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Abstract

We show, within a single industry, the possibility that R&-investment is non-monotonically

related to competitive toughness: increasing when competition is soft and decreasing when

competition is tough. This possibility results from the combination of a Schumpeterian

markup squeezing effect discouraging innovation, and a concentration effect spurring innova-

tors. It is obtained in a sectoral model where the number of innovators is random and where

non-successful investors may remain productive. The result is extended to a multisectoral

stochastic endogenous growth model with overlapping generations of consumers and firms,

the number of which is endogenously determined in the capital market.
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1 Introduction

The relationship between product market competition and innovation is not simple to assess,

either empirically or theoretically. It varies according to the market, the industry and the

innovation characteristics. Following the Schumpeterian view (Schumpeter 1942), monopoly

rent is required to support innovative activity and tougher competition on the product market

has a negative impact on innovation. This conclusion is contrary to the view that “the incentive

to invent is less under monopolistic than under competitive conditions” (Arrow 1962)1 or to the

“Darwinian” view for which competition is needed to force firms to innovate to survive.

Empirical evidence is not conclusive either. For example, Link and Lunn (1984) exhibit a

positive effect of concentration on the returns to R& D for process innovation, whereas Geroski

(1995), Nickell (1996) and Blundell, Griffith, and Van Reenen (1999) find a negative effect of

concentration on innovation.2 Another way of tackling the problem consists in looking for a non

monotone relationship between competition and innovation. It can be traced back to Scherer

(1965, 1967) who shows that the effect of firm size on patented inventions is diminishing for

large sizes.3 An inverted-U relationship between competition and innovation is further explored

by Levin, Cohen, and Mowery (1985),4 and is reexamined in a panel study by Aghion it et al.

(2005), who obtain a clear inverted-U shape when plotting patents against the Lerner index.
1Tirole (1997) calls this the “replacement effect”: the profits that are replaced by those resulting from inno-

vation are larger for a monopoly.
2For more references and a discussion of these results, see Gilbert (2006).
3Dasgupta and Stiglitz (1980), referring to the earlier empirical literature surveyed in Scherer (1970) and

Kamien and Schwartz (1975), stress that innovative activity might become negatively correlated to concentration

when an industry is too concentrated.
4In a preliminary statistical investigation, the authors find a significant inverted-U relationship between in-

dustry concentration and R&D intensity or the innovation rate. However, in a further data analysis including

more variables designed to capture the influence of technological opportunity and appropriability, the statistical

significance of the concentration variable (C4 index) is much lower. “These econometric studies suggest that

whatever relationship exists at a general economy-wide level between industry structure and R& D is masked

by differences across industries in technological opportunities, demand, and the appropriability of inventions”

(Gilbert 2005, p. 191).
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Moreover, building upon previous work,5 Aghion et al. (2005) provide a theoretical ex-

planation for their observations. They suppose a fixed number of firms (a duopoly) in each

industry, competing both at the research and the production levels. The set of industries can

be partitioned into two groups: those where the two firms are at the same technological level

(neck-and-neck) and those where one firm leads and the other lags. More intense competition

enhances R& D investment in the former group, but discourages it in the latter (according

to the Schumpeterian view).6 It is by averaging R&D intensities across all industrys that an

invertedU -relationship between the (average) innovation rate and product market competition

is obtained (through a “composition effect”).7

Our goal here is to propose an alternative theoretical model of product market competition

and innovation explaining a non monotone relationship. This is done in a framework combining

features of tournament models (Reingaum 1985, 1989) and non tournament models (Dasgupta

and Stiglitz 1980). As in tournament models, the expected incremental gain of innovating

creates the incentive for R& D investment by firms, and each industry cane partitioned into

successful and unsuccessful firms. However, a special feature of our model is that we allow

for multiple simultaneous innovators.8 As in non tournament models, the concentration effect
5See Aghion, Harris, and Vickers (1997) and Aghion, Harris, Howitt, and Vickers (2001). The latter has been

extended by Encaoua and Ulph (2000), allowing for the possibility that the lagging firm leapfrogs the leader

without driving it out of the market, and also obtains a non-monotone relationship between competition and

innovation. Aghion, Dewatripont, and Rey (1999) introduce agency considerations with nonprofit maximizing

firms, leading to non-Schumpeterian conclusions. A synthesis of this stream of the literature is provided by Aghion

and Griffith ( 2005).
6In a nec-and-neck industry, R& D intensity increases with product market competition because firms invest in

R&D to escape competition (the “escape competition effect”). Only in an unleveled industry can the traditional

“Schumpeterian effect” dominate (and will dominate when product market competition is sufficiently tough): as

there is no incentive for the leader to invest in R& D (because of an assumed automatic catching up by the

follower), only the laggard firm innovates, its chosen R&D intensity decreasing a competition becomes tougher in

the product market, dissipating the rents that can be captured after innovation.
7A similar composition effect is exploited by Mukoyama (2003) to obtain an inverted-U relationship between

competition and growth in a tournament model introducing the possibility of imitation.
8This feature significantly differentiates our model from the one in Denicolò and Zanchettin (2004), where
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plays an essential role, not only through the variation of the endogenous number of (identical)

firms (can de Klundert and Smulders 1997; Peretto 1999), but also by taking into account the

distribution of market shares between successful and unsuccessful (incremental) innovators.9

In our model, identical firms compete first at the research and then at the production levels.

At the first stage, they have equal access to technological knowledge and their R& D investments

determine their respective probabilities of innovating. At the second stage, firms compete in the

product market both in prices and in quantities (as in d’Aspremont, Dos Santos Ferreira, and

Gérard-Varet [1991] and d’Aspremont and Dos Santos Ferreira [2009]). There is a continuum of

oligopolistic equilibria, corresponding to intermediate regimes between Cournot and Bertrand

and parameterized by an index of “competitive toughness.”10 As in Arrow (1962), the key notion

is the incentive to invent, represented here by the incremental gain of innovating; that is, the

difference for an investing firm between the profit it earns when successful and that which it earns

when unsuccessful. As a function of competitive toughness, the incremental gain of innovating

is affected by two opposite effects: a negative “markup squeezing effect,” clearly Schumpeterian,

and a positive concentration effect. Under soft competition, and assuming that innovators obtain

only a small cost advantage,11 unsuccessful firms remain active at equilibrium. Then the gap

between market shares of the two groups of firms increases with competitive toughness, implying

that concentration as measured by an index such as the Herfindahl index increases (other things

equal) and that the incentive to invest in R& D, evaluated by the expected incremental gain of

there is a single technological leader in each period, although several past innovators might remain active.
9Thompson and Waldo (1994) discuss the two kinds of innovative capitalism described by Schumpeter (1928);

