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Abstract

We present a new version of the overtaking criterion, which we call generalized time-

invariant overtaking. The generalized time-invariant overtaking criterion (on the space of

infinite utility streams) is defined by extending proliferating sequences of complete and tran-

sitive binary relations defined on finite dimensional spaces. The paper presents a general

approach that can be specialized to at least two, extensively researched examples, the utili-

tarian and the lexicon orderings on a finite dimensional Euclidean space.
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1 Introduction

Recent contributions in welfare economics have suggested new social welfare relations for the

purpose of evaluating infinite utility streams representing the welfare levels of an infinite and

countable number of generations. In particular, Basu and Mitra (2007a) extend the utilitarian

ordering on a finite dimensional Euclidian space to the infinite-dimensional case. Also non-

additive theories have been defended, and Bossert et al. (2007) extend the lexicon ordering.

Both these social welfare relations are incomplete. Still, they may be effective in the sense of

selecting a small set of optimal or maximal elements for a given class of feasible infinite utility

streams. Suggestions have also come from the philosophical literature (e.g., Vallentyne and

Kegan, 1997; Lauwers and Vallentyne, 2004), sticking to finitely additive moral value theories,

but addressing the issue of ranking worlds with an infinite number of “locations of values”.

They may represent “times” and hence be naturally ordered, or “people” for which no natural

ordering can be assigned.

It is easy to construct pairs of infinite utility streams incomparable according to the criteria

of Basu and Mitra (2007a) and Bossert et al. (2007), but where it is clear that the one infinite

stream is socially preferred to the other both from a utilitarian and egalitarian point of view.

To illustrate, consider the following two streams:

u : 1 1
2

1
4

1
8

1
16

1
32 · · · 1

2n−1 · · ·

v : −1 1 1
2

1
4

1
8

1
16 · · · 1

2n−2 · · ·
It is intuitively clear that u is socially preferred to v from a utilitarian perspective since the

sum of utility differences between u and v is unconditionally convergent and converges to 1.

Likewise, it is intuitively clear that u is socially preferred to v from an egalitarian perspective

since the minimal utility of v (= −1) is smaller than the greatest lower bound for the utility of

u (= 0). Still, according to the criteria of Basu and Mitra (2007a) and Bossert et al. (2007)

these streams are incomparable since there is no cofinite set (a subset of all generations with

finite complement) on which u equals or Pareto-dominates v. This motivates an investigation

of social welfare relations for the evaluation of infinite utility streams which are more complete

than those proposed by Basu and Mitra (2007a) and Bossert et al. (2007), while allowing for
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non-additive moral value theories and different interpretations for the locations of values.

Extensions of utilitarian and lexicon orderings to the infinite-dimensional case are normally

required to satisfy the axioms of Finite Anonymity (ensuring equal treatment of generations)

and Strong Pareto (ensuring sensitivity for the interests of each generation). Recent work by

Lauwers (2010) and Zame (2007) confirms the following conjecture, suggested by Fleurbaey and

Michel (2003): no definable complete and transitive binary relation on the set of infinite utility

streams can be proved to satisfy the axioms of Finite Anonymity and Strong Pareto. In this

sense, no complete social welfare relation satisfying these axioms can be “explicitly described”

(see Zame, 2007, Theorem 4).1 We will here consider social welfare relations satisfying Finite

Anonymity and Strong Pareto that can be “explicitly described”, and hence completeness is an

unreachable goal.

However, there might be reasons – other than issues of explicit description – why one should

refrain from seeking excessive comparability. To make this argument, consider the following two

infinite utility streams:

x : 3
2 0 1 0 1 0 · · · 1 0 · · ·

y : 0 1 0 1 0 1 · · · 0 1 · · ·
When overtaking (Atsumi, 1965; von Weizsäcker, 1965) is applied to the utilitarian or lexicon

ordering (see Asheim and Tungodden 2004), then x is strictly preferred to y since the finite head

of x is preferred to the finite head of y at all locations. This conclusion crucially depends on

the sequencing of the locations, as permuting odd and even locations for both x and y makes

the streams incomparable.

The strict ranking of x over y can be made robust to such re-sequencing by adding Fixed-

step Anonymity (Lauwers, 1997; Mitra and Basu, 2007) to overtaking (as done by Kamaga and

Kojima, 2010). Then y becomes indifferent to

z : 1 0 1 0 1 · · · 0 1 · · ·

and thus by Strong Pareto and transitivity strictly inferior to x. However, imposing Fixed-
1By applying Szpilrajn’s Lemma (whose proof use the Axiom of Choice), Svensson (1980) that complete social

welfare relations satisfying Finite Anonymity and Strong Pareto exist.
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step Anonymity comes at the cost of Koopmans’ (1960) Stationarity axiom (in the sense that

preference over future utilities should not depend on present utility if both streams have the

same present utility). To see this, consider

(0,y) : 0 0 1 0 1 0 · · · 1 0 · · ·

(0,z) : 0 1 0 1 0 1 · · · 0 1 · · ·
Fixed-step Anonymity, under which y and z are socially indifferent, combined with Strong Pareto

forces us to conclude that (0,z) is socially preferred to (0,y), thereby contradicting Stationarity.

Furthermore, even in conjunction with Fixed-step Anonymity, overtaking is dependent on

sequencing: By allowing for permutations that are not of the fixed-step kind, there exists an

infinite permutation matrix P such that

Px : 0 0 3
2 0 1 · · · 0 1 · · ·

Py : 1 1 0 1 0 · · · 1 0 · · ·
implying that Py is socially preferred to Px by both the utilitarian and lexicon overtaking

criterion, thereby inverting the original ranking.2

These examples show that overtaking does not satisfy axioms of Relative Anonymity, in the

sense the ranking of two streams should not change when the same permutation of locations

is applied to both streams. In its traditional form, overtaking does not satisfy the axiom of

Fixed-step Relative Anonymity, where ‘fixed-step’ reflects that only fixed-step permutations are

considered. Even in conduction with Fixed-step Anonymity, overtaking does not satisfy the

axiom of Strong Relative Anonymity, where ‘strong’ reflects that all infinite permutations are

considered.

In this paper we will insist on the axioms of Stationarity and Strong Relative Anonymity.

An argument for Stationarity is that it is necessary for time-consistency if social preferences are

assumed to be time-invariant.

An argument for Strong Relative Anonymity is, as discussed by Vallentyne and Kegan (1997),

that there is no natural order; in this case the axiom coincides with Lauwers and Vallentyne’s

(2004, p. 317) Isomorphism Invariance. This argument may also apply in the intergenerational
2The concepts of a permutation and a permutation matrix are introduced in Section 2.2. The matrix P moves

location 2 to location 1, all other even locations two periods backwards, and all odd locations two periods forwards.
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setting, where the generations follow each other in sequence. An interesting case is where the

utilities of people within each generation are not aggregated into a single number,3 but where the

elements of the stream correspond to individual utilities. With an infinite number of individuals

within each generation, the stream of individual utilities cannot have a natural order. With a

finite population, there is no natural ordering of people within each generation. Even in the case

where the elements of the stream represents generation utilities, one can argue that the order in

which generations are counted should not matter for the ranking of streams if the generations

are treated equally.

Relative Anonymity (in the sense the ranking of two streams does not change when the same

permutation of locations is applied to both streams) is weaker than ordinary Anonymity (where a

permutation is applied to only one stream). To illustrate: the incomplete social welfare relation

generated by Strong Pareto also satisfies Strong Relative Anonymity, but fails to satisfy even

the weakest form of Anonymity, Finite Anonymity, because Pareto-dominance can vanish when

two elements of the one stream (only) are permuted.

The utilitarian and lexicon social welfare relations proposed by Basu and Mitra (2007a) and

Bossert et al. (2007) respectively satisfy both Stationarity and Strong Relative Anonymity. It is

the purpose of the present paper to expand the asymmetric parts of these binary relations with-

out compromising Stationarity and Strong Relative Anonymity. In particular, we will present

utilitarian and lexicon social welfare relations that rank u strictly above v, while deeming x and

y (and y and z, and (0,y) and (0,z), and Px and Py incomparable.

A simple but important fact is that, for comparing infinite utility streams, all welfare criteria,

whether the utilitarian criterion of Basu and Mitra (2007a), the lexicon criterion of Bossert et

al. (2007), as well as other utilitarian criteria such as overtaking and catching-up introduced

by von Weizsäcker (1965) and Atsumi (1965), and the lexicon criteria defined in Asheim and

Tungodden (2004), use an infinite sequence of the standard finite version of either the utilitarian

or the leximin social welfare ordering.
3See d’Aspremont (2007) for the assumptions required to reduce the welfare of each generation to a single

number.
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Using this fact, and a known property of these respective sequences, namely that of being

“proliferating” (to impose the criterion for any finite number of individuals, it is sufficient to

impose it in situations where only two individuals are involved), all these criteria can be given a

“generalized” formulation. This generalized formulation is meaningful for any given proliferating

sequence of social welfare relations defined on finite utility streams (and usually assumed to

satisfy some Anonymity and Pareto conditions). The notion of a proliferating sequence was

introduced for the analysis of generalized versions of infinite-dimensional SWRs by d’Aspremont

(2007). It emphasizes the fact that value judgments made in the social evaluation of the welfare

of the individuals within a generation, and in particular within the present generation, are

binding in the evaluation of the welfare of all generations.

