫
A−i

Wm
i (ai, α−i;αi)πi(α−i)dα−i = Dai

∫
A−i

Wm
i (ai, α−i;αi)πi(α−i)dα−i.

10. For example, Green et al. (1976), assume that each of the individuals in the society believes that all of the others are
drawn independently from a normal population with zero mean’ (p.384). For a general discussion on this topic see
Harsanyi (1967-68).
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Therefore we get (by Fleming, 1965, p. 199):

∀i ∈ N, ∀ ai ∈ Ai,

Dai W
m
i (ai, α̂

∗
−i;αi) = Dai

∫
A−i

Wm
i (ai, α−i;αi)πi(α−i)dα−i

=

∫
A−i

Dai W
m
i (ai, α−i;αi)πi(α−i)dα−i.

We are now in position to prove the main theorem of this section:11

Theorem 2 Under assumption H2 and for independent beliefs satisfying condition D, a distribution
mechanism m ∈M which is continuously differentiable and outcome efficient is Bayesian incentive
compatible iff it is subjectively discretionary.

Proof Since our assumptions are now stronger, the first part simply results from Theorem 1. It
remains to show that any distribution mechanism m = (d, t) which is outcome efficient and Bayesian
incentive compatible is subjectively discretionary which, with our assumptions, is equivalent to
(Fleming, 1965, p. 42),

∀ i ∈ N, ∀ ai ∈ Ai, Dai

∫
A−i

fi(ai, α−i)πi(α−i)dα−i = 0.

If m = (d, t) is Bayesian incentive compatible and since, by Lemma 2, for every i ∈ N and every
αi ∈ Ai, W

m
i (â∗−i;αi) is differentiable over the open set Ai, we must have

∀ i ∈ N, ∀αi ∈ Ai, DaiW
m
i (ai, â

∗
−i;αi) = 0, if ai = αi.

This last condition gives for every i ∈ N :

∀αi ∈ Ai, DaiW
m
i (αi, â

∗
−i;αi)

=

∫
A−i

Dai W
m
i (αi, α−i;αi)πi(α−i)dα−i

=

∫
A−i

[∑
j∈N

Dx Uj

(
d(αi, α−i);αi

)
Dai , d(αi, α−i)−Dai fi(αi, α−i)

]
πi(α−i) dα−i

= 0.

By Lemma 1, the outcome efficient decision rule d is such that∑
j∈N

Dx Uj

(
d(αi, α−i);αi

)
= 0.

Hence, for every i ∈ N , we have

∀αi ∈ Ai, DaiW
m
i (αi, â

∗
−i;αi) = −

∫
A−i

Dai fi(αi, α−i)πi(α−i)dα−i

= −Dai

∫
A−i

fi(αi, α−i)πi(α−i) dα−i = 0.

11. A proof of this theorem has been given for n = 2 and X ⊆ R in d’Aspremont and Gérard-Varet (1975).
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Corollary 1 Under the same assumptions, a continuously differentiable mechanism which is outcome
efficient and Bayesian incentive compatible is such that

∀ i ∈ N, ∀ ai ∈ Ai,∫
A−i

ti(ai, α−i)πi(α−i) dα−i =

∫
A−i

∑
j∈N
j 6=i

Uj

(
d(ai, α−i);αj)πi(α−i) dα−i − ki,

where ki is some constant.

3. The budget problem and the collective rationality postulate

The Bayesian incentive compatible mechanisms introduced in the preceding section imply the
existence of transfers which are to be made through the budget of the Central Agency. Hence, an
important consideration is to know whether the structure of the transfers make it possible for the
Agency to balance its budget.

3.1 Budget balancing mechanisms

We say that a mechanism m ∈M is budget balancing iff∑
i∈N

ti(·) = 0.

Define a set Y ≡ {y ∈ Rn;
∑

i∈N yi ≤ 0} of all admissible vectors of individual transfers and
the function v from A to R such that

∀ a ∈ A, v(a) = sup
X×Y

∑
i∈N

Vi(x, y; ai).

We say of a mechanism m ∈M that it satisfies the collective rationality postulate iff we have

∀ a ∈ A,
∑
i∈N

Vi(m(a); ai) = v(a).

A mechanism belonging to this admissibility set is clearly such that the players do not have any
collective incentive to reject it as the solution of the collective choice problem.

Under our separability assumption, the properties of outcome efficiency and budget balancing
are equivalent to the collective rationality postulate, since then

∀ a ∈ A, v(a) = sup
x∈X

∑
i∈N

Ui(x; ai).