“competitive capitalism,” under which only the innovative firm remains active in the market and “trustified

capitalism,” where losing firms may remain active. They argue that, empirically, trustified capitalism is more

important than competitive capitalism.
10Various continuous measures of the intensity of competition have been used to examine the relationship

between R& D investment and competition: the degree of substitutability and the mass of differentiated products

(as in Aghion, Dewatripont, and Rey 1999); the conjectural variations parameter (as in Encaoua and Ulph 2000);

the inverse of the market price of a homogeneous product (as in Denicolò and Zanchettin [2004], in a reduced

form model inspired by Cabral [1995] and Maggi [1996]); and the complement to one of the degree of collusion

(as in Aghion et al. 2005).
11This supposes a small innovation step or imperfect patent protection (large spillovers).
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innovating, also increases. At some level of competitive toughness, however, unsuccessful firms

are eliminated and competition becomes symmetric, thus eliminating any further gain in market

shares, so that the incentive to invest eventually decreases with higher competitive toughness.

On this basis we show the possibility of obtaining a non monotone relationship between R&

D investment and competitive toughness (increasing when competition is soft and decreasing

when it is tough) in a single sector partial equilibrium model with a fixed number of firms. A

corresponding non monotone relationship is then obtained, independently of any composition

effect, in a multisector endogenous growth model where the number of firms in each sector is

endogenously determined.

The paper is organized as follows. In Section 2, we introduce a one-sector model and give

the definition of the oligopolistic two-stage game under a continuum of possible regimes of

competition. We then present the basic nonmonotonicity results. In Section 3, we extend the

model to a continuum of sectors and analyze the consequences of the basic nonmonotonicity

results in this general setting where the number of firms is endogenously determined. We

conclude in Section 4.

2 A representative oligopolistic sector

Let us start by considering a typical industry involving a set N of N firms. We shall successively

consider the second and the first stages of the oligopolistic game. First suppose that each firm j

has already chosen its level of investment in R&D, and that uncertainty in relation to innovation

is resolved, resulting in a partition of the industry into successful and unsuccessful firms. Each

firm j has to choose a price-output pair (pj , yj). Output yj can be produced at unit cost cj .

This unit cost takes three values: the lowest one for successful firms, and intermediate value

for non successful firms benefitting from innovators’ spillovers,12 and the highest value when no

firms are successful. The demand, D, for the good is a function of market price, P , with a finite
12There are more sophisticated ways of introducing spillovers. For instance Amir and Wooders (1999) consider

stochastic apillovers. In a paper that is more directly related to the present work, Reis and Traca (2008) analyze

the impact of the intensity of spillovers on R&D productivity (rather than on the diffusion of innovations).
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negative continuous derivative over all the domain where it is positive. A particular specification

of the demand function will be introduced below. We let Y denote the total output,
∑

k yk, and

Y−j =
∑

k 6=j yk the total output produced by firms other than j.

2.1 The oligopolistic equilibrium

Because our goal is to study the relationship between the degree of competition and R&D in-

vestment, we want to compare different competition regimes, including perfect competition,

Bertrand and Cournot competition, but also other intermediate regimes. This is common prac-

tice in the new empirical industrial organization literature, where “behavioral equations” are

used to estimate firm behavior, and in which the degree of competitiveness of a firm is rep-

resented by a conduct parameter.13 From a theoretical point of view, there are various ways

to derive these behavioral equations.14 We shall not review all these various theories here but

shall rely on the canonical, and Cournot-like, representation of oligopolistic competition intro-

duced in d’Aspremont and Dos Santos Ferreira (2009), which is readily usable in the present

framework. In this canonical representation beach firm j is assumed to choose a price-output

pair (pj , yj) to maximize its profit under two constraints representing the competitive pressure

coming, respectively, from inside and from outside the industry. In the first constraint, firm j

preserves its market share by matching its competitors’ prices. In the second, firm j adjusts for

the market size. At equilibrium, the consumers should not be rationed. Formally, a 2 N -tuple

(p∗, y∗) is an oligopolistic equilibrium if, for each firm j, (p∗j , y
∗
j ) is a solution to the program

max
(pj ,yj)∈IR2

+

{(pj − cj)yj : pj ≤ min
k 6=j
{p∗k} and pj ≤ D−1(yj + Y ∗−j)}, (1)

and satisfies the no-rationing condition

Y ∗ = D(P ∗), with P ∗ = min
j
{p∗j}. (2)

Introducing Kuhn and Tucker multipliers (λj , νj) ∈ IR2
+ \ {0} associated with the first and

second constraints in (1), respectively, general first-order conditions require, by the positivity
13For a synthesis, see Bresnahan (1989) and Martin (2002).
14See Martin (2002).
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of p∗j and the non negativity of y∗j , that y∗j − λj − νj = 0, and p∗j − cj + νj/D
′(P ∗) ≤ 0 with

(p∗j−cj+νj/D′(P ∗))y∗j = 0. The multiplier λj , associated with the market share constraint, and

the multiplier νj , associated with the market size constraint, can be interpreted as the shadow

costs for firm j of relaxing the pressure coming from its competitors, respectively, inside and

outside the industry. Defining the normalized parameter θj ≡ λj/(λj+νj) ∈ [0, 1], the first-order

conditions for the N∗ producing firms (with p∗j = P ∗ and y∗j > 0) can then be expressed as a

function of the θjs:
P ∗ − cj
P ∗

= (1− θj)
y∗j /Y

∗

−εD(P ∗)
, (3)

where the left-hand side is the firm j Lerner degree of monopoly and ε is the elasticity operator.15

The behavioral equations of the empirical literature coincide with these first-order conditions

where the θjs are called conduct parameters. However, here the θj s are determined endogenously

and parameterize the set of equilibria. Each parameter θj can be viewed as an index of the

competitiveness (or the competitive toughness) of firm j at some equilibrium. Alternatively, the

θjs could be taken as exogenous parameters and, by varying their values, a whole set of games

can be defined thus describing the set of competitive regimes between Cournot competition and

perfect competition. In such an intermediate game, each firm maximizes a convex combination

of its Cournot and its price-taking profits. An equilibrium consists of an equilibrium price P ∗

and equilibrium quantities y∗ ∈ IRN
+ such that, for each firm j,

y∗j ∈ arg max
yj∈IR+

{(1− θj)[D−1(yj + Y ∗−j)− cj ]yj + θj(P ∗ − cj)yj}

and

P ∗ = D−1(Y ∗).