Here we suggest a version of the overtaking criterion within this general approach to the

evaluation of infinite utility streams. We call this generalized time-invariant overtaking. The

generalized time-invariant overtaking criterion (on the space of infinite utility streams) is de-

fined by extending proliferating sequences of complete and transitive binary relations defined

on finite dimensional spaces. Our general analysis specializes in a straightforward manner to

the utilitarian and lexicon cases. We establish as a general result (stated in Theorem 1) that

generalized time-invariant overtaking satisfies Stationarity and Strong Relative Anonymity. We

also note that the criterion ranks u strictly above v. Moreover, we provide methods for deter-

mining the asymmetric and symmetric parts in the special cases of the utilitarian and leximin

time-invariant overtaking criteria.

The paper is organized as follows: Section 2 contains preliminaries, Section 3 presents the

concept of proliferating sequences, and Section 4 reviews different kinds of “generalized criteria”.

Section 5 defines and investigates the properties of generalized time-invariant overtaking, and

Section 6 specializes this concept to the utilitarian and leximin cases. The concluding Section 7

contains a general analysis of the properties of pairs of utility streams that our criterion cannot

compare, and a discussion of the close relationship between our analysis and the work Vallentyne

and Kegan (1997) and Lauwers and Vallentyne (2004) in the utilitarian case.4

4We thank the referee for pointing out this close relationship.
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2 Preliminaries

2.1 Notation and definitions

Let IN denote the set of natural numbers {1, 2, 3, · · ·} and IR the set of real numbers. Let X

denote the set Y |IN|, where Y ⊆ IR is an interval satisfying [0, 1] ⊆ Y . We let X be the domain

of utility sequences (also referred to as “utility streams” or “utility profiles”). Thus we write x

≡ (x1, x2, · · ·) ∈ X iff xn ∈ Y for all n ∈ IN. Usually, xn is interpreted as the utility of generation

n, but more generally as the utility of individual n belonging to some generation. No natural

order will be assumed. For x, y ∈ X we will write x ≥ y iff xi ≥ yi for all i ∈ IN and x > y iff

x ≥ y and x 6= y.

Whenever we write about subsets M,N of IN, we will be dealing with subsets of finite

cardinality, entailing that IN \M, IN \N are cofinite sets (i.e., subsets of IN which complements

are finite). For all x ∈ X and any N ⊂ IN, we will write x as (xN ,xIN\N ). We will denote vectors

(finite as well as infinite dimensional) by bold letters; example are x, y, etc. The components

of a vector will be denoted by normal font. Negation of a statement is indicated by the logical

quantifier ¬.

A social welfare relation (SWR) is a reflexive and transitive binary relation defined on X

(and denoted �) or Y |M | for some M ⊂ IN (and denoted �M ). A social welfare order (SWO) is

a complete SWR.

An SWR �′ is a subrelation to SWR �′′ if for all x,y ∈ X, (a) x ∼′ y ⇒ x ∼′′ y and (b) x

�′ y ⇒ x �′′ y.

2.2 Permutations

A permutation π is a one-to-one map from IN onto IN. For any x ∈ X and a permutation π, we

write x ◦π = (xπ(1), xπ(2), · · ·) ∈ X. Permutations can be represented by a permutation matrix,

P = (pij)i,j∈IN, which is an infinite matrix satisfying:
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1. (1) For each i ∈ IN, pij(i) = 1 for some j(i) ∈ IN and pij = 0 for all j 6= j(i).

2. (2) For each j ∈ IN, pi(j)j = 1 for some i(j) ∈ IN and pij = 0 for all i 6= i(j).

Given any permutation π, there is a permutation matrix P such that for x ∈ X, x ◦π =

(xπ(1), xπ(2), · · ·) can also be written as Px in the usual matrix multiplication. Conversely, given

any permutation matrix P , there is a permutation π defined by π = Pa, where a = (1, 2, 3, · · ·).

The set of all permutations is denoted by P.

A finite permutation π is a permutation such that there is some N ⊂ IN with π(i) = i for all

i /∈ N . Thus, a finite permutation matrix has pii = 1 for all i /∈ N for some N ⊂ IN. The set of

all finite permutations is denoted by F.

Given a permutation matrix P ∈ P and n ∈ IN, we denote the n × n matrix (pij)i,j∈{1,···,n}

by P (n). Let

S = {P ∈ P | there is some k ∈ IN such that, for each n ∈ IN, P (nk) is a finite dimensional

permutation matrix}

denote the set of fixed-step permutations. It is easily checked that this is a group (with respect

to matrix multiplication) of cyclic permutations.5

2.3 Axioms of anonymity and Pareto

In this subsection we introduce the basic axioms that are repeatedly used in the rest of the

paper. The first set of axioms pertains to SWRs defined on a finite-dimensional space, whereas

the latter set is on the space of infinite utility streams.

Let �M be an SWR defined on Y |M |. Throughout we will assume that �M satisfies the

following condition as a minimal requirement. It is an anonymity condition where the same

permutation applies to the two utility vectors. Hence, we call it “relative anonymity”. In the
5The permutation π is cyclic if for each ei = (0, · · · , 0, 1, 0, · · ·) (with 1 at the ith place) there exists a k ∈ IN

such that πk(ej) = ei. A class of cyclic permutations is not necessarily a group, while P is a group which does

not contain only cyclic permutations.
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present intergenerational context it can be interpreted as a time-invariance property, reflecting

that no natural order is assumed.

Axiomm-I (m-Relative Anonymity) For all xM , yM , uN , vN ∈ Y m withM = {i1, i2, · · · , iM}

⊂ IN and N = {j1, j2, · · · , jM} ⊂ IN satisfying |M | = |N | = m ≥ 2, if there exists a finite permu-

tation π : {1, · · · ,m} → {1, · · · ,m} such that xiπ(k)
= ujk and yiπ(k)

= vjk for all k ∈ {1, · · · ,m},

then xM �M yM iff uN �N vN .

By satisfying m− I, �M depends only on the dimension |M |. We will henceforth write �m

for an SWR on Y m, thereby satisfying that the SWR satisfies m-I.

It is useful to compare m-I to the usual anonymity condition where a permutation is applied

to the one utility stream only.

Axiomm-A (m-Anonymity) For all a,b ∈ Y m with m ≥ 2, if a is a permutation of b, the

a ∼m b.

Since �m is transitive, m-A is equivalent to having a ∼m f whenever there exists i, j ∈

{1, · · · ,m} such that ai = bj , aj = bi and ak = bk for all k 6= i, j.

The m-Pareto Principle (a �pm b if and only if a ≥ b) illustrates that m-I does not imply

m-A. However, as originally shown by d’Aspremont and Gevers (1977, Lemma 4), the two

axioms are equivalent if �m is complete.

Lemma 1 If �m with m ≥ 2 is complete, then �m satisfies m-A.

Proof: Assume that �m is complete (where the notation entails that the SWR satisfies m-I).

Suppose by way of contradiction that there exist a, b ∈ Y m with ai = bj , aj = bi and ak = bk

for all k 6= i, j such that ¬(a ∼m b). Since �m is complete,we may w.l.o.g. assume that a�m b.

However, by permuting the ith and the jth element of both a and b and invoking m-I, we obtain

b �m a, which contradicts a �m b. Hence, a ∼m b whenever there exists i, j ∈ {1, · · · ,m} such

that ai = bj , aj = bi and aj = bi and ak = bk for all k 6= i, j.

The other kind of basic axiom is the Pareto condition.

Axiom m-P (m-Pareto) For all a,b ∈ Y m with m ≥ 2, if a > b, then a �m b.
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Clearly, since �m is transitive, m-P is equivalent to having a �m b whenever there exists

i ∈ {1, · · · ,m} such that ai > bi and ak = bk for all k 6= i. As a matter of notation, if it is clear

from the context that an axiom on finite dimension is invoked, then we will drop the letter m

from its abbreviation.

Let� be an SWR defined on Xs. Consider the following versions of the anonymity and Pareto

axioms on �. Let Q be some fixed group of permutations equaling F, S or P, corresponding to

the terms “Finite”, “Fixed-step” and “Strong” respectively in the names of the axioms below.

Axiom QI (Finite/Fixed-step/Strong Relative Anonymity) For all x, y ∈ X and all P ∈ Q,

x � y iff Px � Py

Axiom QA (Finite/fixed-step/Strong Anonymity) For all x ∈ X and all P ∈ Q, x ∼ Px.