Collective rationality in the separable case is simply an assumption of Pareto-optimality. Hence the
budget balancing condition introduces both a feasibility restriction and an efficiency restriction on
the transfers.
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3.2 Collective rationality in the independent case

In this section we study the possibility of finding collectively rational mechanisms which satisfy
Bayesian incentive compatibility in the particular case where the players’ beliefs respect the indepen-
dence condition. An alternative case is treated in d’Aspremont and Gérard-Varet (1979).

Theorem 3 Under assumption H1 and if the beliefs are independent, let m be a mechanism m =
(d, t) ∈M , where d is outcome efficient and such that ∀ i ∈ N, ∀ a ∈ A, ti(a) = gi(ai)− g−i(a−i)
for

gi(ai) =

∫
A−i

∑
j∈N
j 6=i

Uj

(
d(ai, α−i);αj

)
Πi(dα−i)

and
g−i(a−i) =

1

n− 1

∑
j∈N
j 6=i

gj(aj).

Then m is collectively rational and Bayesian incentive compatible.

Proof Since for every a ∈ A we have∑
i∈N

ti(a) =
∑
i∈N

gi(ai)−
1

n− 1

∑
i∈N

∑
j∈N
j 6=i

gj(aj) = 0,

m is budget balancing. Moreover, m may be seen as the distribution mechanism where

∀ a ∈ A, fi(a) =
∑
j∈N
j 6=i

Uj

(
d(a); aj)− gi(ai) + g−i(a−i).

But then, ∀α ∈ A, ∀ i ∈ N , ∀ ai ∈ Ai,∫
A−i

fi(ai, α−i) Πi(dα−i) =

∫
A−i

g−i(α−i)Πi(dα−i),

which is constant. Hence, the distribution mechanism m is subjectively discretionary. Therefore, by
Theorem 1, m is Bayesian incentive compatible.

Corollary 2 Under the same assumption and with the same notation, let m = (d, t) be an outcome
efficient mechanism defined by

∀ i ∈ N, ∀ a ∈ A, ti(a) = gi(ai)− g−i(ai) + hi(a),

where the functions hi are defined on A so that
∑

i∈N hi(·) be identically zero and
∫
A−i

hi(·, α−i)
Πi(dα−i) be constant. Then m is collectively rational and Bayesian incentive compatible.

The proof of this corollary is immediate. It leads, together with Theorem 2, to the following,
which then gives a characterization of collectively rational and Bayesian incentive compatible
mechanisms.
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Theorem 4 Assuming H2 and for independent beliefs satisfying condition D, let m = (d, t) be
a continuously differentiable mechanism which is collectively rational and Bayesian incentive
compatible. Then there exist continuously differentiable functions hi on A, i ∈ N , such that∑

i∈N hi(·) is identically zero and
∫
A−i

hi(·, α−i)π(α−i) dα−i is constant and which satisfy

∀ i ∈ N, ∀ a ∈ A, ti(a) = gi(ai)− g−i(a−i) + hi(a).

Proof Let, ∀ i ∈ N , ∀ a ∈ A,

hi(a) = g−i(a−i)− gi(ai) + ti(a).

Then using the corollary to Theorem 2, it is easy to see that the functions hi have all the required
properties.

It is clear now that, with sufficient differentiability assumptions, Theorem 4 together with the
corollary to Theorem 3 give a complete characterization of the class of mechanisms which are both
collectively rational and Bayesian incentive compatible, in the independent case.

4. Individual rationality

Let us consider a mechanism m ∈M which is collectively rational and Bayesian incentive compati-
ble. A supplementary requirement to be made is that whenever each player reports to the Agency
the true value of his parameter, a player’s payoff (or at least expected payoff) will not be worse than
what he could guarantee himself without being involved in the collective decision problem.

We shall concentrate on the class of mechanisms given by Theorem 3 which are Bayesian incen-
tive compatible and collectively rational when the beliefs are independent. We shall examine whether
any mechanism in the class satisfies some specification of the individual rationality requirement.

For that matter, let us assume that among all admissible alternatives X = RK , we may isolate
one particular alternative x0 ∈ X called the status quo point, i.e. the alternative which would result
if no mechanism were designed. For player i ∈ N , if his true type is αi ∈ Ai, the status quo payoff
is: Ui(x

0;αi). We shall – sometimes – restrict ourselves to zero-normalized payoffs, by letting for
every i ∈ N , Ui(x

0;αi) = 0.
Let us now consider two alternative specifications of the individual rationality requirement.

4.1 Two kinds of individual rationality

We say of a mechanism m = (d, t) that it is strongly individually rational iff

∀ i ∈ N, ∀α ∈ A, Vi(m(α);αi) ≥ Ui(x
0;αi),

i.e. under the separability assumption

∀ i ∈ N, ∀α ∈ A,Ui

(
d(α);αi

)
+ ti(α) ≥ Ui(x

0;αi).