An equilibrium is characterized by the same first-order conditions (3), given the fixed value of

the θjs.

15For a differentiable function f(x),

ε f(x) ≡ df(x)

dx

x

f(x)
.
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At one extreme, whenever θj = 0 for all j, this equilibrium coincides with the Cournot

solution (PC , yC) satisfying

yCj ∈ arg max
yj∈[0,∞)

[D−1(yj + Y C
−j)− cj ]yj , j = 1, · · · , N, (4)

and PC = D−1(Y C). At the other extreme, whenever θj = 1 for all j, the equilibrium coincides

with the perfectly competitive (Walrasian) outcome (PW , yW ) satisfying

yWj ∈ arg max
yj∈[0,∞)

(PW − cj)yj , j = 1, · · · , N, (5)

with PW such that
∑

i y
W
i = D(PW ). This also corresponds to the Bertrand outcome in the

case where all costs are identical. The Bertrand outcome (PB, yB) with PB = minj{pBj } is

defined by

pBj ∈ arg max
pj∈[0,∞)

(pj − cj)dj(pj , pB−j) (6)

with dj(pj , pB−j) =
D(min{pj ,pB−j})

#argmin{pj ,pB−j}
, if pj = min{pj , pB−j},

= 0 otherwise
(7)

It corresponds to the case where at least one θj is equal to 1. When costs are not identical,

the standard way to ensure the existence of a Bertrand outcome is to assume that profits are

measured in (small ε) discrete units of account (e.g. in cents), then to compute Bertrand prices

accordingly and take their limit as ε → 0.16 Only the most efficient firms produce and have a

positive profit. All prices converge to some price between the first and the second lowest cost.

Such an outcome also corresponds to an oligopolistic equilibrium.

In the following, we shall treat the θjs as parameters indicating the relative degree of com-

petition and use the first-order conditions (3) to investigate their impact on R&D investment.

However, to simplify the analysis, we introduce additional assumptions.

2.2 The gain of innovating under varying toughness

A first simplifying assumption is to suppose a unit-elastic demand to the industry,

D (P ) =
A

P
, (8)

16See, for example, Mas-Colell, WHinston, and Green (1995).
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with A and P positive and denoting, respectively, the sectoral expenditure and the market price.

A second simplification is to limit our analysis to the case in which competitive toughness is the

same for all producing firms; that is, θj = θ ∈ [0, 1] for any j.17 A third assumption is to let the

unit cost of each firm depend on its type (successful or unsuccessful) and to take into account

the possibility of incomplete appropriability by the innovators through a spillover coefficient

σ, 0 ≤ σ < 1. Formally, for c(·), a strictly decreasing function, we let

cj = c(δj), (9)

with δj = 1, if j is successful, δj = 0 if no firm succeeds and δj = σ, if at least one firm succeeds

but not firm j. We note by κ ≡ (c(σ)− c(1))/c(σ) the relative cost advantage of the innovators.

Clearly, more spillovers, or less appropriability of invention, decreases the relate cost advantage.

Under these assumptions, the first-order condition (3) becomes:

1− c(δj)
P ∗

= (1− θ)
y∗j
y∗
, (10)

with Y ∗ = A/P ∗.

Consider first the symmetric case where firms are all unsuccessful. The equilibrium price, as

a function of the number n of successful firms, the number N of competing firms and competitive

toughness, θ, is easily computed to be

P (0, N, θ) =
Nc(0)

N − (1− θ)
. (11)

A second case is when n firms succeed (1 ≤ n ≤ N) and all N firms are active at equilibrium.

We then obtain the equilibrium price

P (n,N, θ) =
nc(1) + (N − n)c(σ)

N − (1− θ)
, (12)

provided P (n,N, θ) ≥ c(σ) or κ ≤ (1 − θ)/n. For κ > (1 − θ)/n, the innovation is drastic,

unsuccessful firms are eliminated and we obtain the third case, where only successful firms are
17Competitivie toughness, θ, as now defined, satisfies the axioms characterizing a measure of the intensity of

competition according to Boone’s (2001) definition (except for the normalization axiom associating a zero θ with

local monopoly).
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active (getting equal market shares), the price becoming:

P (n, n, θ) =
nc(1)

n− (1− θ)
. (13)

Observe that there is a borderline case where the competitive toughness is just sufficient to

eliminate unsuccessful firms; that is,

θ = θL(n) ≡ max{1− nκ, 0}. (14)

We call this borderline case the limit-pricing regime. The corresponding θ varies with n. It can

be extended to the cases in which there are no successful firms and in which all firms succeed,

by taking the limit values of θL(n), denoted, respectively, θL(0) (equal to 1 and corresponding

to the Bertrand outcome) and θL(N).

For the following analysis, it is convenient to introduce a specific notation for market shares.

For 0 < n ≤ N , we let m(1, n,N, θ) and m(σ, n,N, θ) denote, respectively, the market share of a

successful and an unsuccessful firm. From (10) and the price equations, it is easy to verify that

the equilibrium market share is:

Y ∗j
Y ∗

= m(δj , n,N, θ) =
1

1− θ

(
1− N − (1− θ)

nc(1) + (N − n)c(σ)
c(δj)

)
(15)

or, using the notation κ and taking into account the case of drastic innovations (with κ >

(1− θ)/n),

m(1, n,N, θ) = min
{

1
1− θ

(N − n)κ+ (1− θ)(1− κ)
N − nκ

,
1
n

}
, (16)

m(σ, n,N, θ) = max
{

1
1− θ

1− θ − nκ
N − nκ

, 0
}
. (17)

When n = 0, we let m(σ, 0, N, θ) = m(0, 0, N, θ) = 1/N .