Axiom FP (Finite Pareto) For all x,y ∈ X with some subset N ⊂ IN such that xi = yi for

all i ∈ IN \N , if x > y, then x � y.

Axiom SP (Strong Pareto) For all x,y ∈ X, if x > y, then x � y.

Clearly, since � is transitive, FA is equivalent to having x ∼ y whenever there exit i, j ∈ IN

such that xi = yj , xj = yi and xk = yk for all k 6= i, j. Likewise, FP is equivalent to having

x � y whenever there exists i ∈ IN such that xi > yi and xk = yk for all k 6= i. This is what Basu

and Mitra (2007b) refer to as Weak Dominance; hence, FP coincides with Weak Dominance.

Note that for Q = F, S or P, QA implies QI, while the converse is not true for incomplete

infinite-dimensional SWRs. For an analysis of these issues and more generally on comparability

of a social welfare evaluation in the intergenerational context we refer to Mabrouk (2008). It

is also well-known that PA cannot be combined with SP, while SA can (since it is a group of

cyclic permutations, cf. Mitra and Basu, 2007).

3 Proliferating sequences

Many well-known finite-dimensional SWRs form proliferating sequences. The structure imposed

by this concept on a sequence of finite-dimensional SWR enables the extension to an infinite-

dimensional SWR to be analyzed at a generalized level, without considering the specific nature
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of the finite-dimensional counterpart. Furthermore, it allows infinite-dimensional SWRs to be

defined solely on the basis of the 2-dimensional version of the underlying finite-dimensional

SWR.

An infinite-dimensional SWR � extends the finite-dimensional SWR �m if, for all M ⊂ IN

with |M | = m and all x,y ∈ X with xi = yi for every i ∈ IN \M , xM �m yM implies x � y,

and xM ∼m yM implies x∼ y.

Definition 1 A sequence of SWRs, {�∗m}∞m=2, is proliferating if any SWR � that extends �∗2
also extends �∗m for every m ≥ 2.

The following result implies that the m-Grading Principle (a �Sm b iff there exists a permu-

tation c of b such that a ≥ c) is proliferating.6

Lemma 2 (i) If �2 is an SWR on Y 2 that satisfies A, and � is an SWR on X that extends

�2, then �2 satisfies FA.

(ii) if �2 is an SWR on Y 2 that satisfies P, and � is an SWR on X that extends �2, then �2

satisfies FP.

Proof:

(i) Let x,y ∈ X and for some i, j ∈ IN(i 6= j), xi = yj , xj = yi and xk = yk for all k 6= i, j. Set

M = {i, j}. Since �2 satisfies A, xM ∼2 yM . By the fact that xk = yk for all k ∈ IN \M

and �2, x ∼ y.

(ii) Let x,y ∈ X and for some i ∈ IN, xi > yi and xk = yk for all k 6= i. Set M = {i, k} for

some k 6= i. Since �2 satisfies P, xM �2 yM . By the fact that xj = yj for all j ∈ IN \M

and � extends �2, x � y.

6The Grading Principle was introduced by Suppes (1966) and further analyzed by Sen (1970), Kolm (1972) and

Hammond (1976, 1979). Its proliferating property is mentioned by Sen (1976, fn. 26) as suggested by Hammond

as a step to derive the same property for Leximin. For a proof, see Hammond (1979). The proof of d’Aspremont

(1985, Lemma 3.1.1)) can be immediately transposed to Y m (in place of IRm).
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The utilitarian and lexicon SWOs, which will be defined and analyzed in Section 6, are other

important examples of proliferating sequences. In the case of such complete SWRs, the notion

of proliferation yields added structure.7

Lemma 3 A proliferating sequence {�∗m}∞m=2 of SWO satisfies:

(i) For all x,y ∈ X satisfying xi = yi for some i ∈ IN\M , xM �∗|M |yM iff xM∪(i) �∗|M |+1yM∪(i).

(ii) Assume that �∗m satisfies P for each m ≥ 2. For all x,y ∈ X satisfying that there exists

M ⊂ IN with |M | ≥ 2 such that xN ∼∗|N |yN for all N ⊃M , xi = yi for all i ∈ IN \M .

Proof:

(i) Let {�∗m}∞m=2 be a proliferating sequence of SWOs, and let � extend �∗2, implying that �

extends �∗m for all m ≥ 2. Assume that xM �∗|M |yM and xi = yi for some i ∈ IN \M .

Let z ∈ X be an arbitrarily chosen utility stream. Since � extends �∗|M |, this implies

(xM∪(i), zIN\(M∪(i)) � (yM∪(i), zIN\(M∪(i)). Suppose xM∪(i) ≺∗|M |+1M∪(i). Since � extends

�∗|M |+1, this implies (xM∪(i), zIN\(M∪(i)) ≺ (yM∪(i), zIN\(M∪(i)), leading to a contradic-

tion. Hence, ¬(xM∪(i) �∗|M |+1yM∪(i)), implying since the SWO �∗|M |+1 is complete that

xM∪(i) �∗|M |+1yM∪(i). Likewise, xM �∗|M |yM and xi = yi for some i ∈ IN \M implies that

xM∪(i) �∗|M |+1yM∪(i), thereby establishing the converse statement.

(ii) Let {�∗m}∞m=2 be a proliferating sequence of SWOs with, for each m ≥ 2, �∗m satisfying

P. Assume that there exists M ⊂ IN with |M | ≥ 2 such that xN ∼∗|N |yN for all N ⊃ M .

Suppose that xi 6= yi for some i ∈ N \M ; w.l.o.g. we can set xi > yi. Since �∗|M |+1

satisfies P, it follows from part (i) that

xM∪(i) ∼∗|M |+1 (yM , xi) �∗|M |+1 yM∪(i),

contradicting that xM∪(i) ∼∗|M |+1yM∪(i). Hence xi = yi for all i ∈ IN \M .

7Sakai (2010) refers to property (i) of the following lemma as “independence”.
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4 Generalized criteria

In this section we review “generalized criteria”, namely infinite-dimensional SWRs that extend

finite-dimensional SWRs that are both complete and proliferating. We first introduce two ad-

ditional axioms on the space of infinite utility streams that will be used to differentiate these

generalized criteria and in the rest of the paper.

Axiom ST (Stationarity) For all x, y, u, v ∈ X with x1 = y1 and, for all i ∈ IN, ui = xi+1

and vi = yi+1, x � y iff u � v.

Axiom IPC (Time-Invariant Preference Continuity) For all x, y ∈X, if there exists M ⊂ IN

such that, for all N ⊃M , (xN ,yIN\N ) � y, then x � y.

Let {�∗m}∞m=2 be a proliferating sequence of SWOs with, for each m ≥ 2, �∗m satisfying

axiom P (while, by Lemma 1, axiom A follows from the assumption that axiom I is satisfied).

Let � extend �∗2, implying that � extends �∗m for all m ≥ 2.

For all M ⊂ IN with |M | = m ≥ 2 and all x,y ∈ X with xi = yi for every i ∈ IN \M ,

xM �m yM , since �∗m is complete. Hence, for all x,y ∈ X and M ⊂ IN with |M | ≥ 2,

(xM ,xIN\M ) � (yM ,xIN\M ) iff (xM ,yIN\M ) � (yM ,yIN\M ). Therefore, axiom IPC does not

depend on the specification of the common elements on IN \ N . Furthermore, axiom IPC is

sufficient to ensure strict preference between u and v of the introduction. To see this, not the

that if 1 ∈M , then, for any N ⊇M , uN Pareto-dominates some permutation of vN .

The following generalized criteria extend �∗m for every m ≥ 2.

• Equality on a cofinite set (introduced here). �∗ is the SWR defined by

x �∗ y iff there exists N ⊂ IN such that xN �∗|N | yN and xIN\N = yIN\N .

• Equality or Pareto-dominance on a cofinite set (Basu and Mitra, 2007a; Bossert et al.,

2007). �∗F is the SWR defined by

x �∗F y iff there exists N ⊂ IN such that xN �∗|N | yN and xIN\N = yIN\N .
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• Extended Anonymity (Banerjee, 2006; Kamaga and Kojima, 2009). �∗Ss is the SWR defined

by

x �∗S y iff there exists P ∈ S such that x �∗F Py.

• Overtaking (Atsumi, 1965; von Weizsäcker, 1965). �∗O is the SWR defined by

x �∗O y iff there exists m ∈ IN such that x{1,···,n} �∗n y{1,···,n} for all n ≥ m,

x ∼∗O y iff there exists m ∈ IN such that x{1,···,n} �∗n y{1,···,n} for all n ≥ m.

• Fixed-step overtaking (Lauwers, 1997; Fleurbaey and Michel, 2003; Kamaga and Kojima,

2010). �∗SO is the SWR defined by

x �∗SO y iff there exists k ∈ IN such that x{1,···,nk} �∗n y{1,···,nk} for all n ∈ IN,

x ∼∗SO y iff there exists k ∈ IN such that x{1,···,nk} ∼∗n y{1,···,nk} for all n ∈ IN.