In that case, assuming everyone reports the truth, each player must get at least his status-quo payoff.
Alternatively, we say of a mechanism m = (d, t) that it is weakly individually rational (or

individually rational in expected value) iff

∀ i ∈ N, ∀α ∈ A,
∫
A−i

Vi(m(α), αi) Πi(dα−i) ≥ Ui(x
0;αi),

12



i.e. under the separability assumption

∀ i ∈ N, ∀α ∈ A,∫
A−i

Ui

(
d(αi, α−i);αi

)
Πi(dα−i) +

∫
A−i

ti(αi, α−i) Πi(dα−i) ≥ Ui(x
0;αi).

Obviously any strongly individually rational mechanism is weakly individually rational.
We shall not in this paper give any complete answer to the problem of finding Bayesian incentive

compatible mechanisms which are rational both collectively and individually (in some sense).
However, the analysis in the following section seems to indicate that, unless the data of the model
satisfy rather peculiar conditions, one should not in general expect strong individual rationality to
hold.

As far as weak individual rationality is concerned, it is even difficult to make some conjecture.
However, using Theorem 4, which applies to the differentiable independent case, it is possible to
reformulate the problem in the following way: find continuously differentiable functions hi, for all
i ∈ N , for which again

∑
i∈N hi(·) is identically zero and

∫
A−i

hi(·;α−i)πi(α−i) dα−i is constant,
and such that

∀ i ∈ N, ∀αi ∈ Ai,∫
A−i

[v(αi, α−i)− g−i(α−i) + hi(αi, α−i)]πi(α−i)dα−i ≥ Ui(x
0;αi).

4.2 A sufficient condition for strong individual rationality

Let us consider a two-person collective decision problem, where N = {1, 2}, A1 = {αi
1; = 1, 2},

A2 = {αj
2; j = 1, 2} and where the (independent) beliefs are described by the two probability

distributions of Table 1.

Table 1

αj
2 πj1 = π1(α

j
2) αi

1 πi2 = π2(α
i
1)

α1
2 3/5 α1

1 1/10

α2
2 2/5 α2

1 9/10

The individual payoffs associated to the outcome efficient decision rule are given by Table 2,
where

1uiji = U1(d(αi
1, α

j
2);α

i
1);

2uiji = U2(d(αi
1, α

j
2);α

j
2)

and

vij = U1

(
d(αi

1, α
j
2);α

i
1

)
+ U2

(
d(αi

1, α
j
2);α

j
2)

= max
x

U1(x;αi
1) + U2(x;αj

2).

We assume that the payoffs are zero-normalized, i.e.

U1(x
0;α1

1) = U1(x
0;α2

1) = 0; U2(x
0;α1

2) = U2(x
0;α2

2) = 0.

Everybody reporting the truth, the payoff space is pictured in Figure 1.
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Table 2
1uiji

2uiij vij

(α1
1, α

1
2)

1u111 = 30 2u111 = 10 40
1u121 = 40 2u121 = 0
1u211 = 5 2u211 = 30
1u221 = 10 2u221 = 4

(α2
1, α

1
2)

1u212 = 60 2u211 = 30 90
1u112 = 30 2u111 = 10
1u122 = 20 2u121 = 0
1u222 = 10 2u221 = 4

(α1
1, α

2
2)

1u121 = 40 2u122 = 20 60
1u111 = 30 2u111 = 0
1u211 = 5 2u211 = 10
1u221 = 10 2u221 = 50

(α2
1, α

2
2)

1u222 = 10 2u222 = 50 60
1u122 = 20 2u122 = 20
1u112 = 30 2u112 = 10
1u212 = 60 2u212 = 0

Let us now consider the following transfer scheme:

∀ (αi
1, α

j
2), t

ij
1 = t1(α

i
1, α

j
1) = g1(α

i
1)− g2(α

j
2),

tij2 = t2(α
i
1, α

j
2) = g2(α

t
2)− g1(αi

1),

where

g1(α
i
1) =

2∑
j=1

2uijj π
j
1 and g2(α

j
2) =

2∑
i=1

1uiji π
i
2,

and

t111 = −t112 = −43; t211 = −t212 = −14;

t121 = −t122 = 1; t221 = −t222 = 25.

Finally we get, for the mechanism m = (d, t):

V1
(
m(α1

1, α
1
2);α

1
1

)
= 1u111 + t111 = 30− 43 = −13,

V2
(
m(α1

1, α
1
2);α

1
2

)
= 2u112 + t112 = 10 + 43 = 53.