Clearly, m(1, n,N, θ) > m(σ, n,N, θ): the market share of a successful firm is bigger than

the market share of an unsuccessful one. Notice also that, for 0 < n < N and θ < θL(n);

that is, when, given the competitive toughness, innovations are non-drastic, the market share

m(1, n,N, θ) is increasing, whereas m(σ, n,N, θ) is decreasing in θ, so that the gap in mar-

ket shares between successful and unsuccessful firms increases with competitive toughness. In
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particular, the Herfindahl concentration index is increasing in θ.18 It is through this effect on

market shares, hence by enhancing concentration (as measured by the Herfindahl index), that

tougher competition can stimulate R&D. Note that the concentration effect exhibited here is not

measured by the reduction in the number of firms (at zero profit equilibrium under free entry)

when competition becomes tougher, as in the case of non-tournament models when all firms

are identical (e.g. van de Klundert and Smulders, 1997). We have to use a more sophisticated

notion of concentration because, although we assume symmetry ex ante, we lose it ex post when

there are successful and unsuccessful firms.

Using the first-order condition (10), the equilibrium profit Π per unit of expenditure of firm

j is then equal to

Π(δj , n,N, θ) = (1− θ)m(δj , n,N, θ)2. (18)

We see that an increase in competitive toughness has two effects on a firm equilibrium profit, first

a negative markup squeezing effect through (1− θ), and second an effect through the variation

in market share m(δj , n,N, θ). When all active firms have the same cost, so that they all get

the same market share at equilibrium, profits decrease as competition becomes tougher. This is

also true as regards the profit of an unsuccessful firm (δj = σ,with n ≥ 1) because its market

share is a decreasing function of competitive toughness. However, as a positive effect, which

might more than compensate for the negative markup squeezing effect, provided its relative cost

advantage, κ, is strong enough, but not so as to make the innovation drastic (see Equation 16).

However, as we shall see in the following, it is not so much the equilibrium profit that

determines a firm incentive to innovate, but rather the incremental gain G of innovating

G(n,N, θ) ≡ π(1, n+ 1, N, θ)−Π(σ, n,N, θ), (19)
18The Herfindahl index is defined as

H =

NX
j=1

m2
j =

1

N
+NV,

with mj the market share of firm j and the variance

V =
1

N

NX
j=1

„
mj −

1

N

«2

.
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for 0 ≤ n < N (using the equality Π(σ, 0, N, θ) = Π(0, 0, N, θ)). Here an increase in competitive

toughness has clearly two opposite effects. There is still the negative markup squeezing effect,

together with a positive concentration effect through the difference in the squares of market

shares. We may thus expect to obtain a non-monotonic relationship between the incremental

gain of innovating G and the competitive toughness, θ. This is formalized in the following lemma

showing that G either has an inverted-U shape or is decreasing for all θ.

Lemma 1 If the relative cost advantage κ (or the number n) of successful firms is small enough,

then the incremental gain of innovating G is increasing in the competitive toughness θ for suf-

ficiently small, and decreasing for sufficiently large, values of θ. Otherwise, G is decreasing in

θ in the whole interval [0, 1]. In any case, the function G is strictly quasi-concave in θ in the

whole interval [0, 1]. Moreover, G is decreasing in n for small enough values of κ.

Proof: See appendix

In the case of drastic innovations, that is, when θL(n) = 0 due to a combination of many

innovators and a large relative cost advantage, laggards are eliminated even under Cournot

competition, so that the concentration effect vanishes and tougher competition can only have

a negative effect on the incentive to innovate through the markup squeeze. In the case of non-

drastic innovations, the concentration effect is positive but weak when innovation is sufficiently

appropriable (with a small spillover coefficient, σ, resulting in a large relative cost advantage, κ)

and when the number of innovators, n, is large. The incentive to innovate is then stronger even

if competition is soft; in conformity with Schumpeter’s view. By contrast, with small values of

κ and n, the incentive to innovate is first increasing and eventually decreasing with competitive

toughness, so that we may obtain a non-monotone curve relating the incremental gain of in-

novating to competitive toughness. This non-monotonicity derives from a strong concentration

effect when competition is soft; that is, from the incentive created by a high prospective increase

of the innovator’s market share, an effect that entirely depends upon the probabilistic nature of

the model, and disappears as soon as innovation is approached as a deterministic process. The

last statement of the lemma asserts that the incentive to innovate decreases with the number
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of innovators, a property that will play a crucial role in the following (see the proof of Propo-

sition 1), and that relies on the possibility of multiple winners, usually excluded in tournament

models. Hence, uncertainty and multiplicity of simultaneous innovations are crucial to obtain a

non-monotone relation between competitive toughness and R&D-investment.

2.3 Strategic R&D investment

In the preceding analysis, we supposed that each firm had already chosen its level of investment

in R&D and that uncertainty of innovation was resolved, implying that the sets of successful

and of unsuccessful firms were fixed. We now introduce a first stage during which each firm,

j, chooses a level of R&D investment leading to discovery with some probability of success, sj .

Innovation is assumed to be a Bernoullian random process that depends upon these investment

levels. The two-stage game will depend on the expected expenditure, A, on the number of firms,

N , and, of course, on the selected competitive toughness, θ, and will be denoted Γ(A,N, θ).

For simplicity, firm j investment is directly represented by the independent probability sj of

success in the next period. We specify the investment cost to be quadratic: C(sj) = φ+ (γ/2)s2j

for sj ≥ 0 (with φ > 0 and γ > 0). The sunk cost, φ, corresponds to the investment that is

required for having access to the technology and for benefitting from technological spillovers. The

probability that a subset S of firms innovate simultaneously, while firms in the complementary

subset S do not succeed, is given by
∏
j∈S sj

∏
j∈S(1−sj). We denote Pr{ν | s−j} the probability

of having ν innovators among the N − 1 competitors of firm j with investment strategies s−j ≡

(s1, · · · , sj−1, sj+1, · · · , sN ).

Investment sj is decided by maximizing the profit expectation Π̃(sj , s−j)A, for given values

of A,N and θ, with

Π̃(sj , s−j) = sj

N−1∑
ν=0

Pr{ν | s−j}Π(1, ν + 1, N, θ)

+ (1− sj)
N−1∑
ν=0

Pr{ν | s−j}Π(σ, ν,N, θ)− C(sj)
A .

(20)

This expectation is strictly concave in the strategy variable sj , by the specification of the cost
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function. Therefore, we obtain for each j the necessary and sufficient first-order condition for

an interior maximum (at sj ∈ (0, 1)):

C′(sj)
A =

∑N−1
ν=0 Pr{ν | s−j}[Π(1, ν + 1, N, θ)−Π(σ, ν,N, θ)]

=
∑N−1

ν=0 Pr{ν | s−j}G(ν,N, θ),

the equality of the marginal R&D investment cost and of the expected value of the incremental

gain of innovation (both by unit of expenditure).