The criteria, �∗,�∗F,�∗S,�∗O, are infinite-dimensional SWRs that illustrate the trade-offs be-

tween the axioms. By the definition of extension, �∗ is a sub relation to any SWR extending

�∗m for every m ≥ 2. Furthermore, �∗F is a sub relation to each of �∗S and �∗O, and �∗Ss and �∗O
are both sub relations to �∗SO. All these SWRs satisfy FI and FA. Table 1 summarizes their

properties in terms of the remaining axioms, where “violated by” means that, for a given WR

in the table, no alternative SWR to which this SWR is a sub relation satisfies the axiom.

Table 1

Axioms satisfied (+) and violated (-) by various SWRs.

SI PI SA PA SP SI IPC

�∗ + + + + +

�∗F + + − + +

�∗S + − + − + −

�∗O − − + + +

�∗SO + − + − + − +
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This leads to the following observations: Going from �∗F to �∗O we pick up IPC, but weaken PI

all the way to FI. Going from �∗F to �∗SO we strengthen FA to SA and pick up IPC, but must

weaken PI to SI and drop ST. This leads to the question: Is it possible to pick up IPC without

weakening PI and dropping ST?8 We show that this is indeed possible by means of generalized

time-invariant overtaking.

5 A new criterion for infinite utility streams

We are now ready to state the definition of the generalized time-invariant overtaking criterion.

Let {�∗m}∞m=2 be a proliferating sequence of SWOs with �∗m satisfying axiom P (while axiom

A is implied by axiom I) for each m ≥ 2.9

Definition 2 (Generalized time-invariant overtaking). The generalized time-invariant overtak-

ing criterion �∗I generated by {�∗m}∞m=2 satisfies, for all x, y ∈ X,

x �∗I y iff there exists M ⊂ IN with |M | ≥ 2 such that xN �∗|N | yN for all N ⊇M.

We can now state our main result.

Theorem 1 Let {�∗m}∞m=2 be a proliferating sequence of SWOs with, for each m ≥ 2, �∗m
satisfying axiom P. Then:

(i) �∗I is an SWR that satisfies PI, FA, SP and ST.

(ii) An SWR � extends �∗2 and satisfies IPC iff �∗I is a subrelation to �.

8The (y,z) example of Section 1 illustrates the problems of strengthening FA to SA while retaining ST. Mitra

(2007) discusses the problem of combining ST with any kind of extended anonymity. Here we show how the

asymmetric part of �∗F can be expanded, while retaining ST.
9Definition 2 is formulated as a “catching up” criterion. However, Lemma 4 shows that a formulation in terms

of an “overtaking” criterion is equivalent, justifying our terminology.
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In the proof of Theorem 1, we make use of the following lemmas.

Lemma 4 The SWR �∗I satisfies:

(i) For all x, y ∈ X, x �∗I y iff there exist M ⊂ IN with |M | ≥ 2 such that xN �∗|N | yN for all

N ⊇M .

(ii) For all x, y ∈ X, x ∼∗I y iff there exist M ⊂ IN with |M | ≥ 2 such that xN ∼∗|N | yN for

all N ⊇M .

Proof: (Only-if part of (i)): x �∗I y only if there exists M ⊂ IN with |M | ≥ 2 such that xN

�∗|N |yN for all N ⊇ M .) Assume x �∗I that is, (a) x �∗I y and (b) ¬(y �∗I x). By (a), there

exists M ⊂ IN with |M | ≥ 2 such that xN �∗|N | yN for all N ⊇M . Note that ¬(y �∗I x) implies

that for any M ⊂ IN there is some M ′ ⊃M such that xM ′ �∗|M ′| yM ′ . By way of contradiction,

suppose that there does not exist M ′′ ⊂ N such that xN �∗|N | yN for all N ⊇M ′′. In particular,

since then xN �∗|N | yN does not hold, it follows from (a) that there exists A ⊇ M such that

xA ∼∗|A| yA. We claim that there exists B ⊂ IN with A ∩ B = ∅ such that xA∪b �∗|A|+|B| yA∪B.

That is, the statement: for all B ⊂ IN with A ∩ B = ∅ we must have yA∪B �∗|A|+|B| xA∪B is

false. This possibility is ruled out since if it were correct, we would obtain y �∗I x, which is

contradicted by (b).

Since we suppose that there does not exist M ′′ ⊂ IN such that xN �∗|N | yN for all N ⊇M ′′,

it does not hold that xN �∗|N | yN for all N ⊇ A ∪ B. Hence, by (a) there exists C ⊂ IN with

(A ∪ B) ∩ C = ∅ such that xA∪b∪C ∼∗|A|+|B|+|C| yA∪B∪C . This leads to the first indifference in

(1), while the second strict preference in (1) follows from Lemma 3(i):

yA∪B∪C ∼∗|A|+|B|+|C| xA∪B∪C �∗|A|+|B|+|C| (yA∪B,xC). (1)

By transitivity we get (yA∪B,yC) �∗|A|+|B|+|C| (yA∪b,xC). So, yC �∗|C| xC . [If ¬(yC �∗|C| xC),

then xC �∗|C| yC . By Lemma 3(i), we obtain (yA∪B,xC �∗|A|+|B|+|C| (yA∪B,yC).] We now get:

yA∪C �∗|A|+|C| (yA,xC) ∼∗|A|+|C| xA∪C �
∗
|A|+|C| yA∪C . (2)
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The first strict preference in (2) is a consequence of Lemma 3(i) and yC �∗|C| xC . The second

indifference in (2) is a consequence of Lemma 3(i) and xA ∼∗|A| yA. The last weak preference

in (2) follows from (a) and the fact that A ∪ C ⊃ M . So (2) leads us to a contradiction. This

completes the proof of the only-if part of (i).

(If part of (i)): x �∗I y if there exists M ⊂ IN with |M | ≥ 2 such that xN �∗|N | yN for all

N ⊇M .) Assume that there exists M ⊂ IN with |M | ≥ 2 such that xN �∗|N | yN for all N ⊇M .

Then x �∗I y. By way of contradiction, suppose y �∗I x. Then there exists M ′ ⊂ IN with

|M ′| ≥ 2 such that yN �∗|N | xN for all N ⊇ M ′. For N ⊇ M ′ ∪M we must have xN �∗|N |yN

and yN �∗|N | xN . This leads to a contradiction. Hence, ¬(y �∗I x) and, consequently, x �∗I y.

(Only-if part of (ii)): x ∼∗I y only if there exists M ⊂ IN with |M | ≥ 2 such that xN ∼∗|N |
yN for all N ⊇M .) Let x ∼∗I y. Then there exists sets M ′,M ′′ ⊂ IN such that xN �∗|N | yN for

all N ⊃M ′ ∪M ′′ we must have xN ∼∗|N | yN , as was required.

The if part of (ii) follows directly from the definition and we omit the details.

Lemma 5 The SWR �∗I satisfies PI, SP and ST.

Proof: (�∗I satisfies PI). Let x, y ∈ X and P ∈ P. Assume x �∗I y. Let π : IN → IN

be the equivalent representation of the infinite permutation matrix P . Clearly π is a one-to-

one and onto function. Since x �∗I y there exists M ⊂ IN with |M | ≥ 2 such that xN �∗|N |
yN for all N ⊇ M . Let the image of M under the function π be denoted by π(M), that is

π(M) = {i ∈ IN | there exists j ∈M such that π(j) = i}. Now for N ⊇ π(M), we must have

π−1(N) ⊃ M , where π−1 : IN → IN is the inverse of π. Since �∗m satisfies m-I for all m ≥ 2,

we must have for all N ⊇ π(M), (Px)N �∗I (Py)N . Hence, x �∗I y implies Px �∗I Py for and

P ∈ P. The converse is established in a similar manner.

(�∗I satisfies SP). Let x, y ∈ X satisfy x > y. Pick M ⊂ IN such that xM 6= yM . Since

�∗m satisfies P for all m ≥ 2, we must have xN �∗|N | yN for all N ⊇M . By Lemma 4(i) we can

conclude x �∗I y.

(�∗I satisfies ST). Let x, y, u, v ∈ X satisfy x1 = y1, and for all i ∈ IN, ui = xi+1 and

vi = yi+1. Assume x �∗I y. Hence, there exists M ⊂ IN with |M | ≥ 2 such that xN �∗|N | yN
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for all N ⊇M . Construct M ′ as follows: M ′ = {i ∈ IN | i+ 1 ∈M}, with an arbitrary element

added in if the number of elements in M ′ would otherwise be 1. Consider any N ′ ⊆ M ′, and

construct N as follows: N = {i ∈ IN | i − 1 ∈ N ′} ∪ {1}. Since, by construction, N ⊇ M ,

xN �∗|N | yN . By Lemma 3(i), xN\{1} �∗|N |−1 yN\{1} since x1 = y1. Thus, uN ′ �∗|N |−1 vN ′ since

�∗m satisfies m-I for all m. Hence, x �∗I y implies u �∗I v. The converse is established in a

similar manner.