Since, for one pair (αi
1, α

j
2), one player receives less than his status-quo payoff, the mechanism is

not strongly individually rational.
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Figure 1

Notice that there exist, for the same problem, other mechanisms that are Bayesian incentive
compatible and collectively rational and which may have the strong individual rationality property.

Along that line, one may find situations for which there exist mechanisms which simultaneously
are Bayesian incentive compatible, collectively rational and strongly individually rational. Let us
consider again two-persons decision problems. We have:

Theorem 5 Assume H1 and that the beliefs are independent. Given any efficient outcome decision
rule d, consider the mechanism m = (d, t) such that

∀ a ∈ A, t1(a) = g1(a1)− g2(a2) + h1(a),

t2(a) = g2(a2)− g1(a1) + h2(a),

with
gi(ai) =

∫
Aj

Uj

(
d(a), aj

)
Πi(daj), with j 6= i;

and

h1(a) = U2

(
d(a), a2

)
− 1

2
v(a)− 1

2

∫
A2

U2

(
d(a); a2

)
Π1(da2)

+
1

2

∫
A1

U1

(
d(a); a2

)
Π2(da1) +

1

2

∫
A2

U1

(
d(a); a1

)
Π1(da2)

− 1

2

∫
A1

U2

(
d(a); a2

)
Π2(da1),
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h2(a) = U1

(
d(a), a1

)
− 1

2
v(a)− 1

2

∫
A1

U1

(
d(a); a1

)
Π2(da1)

+
1

2

∫
A2

U2

(
d(a); a2

)
Π1(da2) +

1

2

∫
A1

U2

(
d(a); a2

)
Π2(da1)

− 1

2

∫
A2

U1

(
d(a); a1

)
Π1(da2).

The mechanism m = (d, t) is Bayesian incentive compatible, collectively and strongly individually
rational whenever

∀ a ∈ A,
1

2

∣∣∣∣∫
A2

v(a1, a2) Π1(da2)−
∫
A1

v(a1, a2) Π2(da1)

∣∣∣∣ ≤ 1

2
v(a)− max

i∈{1,2}
Ui(x

0; ai).

Proof
(i) First we have

∀ a ∈ A, h1(a) + h2(a) = 0,

and ∫
A2

h1(a1, a2) Π1(da2) =
1

2

[∫
A1

∫
A2

U1

(
d(a1; a2); a1

)
Π1(da2) Π2(da1)

−
∫
A1

∫
A2

U2

(
d(a1, a2); a1

)
Π1(da2) Π2(da1)

]
,

and ∫
A1

h2(a1, a2) Π2(da1) =
1

2

[∫
A1

∫
A2

U2

(
d(a1; a2); a2

)
Π1(da2) Π2(da1)

−
∫
A1

∫
A2

U1

(
d(a1, a2); a2

)
Π1(da2) Π2(da1)

]
.

Thus, by Theorem 3, the mechanism m = (d, t) is Bayesian incentive compatible and collectively
rational.
(ii) Secondly, we have for any α ∈ A:

t1(α) = U2

(
d(α);α2)−

1

2

[
v(α)−

∫
A2

v(α1, α2) Π1(dα2) +

∫
A1

v(α1, α2) Π2(dα1)

]
and similarly,

t2(α) = U1

(
d(α);α1)−

1

2

[
v(α)−

∫
A2

v(α1, α2) Π1(dα2)−
∫
A1

v(α1, α2) Π2(dα1)

]
.
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Thus, for any α ∈ A,

V1
(
m(α);α1

)
= U1

(
d(α);α1

)
+ t1(α)

=
1

2
v(α) +

1

2

[∫
A2

v(α) Π1(dα2)−
∫
A1

v(α) Π2(dα1)

]
,

V2
(
m(α);α2

)
= U2

(
d(α);α2

)
+ t2(α)

=
1

2
v(α)− 1

2

[∫
A2

v(α) Π1(dα2)−
∫
A1

v(α) Π2(dα1)

]
.

By assumption we have

∀α ∈ A, 1

2
v(α)− 1

2

∣∣∣∣∫
A2

v(α) Π1(dα2)−
∫
A1

v(α) Π2(dα1)

∣∣∣∣ ≥ max
i∈{1,2}

Ui(x
0;αi),

which clearly implies

∀ i ∈ {1, 2},∀α ∈ A, V
(
m(α), αi

)
≥ Ui(x

0;αi).

It is easy to construct examples where the sufficient condition given in this theorem is violated. For
instance if we change v21 to 110 and v22 to 70 in the example above and modify the 1uiji ’s and the
2uijj ’s accordingly (in a consistent way) then the condition is violated. In this modified example,
even weak individual rationality is not satisfied.
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Paper 262, Northwestern University, December 1976.

18