At a symmetric equilibrium (with sj = s, for any j), this first-order condition becomes:

γs

A
=

N−1∑
ν=0

Pr{ν | (s, · · · , s)}G(ν,N, θ) ≡ G(s,N, θ), (21)

where

Pr{ν | (s, · · · , s)} =
(N − 1)!

(N − 1− ν)!ν!
sν(1− s)N−1−ν . (22)

By continuity of G as a function of s, and because G(0, N, θ) = G(0, N, θ) > 0, either there is

a value s ∈ (0, 1) satisfying (21), or G(s,N, θ) > γ/A for any s ∈ (0, 1) and the corner solution

s = 1 applies.

Using Lemma 1 and the probabilities given by (22), we may easily derive the following

conclusions:

Lemma 2 If the relative cost advantage, κ, of successful firms (or the probability of success, s)

is small enough, then the expected incremental gain of innovating G(s,N, θ) is increasing with

the competitive toughness θ for sufficiently small, and decreasing for sufficiently large, values of

θ. Otherwise, G is decreasing in 0 in the whole interval [0, 1].

Proof: Given N,G(s,N, θ), as a function of θ, is an expectation (determined by s) computed

from the set of functions G(ν,N, θ) for ν = 0, 1, · · · , N − 1. By Lemma 1, whenever κ is small

enough, every such G(ν,N, θ) is increasing in θ for any θ close to 0. In addition, for s small

enough, we see by (22) that most of the weight is put on small values of ν entailing (again by

Lemma 1) that G(ν,N, θ) is increasing in θ for any θ close to 0. Because, for any ν,G, (ν,N, θ)
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is decreasing in θ for any θ close to 1 (and for all θ in [0, 1] when neither κ nor s are too low),

G(s,N, θ) inherits the same property.

Except for quasi-concavity, the properties exhibited in Lemma 1 for the function G are

preserved in expected terms for the function G, with a condition imposing a small probability

of success replacing the condition of a small number of successful firms. An implication is that

when the relative cost advantage of innovation is significant, the possibility of deviating from a

strict Schumpeterian view arises from the probabilistic nature of the model.

Figure 1 illustrates Lemma 2 by showing how the expected incremental gain varies with

competitive toughness for three values of the probability of success, s(s = 0.25, 0.5, 0.75).19 For

the lowest value of s, we obtain a hump-shaped curve dominating the other two. For the largest

value, the curve is decreasing overall.

Figure 1: The relationship between competitive toughness and the expected incremental gain of

innovating

The next proposition describes properties of the (symmetric) equilibrium where all firms

choose the (same) level of R&D-investment, a probability of success, s, for various values of
19Figure 1 is based on the parameter values N = 9 and κ = 0.078.
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competitive toughness.

Proposition 1 If the relative cost advantage, κ, of successful firms is small enough, the sym-

metric equilibrium level, s of R& investment is uniquely determined for every value of θ. If, in

addition, the slope γ/A of the marginal investment cost per unit of aggregate expenditure is large

enough (so as to exclude a corner solution), then s is increasing with competitive toughness θ

for sufficiently small, and decreasing for sufficiently large, values of θ. Moreover, s is decreasing

in γ/A.

Proof: By Lemma 1, the incremental gain, G, is decreasing in n for small enough values of

κ. An implication of this property of G is that the expected incremental gain G is decreasing

in s. Indeed, by (22), the elasticity of the weight Pr{ν | (s, · · · , s)} with respect to s is equal

to (ν − (N − 1)s)/(1 − s), which has the sign of the excess of ν over its mean. Therefore,

an increase in s displaces the mass towards the terms corresponding to a larger number of

successful firms, those for which the incremental gain is lower. It results that the first-order

condition for equilibrium investment (21) uniquely determines the symmetric equilibrium value

of s at the intersection of the decreasing curve on the right-hand side with the increasing line

on the left-hand side, provided this line has a large enough slope γ/A (otherwise, we obtain the

corner solution s = 1). Then, from Lemma 2, for a sufficiently low competitive toughness, the

expected incremental gain is increasing, implying by (21) an increasing equilibrium level s of

R&D-investment. The reverse holds for sufficiently soft competition. Finally, notice that the

equilibrium value s (a solution to Equation 21) is smaller for a higher slope γ/A.

The proof of Proposition 1 is illustrated in Figure 2, where the increasing line corresponds

to the left-hand side of (21), and the decreasing curves to its right-hand side, for values of the

competitive toughness θ = 0 and θ = 0.12 (the upper thick and thin curves, respectively) and

θ = 0.8 and θ = 0.9 (the lower thick and thin curves, respectively).20 In the situation depicted

in Figure 2, the equilibrium level s of R&D investment increases (respectively, decreases) as one

switches from the thick to the thin curve; that is, as competition becomes tougher, starting from
20Figure 2 is based on the parameter values N = 3, κ = 0.1 and γ/A = 1.5.
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soft (respectively, tough) competition. The reverse result would be attained, in the case of soft

competition, for lower values of the slope γ/A of the increasing line (because the two decreasing

curves intersect).

Figure 2: Variation of the equilibrium R&D investment as competition becomes tougher

Notice that Proposition 1 uses the main properties of the incremental gain function that were

exhibited in Lemma 1, in particular the fact that it decreases with the number of innovators,

which has the consequence that the expected incremental gain is decreasing in s. This means

that assuming the number of innovators to be a random variable, following a Bernoullian process,

is essential to establish the proposition.

3 Competition and innovation in endogenous growth: A non-

monotone relationship

The previous proposition shows the possibility of obtaining a non-monotone relationship between

R&D investment and competitive toughness (increasing at low values and decreasing at high

values), by using a single sector partial equilibrium model. As mentioned in the Introduction, an

inverted-U relationship has been theoretically derived by Aghion et al. (2005) in a multisectoral
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endogenous growth model, through a “composition effect of competition on the steady-state

distribution of technology gaps across sectors.” When competition increases from its minimal

to its maximal level, the aggregate innovation rate first increases (the “escape competition

effect” dominates because of a larger percentage of neck-and-neck industries) and then decreases

(the “Schumpeterian effect” dominates because of a larger percentage of industries exhibiting a

technology gap).