Proof of Theorem 1. (i) It can be easily checked that �∗I is reflexive and transitive provided

that �∗m is reflexive and transitive for each m; hence �∗I is an SWR on X. The rest of part (i)

follows directly from Lemma 2(i) and Lemma 5.

(Only-if part of (ii)): An SWR � extends �∗2 and satisfies IPC only if �∗I is a sub relation

to �). Let x, y ∈ X. If x �∗I y, then using Lemma 4(i) we must have that there exist M ⊂ IN

with |M | ≥ 2 such that xN �∗|N | yN for all N ⊇ M . For all N ⊇ M , since � extends �∗2 and

{�∗m}∞m=2 is a proliferating sequence we obtain (xN , yIN\N ) � y. Now, by IPC, we have x �

y. If x ∼∗I y, then by Lemma 4(ii) we must have that there exists M ⊂ IN with |M | ≥ 2 such

that xN ∼∗|N | yN for all N ⊇ M . By Lemma 3(ii), we have xi = yi for all i ∈ IN \M . Since �

extends �∗2 and {�∗m}∞m=2 is a proliferating sequence we get x ∼y.

(If part at of (ii): An SWR � extends �∗2 and satisfies IPC if �∗I is a sub relation to �.)

We omit the straightforward proof of the result that � extends �∗2.

To show that � satisfies IPC, assume that there exists M ⊂ IN with |M | ≥ 2 such that, for

all N ⊇M , (xN ,yIN\N ) � y. Since � extends �∗2 and {�∗m}∞m=2 is proliferating, it follows from

the completeness of the SWO �∗m for every m that xN �∗|N | yN for all N ⊇M . Hence, x �∗I y

by Lemma 4(i), and x � y since �∗I is a subrelation to �. This show that � satisfies condition

IPC.

6 Applications

In this section we study specific criteria based on particular proliferating sequences. In particular,

as the utilitarian SWO and the lexicon SWO defined for pairs on any subset of the m-dimensional
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Euclidean space define two proliferating sequences, they lay the foundation for two specializations

of the generalized time-invariant overtaking criterion: utilitarian and lexicon time-invariant

overtaking. Furthermore, we propose methods for determining the asymmetric and symmetric

parts of the utilitarian and lexicon time-invariant overtaking criteria.

6.1 The utilitarian case

To state the definition of the utilitarian SWO defined on Y m we first introduce some additional

notation. For each N ⊂ IN, where by our notational convention n if finite, the partial sum∑
i∈N xi is written as σ(xN ). Let {�Um}∞m=2 denote the sequence of utilitarian SWOs, with each

�Um defined on Y m. Formally, for all a, b ∈ Y m,

a �Um b iff σ(a) ≥ σ(b).

In order to rely on a standard characterization of utilitarianism, we first state the Translation

Scale Invariance axiom for finite population social choice theory.

Axiom m-TSI (m-Translation Scale Invariance) For all a, b ∈ Y m with m ≥ 2, if a �m b

and α ∈ IRm satisfies a +α ∈ Y m and b +α ∈ Y m, then a+α �m b +α.

This axiom says that utility differences can be compared interpersonally. A comprehensive

treatment of the literature on social choice with interpersonal utility comparisons can be found in

Bossert and Weymark (2004). The following characterization of finite-dimensional utilitarianism

is well-known.10

Lemma 6 For all m ∈ IN, the utilitarian SWO �Um is equal to �m iff �m satisfies A, P and

TSI.

Let � be an SWR defined on X. Consider the following axiom on �.
10The argument is due to Milnor (1954) in the context of individual decision under risk. For a proof in the

social choice context, see d’Aspremont and Gevers (2002).
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Axiom FTSI (Finite Translation Scale Invariance) For all x, y ∈ X with some subset

N ⊂ IN such that xi = yi for all i ∈ IN \N , if x � y and α ∈ IRIN satisfies that x +α ∈ X and

y +α ∈ X and αi = 0 for all i ∈ IN \N , then x +α � y +α.

By means of this axiom we can characterize the class of SWRs extending �U2 .

Proposition 1 Let {�Um}∞m=2 be the utilitarian sequence of SWOs for each m ≥ 2. Then:

(i) If � is an SWR on X that extends �U2 , then � satisfies FA, FP and FTSI.

(ii) If � satisfies FA, FP and FTSI, then � is an SWR on X that extends �Um for every

m ≥ 2.

Proof of Proposition 1. (Proof of (i)): � is an SWR on X that extends �U2 only if � satisfies

FA, FP and FTSI.) Assume � is an SWR on X that extends �U2 . It follows from Lemma 2

that � satisfies FA and FP. To show that � satisfies FTSI, consider x, y ∈ X for which there

exists some subset N ⊂ IN such that xi = yi for all i ∈ IN \ N , and α ∈ IRIN which satisfies x

+α ∈ X and y +α ∈ X and αk = 0 for all i ∈ IN \N . Since � extends �U2 and satisfies FP, it

follows from Lemma A.1 of Appendix A that x � y iff σ(xN ) ≥ σ(yN ) and x +α � y + α iff

σ(xN +αN ) ≥ σ(yN +αN ). Clearly, σ(xN ) ≥ σ(yN implies σ(xN +αn) ≥ σ(yN +αN ), thereby

establishing that � satisfies FTSI.

(Proof (ii)): � is an SWR on X that extends �Um if � satisfies FA, FP and FTSI.) Assume

that � satisfies FA, FP and FTSI. Fix z ∈ X and M ∈ IN with |M | = m ≥ 2. Construct �zm
as follows: xM �z

m yM iff (xM , zIN\M ) � (yM , zIN\M ). Since � satisfies FA, FP and FTSI, it

follows that �zm satisfies A, P and TSI. Thus, by Lemma 6, �Um is equal to �z
m. Since z ∈ X

and M ∈ IN with |M | = m are arbitrarily chosen, it follows that � extends �Um.

Proposition 1 implies the following result, which makes Theorem 1 applicable in the utili-

tarian case.

Proposition 2 The sequence of utilitarian SWOs, {�Um}∞m=2, is proliferating.
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Proposition 2 is established by d’Aspremont (2007, Lemma 4) in the case where Y = IR. In

Appendix A we provide a direct proof of Proposition 2 in the present case where Y ⊆ IR is an

interval satisfying [0, 1] ⊆ Y .

Definition 3 (Utilitarian time-invariant overtaking). The utilitarian time-invariant overtaking

criterion �UI satisfies, for all x, y ∈ X,

x �UI y iff there exists M ⊂ IN with |M | ≥ 2 such that σ(xN ) ≥ σ(yN ) for all N ⊇M.

By Propositions 1 and 2, the following characterization of utilitarian time-invariant overtak-

ing is a direct consequence of Theorem 1 and Lemma 4.

Corollary 1

(i) �UI is an SWR that satisfies PI, SP and ST.

(ii) An SWR � satisfies FA, FP, FTSI and IPC iff �UI is a subrelation to �.

(iii) For all x, y ∈ X, x �UI y iff there exists M ⊂ IN with |M | ≥ 2 such that σ(xN ) > σ(yN )

for all N ⊇M .

(iv) For all x, y ∈ X, x ∼UI y iff there exists M ⊂ IN with |M | ≥ 2 such that σ(xN ) = σ(yN )

for all N ⊇M .

To facilitate its use, we provide a characterization of the asymmetric and symmetric parts

of the utilitarian generalized overtaking criterion.

Proposition 3 Utilitarian time-invariant overtaking satisfies:

(i) For all x, y ∈ X, x �UI iff there exists M+ ⊆ {i ∈ IN | xi−yi > 0} such that σ(xM+∪M−) >

σ(yM+∪M−) for all M− ⊆ {i ∈ IN | xi − yi < 0}.

(ii) For all x, y ∈ X, x ∼UI iff M+ := {i ∈ IN | xi − yi > 0} and M− := {∈ IN | xi − yi < 0}

are finite sets satisfying σ(xM+∪M−) = σ(yM+∪M−).
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Proof: (If part of (i)) Assume that there exists M+ ⊆ {i ∈ IN | xi − yi > 0} such that

σ(xM+∪M− > σ(yM+∪M−) for all M− ⊆ {i ∈ IN | xi − yi < 0}. Let M = M+ and choose

N ⊇M . We can partition N into A := {i ∈ N | xi − yi ≥ 0} and M− := {i ∈ N | xi − yi < 0},

implying that xi − yi ≥ 0 for all A \M+. Hence,

σ(xN )− σ(yN ) = σ(xA∪M−)− σ(yA∪M−) ≥ σ(xM+∪M−) − σ(yM+∪M−) > 0,

where the partitioning of N into A and M− implies the first equality, xi− yi ≥ 0 for all A \M+

implies the second weak inequality, and the premise implies the third strong inequality.