We shall show that the one-sector model constructed above and the associated two-stage

game can serve as a building block in an endogenous growth general equilibrium model with a

continuum of uniformly distributed oligopolistic industries and that the non-monotone pattern

can also be predicted for cross-section investigations. In our model, however, we do not assume

that every industry has a fixed number of firms (two in Aghion et al. 2005). It is composed of

a finite but endogenously determined number of firms, each having a two-period life, competing

first at the research and then at the production levels. The number of successful firms is a

random variable, the realization of which might differ across industries.

3.1 A model with overlapping generations of firms and consumers

We use an overlapping generations model with a continuum of produced goods and an infinite

number of periods (t = 0, 1, · · ·). Both firms and consumers live for two periods, corresponding

to R&D investment and production stages for firms, and young and old ages for consumers.

On the firms’ side, there is a continuum of identical oligopolistic industries of mass 1. At

date t + 1, there is in each industry i a number Nit(Nit ≥ 2) of firms created at date t, which

produce good i for immediate consumption, on a one-to-one basis with respect to effective labor,

supplied by young consumers:

yijt+1 = `ijt+1Hitη
δijt ,

where yijt+1 and `ijt+1 are the output and labor input of firm j, respectively, Hit is the inherited

stock of knowledge (available to the whole industry at the beginning of period t), and η > 1 is

the innovation step if the firm has succeeded to innovate (with probability sijt and cost C(sijt))

at the end of period t. As indicated in Subsection 2.2, δijt is equal to 1 for an innovator, to σ
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in [0, 1) for an unsuccessful firm benefitting from spillovers from successful competitors, and to

0 if there were no innovators in period t. Accordingly, and taking labor as the numeraire, the

unit production cost is cit(δijt = 1/Hitη
δijt , so that the innovators’ relative cost advantage is a

constant κ = 1− ησ−1. We also assume that public knowledge accumulates in proportion to the

percentage of successful firms:

Hit+1 −Hit

Hit
= (η − 1)

nit
Nit

. (23)

On the consumers’ side, there is a continuum of identical consumers of constant unit mass at

each generation. One unit of labor is inelastically supplied at wage 1 by each young consumer,

who has to choose present consumption xt ∈ IR[0,1]
+ and saving zt ∈ IR+, under the budget

constraint 〈Pt, xt〉 + zt = 1, where Pt ∈ IR[0,1]
+ is the vector of market prices.21 Anticipated

future consumption x̃t+1 is a random variable induced by r̃t+1 and P̃t+1 according to the budget

constraint 〈P̃t+1, x̃t+1〉 = r̃t+1zt, where P̃t+1 is the vector of anticipated market prices and r̃t+1

is the expected return factor on capital. Saving is supposed to be invested in funds that allow

canceling out of idiosyncratic risks, but not aggregate risk, so that r̃t+1 is a random variable

depending upon the success of the innovative efforts by all investing firms. For simplicity, we

assume symmetric log-linear sub utility functions:

u(xt, x̃t+1) = α

∫ 1

0
lnxitdi+ (1− α)

∫ 1

0
ln x̃it+1di, with α ∈]0, 1[,

so that xit = (1 − zt)/Pit and x̃it+1 = r̃t+1zt/P̃it+1. Maximizing expected utility reduces to

maximizing α ln(1− zt) + (1− α) ln zt, leading to the solution zt = 1− α.

Given rt (the actual return factor) and Pt, old consumers at period t optimally choose

consumptions x′it = rtzt−1/Pit = (1 − α)rt/Pit. Therefore, adding consumptions by young and

old, we obtain the aggregate demand At/Pit for good i, with aggregate expenditure

At = α+ (1− α)rt. (24)

Observe that, as we have assumed a continuum of sectors, At is unaffected by sectoral idiosyn-

cratic variations.
21Given P and x belonging to IR[0,1], we let 〈P, x〉 denote the inner product

R 1

0
Pixidi.
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3.2 Intertemporal stochastic equilibrium

The Nit firms in industry i, created at date t, can be seen as involved in a two-stage game

Γ(At+1, Nit, θit+1) of the kind analyzed in Section 2. In the first stage of this game, corresponding

to the investment period t, each firm j, producing good i, chooses strategically a probability

sijt of success and accordingly invests C(sijt) in R&D. Uncertainty on innovation is resolved at

the end of period t, resulting for each industry i in a number of successful firms, nit. In the

second stage, corresponding to the production period t + 1, each firm j chooses a price-output

pair (pijt+1, yijt+1))it of solutions to the sequence Γ(At+1, Nit, θit+1))it of these two-stage games,

for all industries. We assume such solutions to be symmetric within each sector relative to

investing firms (sit = (sit, · · · , sit)) and within each category of producing firms (successful and

unsuccessful).

This sequence of solutions is determined by the sequence of vectors (θit+1)it of competitive

toughness that can be treated as exogenously given (except in the limit pricing regime, where

θit+1 = θL(nit)). For this sequence of solutions to deliver an inter temporal stochastic equi-

librium, the sequence of values of the variables (nit, Nit, At+1) must satisfy three sequences of

conditions. The first sequence of conditions corresponds to the first-order conditions for equi-

librium investment (see Equation 21):

γ

At+1
sit = G(sit, nit, θit+1). (25)

The second sequence of conditions corresponds to capital market clearing:∫ 1

0
NitC(sit)di = 1− α, (26)

expressing the equality of aggregate R&d investment and aggregate saving. Finally, the third

sequence of conditions corresponds to labor market clearing. Total labor supply is 1, but, by the

capital market clearing conditions, a proportion 1 − α of labor is employed by investing firms,

leaving α to producing firms, so that we get

At+1

∫ 1

0
L(nit, Nit, θit+1)di = α, (27)
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where L(nit, Nit, θit+1) is labor demand per unit of expenditure in industry i. As the wage

is normalized to 1, labor demand must be equal at equilibrium to expenditure minus the total

profits of successful and unsuccessful firms, so that, by (18), we obtain the following expression:22

L(nit, Nit, θit+1) = 1− nit(1− θit+1)m(1, nit, Nit, θit+1)2

− (Nit − nit)(1− θit+1)m(σ, nit, Nit, θit+1)2.
(28)

To compare the implications of our model with the cross-sectional observations of Aghion et

al. (2005), we refer to the first-order conditions for equilibrium investment (Equation 25) in two

industries of the same size, where the coefficient (γ/At+1) on the left-hand side of (25) and the

relative cost advantage, κ, are the same. As a direct corollary of Proposition 1, we may derive

the following cross-section result.

Proposition 2 Consider an inter temporal stochastic equilibrium and any period t. Suppose

that two industries i and i′ have the same size (Ni′t = Nit), the same sufficiently low relative cost

advantage, κ, and the same sufficiently steep marginal investment cost per unit of expenditure

(high γ/At+1). In addition, assume that both industries have a sufficiently low (respectively,

high) competitive toughness, but that i′ is more competitive than i : θi′ > θi. Then the R&D

investment of the more competitive sector is larger (respectively, smaller): si′ > si (respectively,

si′ < si).

In other words, a statistical cross-section of otherwise identical industries (with low relative

cost advantage and steep marginal investment cost) should reveal that if competition is soft

(respectively, tough) for two of them, the more competitive one invests more (respectively, less).

3.3 Implications of an endogenous number of firms

Aghion et al. (2005) limit their analysis to an economy where every product market is a duopoly.

By contrast, van de Klundert and Smulders (1997) introduce a non-tournament model, where
22Observe that labor demand can be expressed as

L(nit, Nit, θit+1) = 1− (1− θit+1)H(nit, Nit, θit+1),

where H(nit, Nit, θit+1) is the Herfindahl concentration index for industry i at date t+ 1.
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the number of firms is endogenously determined under free entry by the zero profit condition.

This model allows them to show that the (differentiated) Bertrand equilibrium always implies a

higher rate of innovation than the Cournot equilibrium. This is so because tougher competition,

meaning lower markups and prices, enlarges the market for high-technology goods and weakens

the relative weight of R&D costs, increasing the attractiveness of R&D investment. However,

at the same time, tougher competition also reduces the equilibrium number of firms, implying

larger firm size and more means devoted to R&D activity. Although our model is a tournament

model, we shall see that a comparison with the approach of van de Klundert and Smulders

(1997) is straightforward.

To achieve this comparison, we assume identical regimes of competition across time and

sectors (θit = θ for any i and t), the symmetry of the model leading to stochastic equilibria

that are symmetric and quasi-stationary; that is, with random variables (ñit)it following the

same binomial law of constant parameters (N, s).23 The capital market clearing condition then

simplifies to

NC(s) = N
(
φ+

γ

2
s2
)

= 1− α. (29)

In addition, the labor market clearing condition can be rewritten (using the weak law of large

numbers) as

A
N∑
ν=0

N !
(N − ν)!ν!sν(1− s)N−νL(ν,N, θ) ≡ AL(s,N, θ) = α. (30)

Combining this condition with the first-order condition (25) for equilibrium investment, we

obtain the equilibrium investment condition:

γ

α
L(s,N, θ)s = G(s,N, θ). (31)

The equilibrium level of the probability s and the equilibrium (average) number of firms, N , can
23The number of investing firms in each industry depends upon the way savings are allocated to firms in the

capital market. Here we suppose that this allocation results in a common number N of firms. However, to be

precise, the value of N resulting from the equilibrium conditions is not necessarily an integer, so that it should

be seen as a weighted average of the (integer) numbers of firms in the different industries, for instance of the two

integers that are closest to N .
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be determined by solving equations (29) and (31),24 for given competitive toughness, θ (or by

taking θL(ν) as the third argument of L(ν,N, θ) in (30) if we consider the limit pricing regime).

Once s and N are determined, all other variables can be readily computed, in particular the

expected growth rate (η − 1)s.

To further facilitate the comparison between the two approaches, we take an example, solving

our model numerically for specific values of the parameters: η = 1.1 and σ = 0.15 for the

innovation step and the spillover coefficient, respectively (leading to the relative cost advantage

κ = 1 − ησ−1 = 0.078), α = 0.75 for the propensity to consume, γ = 0.03 for the variable

investment cost and the two values φ1 = 0.025 and φ2 = 0.055 for the fixed cost. Figure 3 gives

a geometrical representation of this example.

Figure 3: Individual R&D investment and the number of investing firms in equilibrium
24The zero profit curve in van de Klundert and Smulders (1997) plays a role analogous to the curve expressing

the capital market clearing condition (Equation 29) in our model. In addition, their capital market equilibrium

curve, resulting in particular from conditions for profit maximizing relative to (non-strategic) investment decisions,

plays in their model a role equivalent to the curve expressing the equilibrium investment condition (Equation 31)

in our model.
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The equilibrium levels of s and N are given by the intersection of one of the two steep capital

market clearing curves (the one to the right for the low value φ1 and the one to the left for the

high value φ2) with one of the four flatter equilibrium investment curves (for different values

of competitive toughness, θ). The four equilibrium investment curves correspond to θ = 0

(Cournot regime, upper thick curve), θ = 0.5 (lower thin curve), θ = 0.9 (close to Bertrand

regime, lower thick curve) and limit pricing (upper thin curve). The relationship between R&D

effort, as represented by the probability of success, s, and competitive toughness is monotone

decreasing in the case of high fixed cost, φ2 (left steep curve). The equilibrium value of s

decreases indeed with competitive toughness from s ' 0.75 (for θ = 0) through s ' 0.69 (for

θ = 0.5) to s ' 0.52 (for θ = 0.9) (limit pricing giving an intermediate value s ' 0.73) with an

increasing average number of investing firms close to 4. The sense of this relationship, resulting

from a concentration effect too small to dominate the markup squeezing effect, conforms with

the Schumpeterian prediction. It contradicts van de Klundert and Smulders’ conclusions.25

Besides, according to Proposition 1, the relationship between R&D effort and competitive

toughness is non-monotone in our model for parameter values entailing lower equilibrium prob-

abilities of success. Indeed, in the case of a low fixed cost, φ1 (right steep curve), leading to

smaller equilibrium probabilities (and to higher numbers of investing firms, fluctuating between

8 and 10), s first increases with competitive toughness from s ' 0.42 (for θ = 0) to s ' 0.44 (for

θ = 0.5) and then falls back to s ' 0.32 (for θ = 0.9): with limit pricing entailing the highest

value s ' 0.49. This non-monotonicity is possible because the equilibrium investment curves for

θ = 0 and θ = 0.5 intersect in this example. As already emphasized, this is in accordance with

the inverted-U pattern empirically found by Aghion et al. (2005).