(Only-if part of (i)) Assume that there exists M ⊂ IN with |M | ≥ 2 such that σ(xN ) > σ(yN

for all N ⊇M . Let M+ := M ∩ {i ∈ IN | xi − yi > 0} and choose M− ⊆ {i ∈ IN | xi − yi < 0}.

Note that xi ≤ yi for all i ∈M \ (M+ ∩M−). Hence,

σ(xM+∪M−) − σ(yM+∪M−) ≥ σ(xM∪M−)− σ(yM∪M−) > 0

by the premise since M ∪M− ⊇M .

(If part of Part (ii)) Assume that M+ := {i ∈ IN | xi−yi > 0} and M− := {i ∈ IN | xi−yi <

0} are finite sets satisfying σ(xM+∪M−) = σ(yM+∪M−). Let M = M+∪M− and choose N ⊇M .

Since xi = yi for all i ∈ IN \M , it follows that

σ(xN )− σ(yN ) = σ(bf xM )− σ(yM ) = σ(xM+∪M−)− σ(yM+∪M−) = 0

by the premise.

(Only-if part of (ii)) Assume that the exists M ⊂ IN with |M | ≥ 2 such that σ(xN ) = σ(yN )

for all N ⊇ M . By Lemma 3(ii) and the fact that {�Um}∞t=2 is proliferating, it follows that

xi = yi for all i ∈ IN \M . Hence, M+ := {i ∈ IN | xi− yi > 0} and Mm := {i ∈ IN | xi− yi < 0}

are finite sets satisfying σ(xM+∪M−) = σ(yM+∪M−).

The if parts can easily be amended to ensure that |M | ≥ 2.

This characterization can be illustrated by the (u, v) example of Section 1. In this example

{i ∈ IN | ui − vi > 0} = {1} and {i ∈ IN | ui − vi < 0} = IN \ {1}. By choosing M+ = {1} so

that σ(uM+)− σ(vM+) = 2, and noting σ(uM−)− σ(vM−) < 1 for all M− ⊂ IN \ {1}, it follows

from Proposition 3(i) that u �UI v.
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The utilitarian criterion proposed by Basu and Mitra (2007a) , which we discussed in Sec-

tion 1 and denote �UF (cf. the notation of Section 4), yields comparability only if there is equality

of Pareto-dominance on a cofinite set:

x �UF y iff there exists N ⊂ IN such that σ(xN ) ≥ σ(yN ) and xIN\N ≥ yIN\N .

It follows from Proposition 3 that �UF is a sub relation to �UI , since the symmetric parts, ∼UI and

∼UF , coincide, while �UI strictly expands �UF , as illustrated by the (u, v) example of Section 1.

6.2 The lexicon case

To state a precise definition of the lexicon order we introduce additional notation. For any xM ,

(x(1), · · · , x(|M |)) denotes the rank-ordered permutation of xM such that x(1) ≤ · · · ≤ x(|M |), ties

being broken arbitrarily. For any xM and yM , xM �L|M | yM if there exists m ∈ {1, · · · , |M |}

such that x(k) = y(k) for all k ∈ {1, · · · ,m− 1} and x(m) > y(m) and xM ∼L|M | iff x(k) = y(k) for

all k ∈ {1, · · · , |M |}.

We first recall through Lemma 7 below a standard characterization of finite-dimensional

lexicon using the Hammond (1976) Equity axiom. This axiom states, in our intergenerational

context, that if there is a conflict between two generations, with every other generation being as

well off in the compared profiles, then society should weakly prefer the profile where the least

favored generation is better off.

Axiom m-HE (m-Hammond Equity) For all a, b ∈ Y m with m ≥ 2, if there exist i, j ∈

{1, · · · ,m} such that bi > ai > aj > bj and ak = bk for all k 6= i, j then a �m b.

Lemma 7 For all m ∈ IN, the leximin SWO �Lm is equal to �m iff �m satisfies A, P and HE.

Let � be an SWR defined on X. Consider also the HE axiom on �.

Axiom HE (Hammond Equity) For all x, y ∈ X, there exist i, j ∈ IN such that yi > xi >

xj > yj and xk = yk for all k 6= i, j, then x � y.

By means of this axiom we can characterize the class of SWRs extending �L2 .
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Proposition 4 Let {�Lm}∞m=2 be the lexicon sequence of SWOs for each m ≥ 2. Then:

(i) If � is an SWR on X that extends �L2 , then � satisfies FA, FP and HE.

(ii) If � satisfies FA, FP and HE, then � is an SWR on X that extends �Lm for every m ≥ 2.

Proof: (Proof of (i): � is an SWR on X that extends �L2 only if � satisfies FA, FP and

HE.) Assume � is an SWR on X that extends �L2 . It follows from Lemma 2 that � satisfies

FA and FP. To show that � satisfies HE, let x, y ∈ X satisfy there exist i, j ∈ IN such that

yi > xi > xj > yj and xk = yk for all k 6= i, j. Then x(i,j) �L2 y(i,j) (since �L2 satisfys 2-HE)

and x � y (since � extends �L2 ). This establishes that � satisfies HE.

(Proof of (ii): � is an SWR on X that extends �Lm if � satisfies FA, FP and HE.) Assume

that � satisfies FA, FP and HE. Fix z ∈ X and M ∈ IN with |M | = m ≥ 2. Construct �z
m

as follows: xM �z
m yM iff (xM , zIN\M ). Since � satisfies FA, FP and HE, it follows that �zm

satisfies A, P and m-HE. Thus, by Lemma 7, �Lm is equal to �z
m. Since z ∈ X and M ∈ IN

with |M | = m are arbitrarily chosen, it follows that � extends �Lm.

Proposition 4 implies the following result, which makes Theorem 1 applicable in the utili-

tarian case.

Proposition 5 The sequence of leximin SWOs, {�Lm}∞m=2, is proliferating.

d’Aspremont (2007, Lemma 5) proves Proposition 5 through a direct argument which is

applicable also to the present case where Y ⊆ IR is an interval satisfying [0, 1] ⊆ Y .

Since, by Proposition 5, {�Lm}∞m=2 is proliferating, we can now state the following special-

ization of generalized time-invariant overtaking.

Definition 4 (Leximin time-invariant overtaking). The leximin time-invariant overtaking cri-

terion �LI satisfies, for all x, y ∈ X,

x �LI y iff there exists M ⊂ IN with |M | ≥ 2 such that xN �L|N | yN for all N ⊇M.
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By Propositions 4 and 5, the following characterization of leximin time-invariant overtaking

is a direct consequence of Theorem 1 and Lemma 4.

Corollary 2 (i) �LI is an SWR that satisfies PI, SP and ST.

(ii) An SWR � satisfies FA, FP, HE and IPC iff �LI is a subrelation to �.

(iii) For all x, y ∈ X, x �LI y iff there exists M ⊂ IN with |M | ≥ 2 such that xN �L|N | yN for

all N ⊇M .

(iv) For all x, y ∈ X, x �LI y iff there exists M ⊂ IN with |M | ≥ 2 such that xN ∼L|N | yN for

all N ⊇M .

We provide a characterization of the asymmetric and symmetric parts of the leximin gener-

alized overtaking criterion. For this purpose, we need some additional notation. Let N be the

class of all cofinite subsets of IN. We denote the set of all utility streams defined on some element

of N and taking values in Y by Xc. Since a utility stream can be viewed as a function from the

domain of generations to the set Y , we can formally write Xc := {x : INx → Y | INx ∈ N}.

Observe that for x ∈ Xc, we denote that cofinite subset of IN which is the domain of x by INx.

For any x ∈ Xc, write INx
min := {i ∈ INx | xi = inf

j∈INx xj}. Say that x ∈ Xc and y ∈ Xc

have the same minimum and the same number of minimal elements if inf
j∈INx = inf

j∈INy and

0 < |INx
min| and |INy

min| <∞.

Define the operator R : (Xc)2 → (Xc)2 as follows, where x′ denotes the restriction of x to

INx \ INx
min and y′ is restriction of y to INy \ INy

min if x ∈ Xc and y ∈ Xc satisfy that |INx
min|

and |INy
min| are positive and finite:

R(x,y) =


(x′,y′) if x and y have the same minimum and the same number of minimal

elements,

(x,y) otherwise

Write R0(x, y) := (x, y) and, for n ∈ IN, Rn(x, y) : R(Rn−1(x, y)).
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Proposition 6 Leximin time-invariant overtaking satisfies:

(i) For all x, y ∈ X, x �LI y iff

(a) there is P ∈ F such that Px > y, or

(b) there exists m such that (x′,y′) = Rn(x,y) for all n ≥ m and one of following is true:

inf
j∈INx′ x′j > inf

j∈INy′ y′j

inf
j∈INx′ x′j > inf

j∈INy′ y′j and 0 ≤ |INx′
min| < |IN

y′
min| ≤ ∞

(ii) For all x,y ∈ X, x ∼LI y iff there is P ∈ F such that Px = y.

Proof: Write (xn,yn) = Rn(xn,yn) for all n ≥ 0.

(If part of (i).) First assume that there is P ∈ F such that Px > y. By the definition of

�L|M |, there exists M ⊂ IN such that xM �L|M | yM and xi ≥ yi for all i ∈ IN\M . Hence, xN �L|N |
yN for all N ⊆M .

Then assume that there exists m such that (x′,y′) = Rn(x,y) for all n ≥ m. Let m be the

smallest such integer. Then, for all k ∈ {0, · · · ,m− 1}, xk and yk have the same minimum and

the same number of minimal elements. Write

My : ∪k∈{0,···,m−1}IN
yk
min.

If inf
j∈INx′ x′j > inf

j∈INy′ y′j , choose i′ ∈ INy′ so that y′i′ < inf
j∈INx′ x′j . Let M = My ∪ {i′}.

Then xN � L|N | yN for all N ⊃M . If inf
j∈INx′y′j

= inf
j∈INx′y′j

and 0 ≤ |INx′ | < |INy′ | ≤ ∞, let

N
y′
min with a larger number of elements than Nx′

min. Let My ∪Ny′ . Then xN � L|N |yN for all

N ⊃M .

(Only-if part of (i).) Assume that there exists M ⊂ IN with |M | ≥ 2 such that xN �L|N | yN

for all N ⊇M . Suppose that (a) and (b) are not true. We must show that, for all M ⊂ IN with

|M | ≥ 2, there exists N ⊃M such that xN �L|N | yN .

Suppose there is no P ∈ F such that Px > y, and there exists no m such that (x′,y′) =

Rn(x,y) for all n ≥ m. Then, for all n ≥ 0, xn and yn have the same minimum and the same

number of minimal elements, and ∪n≥0INyn
min is an infinite set. For any M ⊂ IN, one can choose
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N ⊃ M such that N contains at least as many INxn elements as INyn elements for any n ≥ 0,

and more for some n′. Then xN ≺L|N | yN .

Suppose that, even though there exists m such that (x′,y′) = Rn(x,y) for all n ≥ m, we have

that (1) inf
j∈INx′ x′j < inf

j∈INy′ y′j or (2) inf
j∈INx′ x′j = inf

j∈INy′ y′j and ∞ ≥ |INx′
min| > |IN

y′
min| ≥

0. Then there is no P ∈ F such that Px> y, and it follows from the if-part above that x ≺LI y.

(If part of (ii).) Assume that there is P ∈ F such that Px = y. By the definition of �L|M |,

there exists M ⊂ neal such that xM ∼L|M | yM and xi = yi for all i ∈ IN \M . Hence, xN ∼L|N |
yN for all N ⊇M .

(Only-if part (ii).) Assume that there exists M ⊂ IN with |M | ≥ 2 such that xN ∼L|N | yN for

all N ⊇ M . By Lemma 3(ii) and the fact that {�Lm}∞t=2 is proliferating, it follows that xi = yi

for all i ∈ IN \M . It now follows from the definition of �L|M | that there is P ∈ F sic that Px =

y.

The if parts can easily be amended to ensure that |M | ≥ 2.

This characterization can be illustrated by the (u,v) example of Section 1. In this example

INu = INv = IN and infj∈IN uj > infj∈IN vj so that u and v do not have the same minimum,

implying that (u,v) = Rn(u,v) for all n ≥ 1. By Proposition 6(i)(b) it follows that u �LI v.

To illustrate part (i) of Proposition 6 further, we also consider the comparison of v of Section

1 to

w: −1 0 0 0 0 0 · · · 0 0 · · ·

Then v and w have the same minimum and the ams number of minimal element, implying

that (v′,w′) = R(v,w) with v′ and w′ being restrictions of v and w to IN \ {1}. Furthermore,

infj∈IN\{1} v
′
j = infj∈IN\{1}w

′
j = 0 and 0 = |INv′

min| < |INw′
min| = ∞. This entails that (v′,w′)

= Rn(v,w) for all n ≥ 1. By Proposition 6(i)(b) it follows that v �LI w.

The leximin criterion proposed by Bossert et al. (2007), which we discussed in Section 1

and denote �LF (cf. the notation of Section 4), yields comparability only if there is equality or

Pareto-dominance on a cofinite set:

x �LF y if there exists N ⊂ IN such that xN �L|N | yN and xIN\N ≥ yIN\N .
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It follows from Proposition 6 that �LF is a subrelation to �LI , since the symmetric parts, ∼LI and

∼LF, coincide, while �LI strictly expands �LF as illustrated by the (u,v) example of Section 1.

7 Discussion

We have defined the generalized time-invariant overtaking criterion �∗I . This criterion can be

specialized in various cases, corresponding to different moral values theories, as long as these

theories are specified by a proliferating sequence of Paretian SWOs. In the utilitarian and

lexicon cases it leads to �UI and �LI . We have shown that through �UI and �LI we can expand

the asymmetric parts of the utilitarian and lexicon criteria suggested by Basu and Mitra (2007a)

and Bossert et al. (2007), �UF and �LF respectively, without compromising desirable properties

like Stationarity (ST) and Strong Relative Anonymity (PI).

When evaluating the merit of this exercise one should keep in mind that it is the expansion

of the asymmetric part that matters if one seeks to reduce the set of maximal elements for

a given class of feasible infinite utility streams. In this section we analyze whether further

expansions of the asymmetric par at are compatible with PI, before discussing the earlier and

related contributions by Vallentyne and Kegan (1997) and Lauwers and Vallentyne (2004) for

finitely additive moral value theories.

Fix a proliferating sequence of Paretian SWOs, {�∗m}∞m=2. Note that Lemmas 3(ii) and 4(ii)

imply that the symmetric part of �∗I coincides with the symmetric parts of �∗F and �∗. Since

�∗ is a subrelation to any SWR extending �∗m for every m ≥ 2, it follows that the asymmetric

part of �∗I cannot be expanded at the expense of its symmetric part. The asymmetric part of �∗I
can only be expanded by making comparable pairs of utility streams which �∗I does not rank.

The following proposition characterizes the pairs of utility streams that �∗I does not rank.

Proposition 7 Let {�∗m}∞m=2 be a proliferating sequence of SWOs with, for each m ≥ 2, �∗m
satisfying axiom P. Then, for all x, y∈ X, the following two statements are equivalent:

1. �∗I deems x and y as incomparable, i.e., ¬(x �∗I y) and ¬(x �∗I y)
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2. (i) There exists P+ ∈ P such that x+ = P+x and y+ = P+y satisfy that x+
{1,···,n} �

∗
n

y+
{1,···,n} for all n ∈ N .

(ii) There exists P− ∈ P such that x− = P+x and y‘ = P−y satisfy that x−{1,···,n} ≺
∗
n

y−{1,···,n} for all n ∈ N .

Proof: (1) implies (2). Let {�∗m}∞m=2 be a proliferating sequence of Paretian SWOs. Assume

that ¬(x �∗I y). Since, for each m ∈ IN, �∗m is complete, by Definition 2 it is a fact that, for all

M ⊂ IN with |M | ≥ 2, there exist N ′, N ′′ ⊇M such that xN ′ �∗|N ′| yN ′ and xN ′′ ≺∗|N ′′| yN ′′ .

Part (i). By this fact, a sequence 〈Ni〉i∈IN can be constructed as follows: Let m1 = 2. For

i ∈ IN, let Ni ⊇ {1, · · · ,mi} and mi+1 ∈ IN satisfy that xNi �∗|Ni|yNi and {1, · · · ,mi+1} ! Ni.

Clearly, 〈Ni〉i∈IN satisfies, for all i ∈ IN, φ 6= {1, · · · ,mi} ⊆ Ni
⊂
6={1, · · · ,mi+1} ⊆ Ni+1 ⊂ IN and

∪i∈INNi = IN. Let M1 = N1 and, for i ≥ 2, Mi = Ni \Ni−1, implying that {M1,M2, · · · ,Mi, · · ·}

is a partition of IN. Write n0 = 0 and, for all i ∈ IN, ni = |Ni|. Since, for all i ∈ IN,

|Mi| = ni−ni−1, and {{n0 +1, · · · , n1}, {n1 +1, · · · , n2}, · · · , {ni−1 +1, · · · , ni}, · · ·} is a partition

of IN, we can construct P+ ∈ P as follows, writing x+ = P+x and y+ = P+y: For all i ∈ IN,

elements in Mi are mapped onto {ni−1 + 1, · · · , ni} such that

x+
ni−1+1 − y

+
ni−1+1 ≥ x

+
ni−1+2 − y

+
ni−1+2 ≥ · · · ≥ x

+
ni−1 − y

+
ni−1 ≥ x

+
ni − y

+
ni .