A final observation is in order. When the concentration effect of an increase in competitive

toughness, θ, dominates the markup squeezing effect, so that the equilibrium investment curve
25In their model, they have two sectors, one producing high-technology differentiated goods, where innovation

takes place, and another perfectly competitive-sector. The positive concentration effect of tougher competition is

reinforced by an increase in the high-technology market size (because the relative price of high-technology goods

falls). This feature is absent in our model.
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is locally shifting upwards, the average number of investing firms, N , must decrease, because the

capital market clearing curve is decreasing. This means that the concentration effect prevalent

at the sectoral partial equilibrium level is in this case reinforced at the general equilibrium level.

4 Conclusion

Incentives to innovate depend upon multiple and conflicting effects, and it is only natural that

there is no clear-cut answer to the question of determining whether tough competition tends

to spur or deter potential R&D investors. By combining features of tournament and non-

tournament models, more specifically by admitting the possibility for investing firms either to

innovate along with some of their rivals, or to fail in their R&D effort and yet to remain produc-

tive, we have obtained a relationship between innovation and product market competition, which

may well be non-monotone for an individual industry. This result does not rely on a composi-

tion effect, as is the case for the inverted-U pattern of Aghion et al. (2005). Non-monotonicity

follows straightforwardly from the interplay of two conflicting effects: the negative Schumpete-

rian effect of tougher competition through markup squeeze and the positive concentration effect

expanding innovators’ market shares. For the latter to dominate the former, one must assume

non-drastic innovations (a small relative cost advantage of the innovators), so that unsuccessful

firms maintain a positive market share, and conditions for a low equilibrium probability of R&D

success, so that the incremental gain of those that do succeed is high enough to encourage R&D

effort (and the more so the tougher the competition). It should be noted that the concentration

effect at work in our model is not primarily related to the reduction of the number of firms26

(as in van de Klundert and Smulders 1997, and other symmetric non-tournament models) but

rather to the increase in innovators’ market shares.27 However, higher competitive toughness
26The concentration effect of competition resulting from the endogenous reduction of the number of firms is a

known paradox for antitrust policy (see d’Aspremont and Motta 2000).
27In the (tournament) model of sequential and cumulative innovation of Denicolò and Zanchettin (2004), both

the number of active firms and the laggards’ market shares decrease as competition becomes tougher. The resulting

concentration effete is dominant in the vicinity of Bertrand competition: “competition is good for growth [. . . ] if
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is favorable to innovation only when competition is initially soft, otherwise one obtains the

traditional Schumpeterian deterring effect of competition on innovative activity.

Appendix: Proof of Lemma 1

We start by studying the function G(n,N, θ), the expression of which differs in three intervals:

[0, θL(n + 1)], [θL(n + 1), θL(n)] and [θL(n), 1], with θL(n) = max{1− nκ, 0}. Using (16), (17),

(18) and (19), we obtain for θ ∈ [0, θL(n+ 1)]:

G(n,N, θ) = (1− θ)[m(1, n+ 1, N, θ)−m(σ, n,N, θ)]

× [m(1, n+ 1, N, θ) +m(σ, n,N, θ)]

= a(n,N)
(

N
1−θ − 1

)
[2− b(n,N)(N − (1− θ))],

(32)

with a(n,N) ≡ κ
N−(n+1)κ

(
1− 1

N−nκ

)
> 0

and b(n,N) ≡ 1−κ
N−(n+1)κ + 1

N−nκ > 0.

We can then obtain, for the sign of the elasticity of G with respect to θ,

sign{εθG(n,N, θ)} = sign
{

(1− θ)2 −N2

(
1− 2

Nb(n,N)

)}
. (33)

For θ ∈ [θL(n+ 1), θL(n)], we have:

G(n,N, θ) = (1− θ)

((
1

n+ 1

)2

−
(

1− nκ/(1− θ)
N − nκ

)2
)
, (34)

with sign of its elasticity with respect to θ

sign{εθG(n,N, θ)} = sign

{
1−

(
N − nκ
n+ 1

)2

−
(

nκ

1− θ

)2
}
. (35)

Finally, for θ ∈ [θLn), 1],

G(n,N, θ) =
1− θ

(n+ 1)2
. (36)

the intensity of competition is high.” In fact, to obtain an inverted U -shaped relationship, the authors have to

allow for equilibrium prices below the Bertrand price (eliminating in particular the concentration effect).
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Looking at (33) and (35), we see that the elasticity of G can change signs at most once,

from positive to negative, in each one of the two first intervals. Also, because by (16) and

(17) the partial derivative of m(1, n+ 1, N, θ) with respect to θ switches from positive to nil at

θ = θL(n + 1), and the corresponding parietal derivative of m(σ, n,N, θ) is continuous at the

same point, we see from (18) and (19) that the right-hand partial derivative of G with respect to

θ at θL(n+ 1) must be smaller than the corresponding left-hand derivative. Hence, G is strictly

quasi-concave in θ when restricted to the interval [0, θL(n)]. As G is clearly decreasing in θ in

the interval [θL(n), 1], we can conclude that G is, in fact, strictly quasi-concave in θ. We may

add that G is never monotonically increasing, because the interval [θL(n), 1] is non-degenerate

for n > 0 and, by (35), G is otherwise decreasing in the interval [θL(n+ 1), θL(n)] = [θL(1), 1].

Now let us consider the case where either the number of successful firms, n, or their relative

cost advantage, κ, is small, so that θL(n+1) > 0. By (32) and (33), the function G is increasing

for θ close to zero if and only if

Nb(n,N)− 2 =
(

n

N − nκ
− N − (n+ 1)
N − (n+ 1)κ

)
κ <

2
N2 − 1

. (37)

A simple inspection shows that this inequality holds either for κ close to 0, or of n = 0, and is

violated if both κ and n are large enough.

It remains to show that the incremental gain, G, is a decreasing function of n when κ is

small enough. Using again (16), (17), (18) and (19), we obtain for θ ∈ [0, θL(n+ 1)]:

G(n,N, θ) =
[(

1
N−1+θ −

1κ
N−κ−nκ

)2
−
(

1
N−1+θ −

1
N−nκ

)2
]

× (N−1+θ)2

1−θ .

(38)

We see that the terms (1κ)/(N − κ − nκ) and 1/(N − nκ) both have positive elasticities, the

elasticity of the former term being the larger one. As a consequence, the first square within the

brackets decreases faster than the second as n increases, so that G is indeed decreasing in n. In

addition, for θ ∈ [θL(n + 1), θL(n)], the two squares in (34) are both decreasing in n, but the

elasticity of the second one is smaller in absolute value, leading to the same conclusion, for κ

small enough.
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