We must establish that, for each i ∈ IN, x+
{1,···,m} �

∗
my+
{1,···,m} for all m ∈ {ni−1 + 1, · · · , ni}.

For each i ∈ IN, this is shown by induction. Since xNi �∗ni yNi , it follows by axiom I and

the properties of P+ that x+
{1,···,ni} �

∗
ni y+

{1,···,ni . Assume that x+
1,···,m} �

∗
m y+

{1,···,m} for all

m ∈ {` + 1, · · · , ni}, where ` ∈ {ni−1 + 1, · · ·ni − 1}. The inductive proof is completed by

showing that x+
1,···,`} �

∗
` y+
{1,···,`}.

If x+
`+1 > y+

`+1, then x+
{ni−1+1,···,`} > y+

{ni−1+1,···,`} by the properties of P+. If i = 1, so that

ni−1 = n0 + 1 = 1, then axiom P implies x+
{1,···,`} �

∗
` y+
{1,···,`}. If i ≥ 2, then xNi−1 �∗ni−1

yNi−1 ,

and axiom I and the properties of P+ imply that x+
{1,···,ni−1} �

∗
ni−1

y+
{1,···,ni−1}. Hence, it follows

from axiom P and Lemma 3(i) that

x+
{1,···,`} �

∗
` (x+

{1,···ni−1}, y
+
{ni−1+1,···,`}) �

∗
` y+

{1,···,`}.
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If x+
`+1 ≤ y

+
`+1, then axiom P implies that

(x+
{1,···,`},y

+
`+1) �∗`+1 x+

{1,···,`+1} �
∗
`+1 y+

{1,···,`+1}.

It now follows from Lemma 3(i) that x+
{1,···,`} �

∗
` y+

{1,···,`}.

Part (ii) follows by interchanging the roles of x and y.

(2) implies (1). This follows directly from Definition 2 and the fact that �∗I satisfies PI (cf.

Theorem 1(i)).

Proposition 7 yields the following conclusion: If an SWR � to which �∗I is a sub relation

strictly ranks a utility pair x and y deemed incomparable by �∗I , then � cannot both satisfy

axiom PI and be determined from the sequence of finite-dimensional Paretian SWOs by means

of an overtaking procedure.

By Proposition 3, in the utilitarian case an incomparable pair of utility streams, x and y,

satisfies that the sets of positive differences, {i ∈ IN | xi − yi > 0}, and negative differences,

{i ∈ IN | xi− yi < 0}, are both infinite, and either (i) the sum of the positive differences and the

sum of the negative differences both diverge, or (ii) the sum of the positive differences converges

to σ+
x−y ∈ (0,∞) and the sum of the negative differences converges to σ−x−y ∈ (−∞, 0), with

σ+
x−y + σ−x−y = 0.

By Proposition 6, in the leximin case an incomerable pair of utility streams, x and y,

satisfies that (a) there is no P ∈ F such that Px≥ y or Px≤ y and (b) there exists m such that

(x′,y′) = Rn(x,y) for all n ≥ m and inf
j∈INx′ x′j = inf

j∈INy′ y′j with the sets INx′
min and INy′

min

both being empty or infinite.

Axiom IPC has earlier been proposed by Vallentyne and Kegan (1997, p. 10) under the

name of RSBI (‘rejected strengthened basic idea’) and applied to the utilitarian case. The

utilitarian SWR generated by RSBI coincides with the asymmetric part of the utilitarian time-

invariant overtaking criterion �UI . Vallentyne and Kegan (1997, p. 10–11) reject RSBI in favor

of SBI1 (‘strengthened basic idea 1’), which is equivalent to Lauwers and Vallentyne’s (2004)

“Differential Betterness” principle.

As shown by Lauwers and Vallentyne (2004), the utilitarian SWR generated by SBI1 ranks
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x above y iff the sum of the positive differences converges to σ−x−y, with σ+
x−y + σ−x−y > 0,

or the sum of positive difference diverges and the sum of negative difference converges. In both

cases, �UI makes the same rankings.

It differs from �UI in the case where the sum of the positive differences converges to σ+
x−y

and the sum of the negative differences converges to σ−x−y, with σ+
x−y + σ−x−y = 0. In this

case, the utilitarian SWR generated by SBI1 yields no ranking. In contrast, it follows from

Proposition 3 that

1. x �UI y if {i ∈ IN | xi − yi > 0} is finite and {i ∈ IN | xi − yi < 0} is infinite,

2. x �UI y if {i ∈ IN | xi − yi > 0} and {i ∈ IN | xi − yi < 0} are both finite,

3. x �UI y if {i ∈ IN | xi − yi > 0} is infinite and {i ∈ IN | xi − yi < 0} is finite,

4. x and y are incomparable by �UI if {i ∈ IN | xi − yi > 0} and {i ∈ IN | xi − yi < 0} are

both infinite; this follows from Proposition 7.

However, Lauwers and Vallentyne (2004) introduce a second principle, “Differential Indiffer-

ence”, which for each of these sub-cases deems x indifferent to y.

To illustrate this difference, compare stream u of the introduction with

(0,u) : 0 1 1
2

1
4

1
8

1
16 · · · 1

2n−2 · · ·

By choosing M/ = {1}, it follows from Proposition 2(i) that u �UI (0,u). However,

σ+
u−(0,u) = 1 and σ−u−(0,u) = −1. Hence, σ+

u−(0,u) + σ−u−(0,u) = 0, implying that an SWR

satisfying Differential Indifference deems u and (0,u) indifferent.

Hence, by deeming two streams indifferent when the sum of differences is unconditionally

convergent and converges to zero, Differential Indifference reduces incomparability of a utilitarian

SWR to the case where the sum of the positive differences and the sum of the negative differences

both diverge. However, it also reduces the asymmetric part of the utilitarian time-invariant

overtaking criterion and may thus increase the set of maximal elements. Furthermore, it is not

clear how to adapt this principle to a generalized infinite-dimensional criterion obtained from

some proliferating sequence of Paretian finite-dimensional SWOs, thus making it compatible
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with our purpose: to develop a generalized criterion that allows for non-additive moral value

theories and different interpretations for the locations of values.
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Appendix A

Lemma 8 Let the SWR � extends �U2 . If x, u ∈ X satisfy that there exists N ⊂ IN such that

ui = σ(xN ) \ |N | for i ∈ N and ui = xi for i ∈ IN \N , then x ∼ u.

Proof: The result is shown by induction. Consider the statement that x ∼ u ∈ X satisfy

that there exists N ⊂ IN such that ui = σ(xN ) \ |N | for i ∈ N and ui = xi for i ∈ IN \N .

This statement is true for all N ⊂ IN with |N | = 1 by the reflexivity of �.

Assume that the statement is true for all M ⊂ IN with |M | ≤ m. It remains to be shown

that then the statement is true for all N ⊂ IN with |N | = m+ 1, provided that � extends �U2 .

This is shown in the remainder of the proof.

Suppose u ∈ X satisfy that the exists N ⊂ IN such that ui = σ(N )\|N | for i ∈ N and ui = xi

for i ∈ IN\N , where |N | = m+1. W.l.o.g. N = {1, · · · ,m+1}. Consider any M ⊂ IN such that

M ⊂ IN and |M | = m w.l.o.g., M = {1, · · · ,m}. Construct v ∈ X by vi = σ(xM )/setminus|M |

for i ∈M and vi = xi for i ∈ IN \M .
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Let the sequence {yk}mk=0, where yk ∈ X for each k, be constructed as follows:

ykM =


vM for k = 0

(u{1,···,k},v{k+1,···,m} for k = 1, · · · ,m− 1

uM for k = m,

while for all k, ykm+1 = xkm+1 + k(v1 − u1), and yki = ui for i ∈ N \ N . Then yk−1 ∼ yk

for k ∈ {1, . . . ,m} by the property that � extends �U2 , since yk−1
k + yk−1

m+1 = ykk + ykm+1 and

yk−1
i = yki for i ∈ IN \ {k,m + 1}. By transitivity, v = y0 ∼ ym = u. By assumption, x ∼ v,

leading by transitivity to the conclusion that x ∼ u.

Direct proof of Proposition 2. Assume that the SWR � extends succeqU2 . We must show

that � extends �Um for all m ≥ 2. Consider x, y ∈ X for which there exists some subset M ⊂ N

such that xi = yi for all i ∈ IN \M .

If xM ∼U|M | yM , then σ(xM = σ(uM ) and, by Lemma A.1, x ∼ u ∼ y, where ui = σ(xM )/|M |

for i ∈M and ui = xi for i ∈ IN \M . By transitivity, x ∼ y.

If xM ∼U|M | yM , then σ(xM > σ(uM ) and, by Lemma A.1 and FP, x ∼ u � v ∼ y, where

ui = σ(xM ) \ |M | and vi = σ(yM )/|M | for i ∈ M and ui = vi = xi = yi for i ∈ IN \M . By

transitivity, x � y.
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