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Outline

Standard Supervised Learning



Scalar Learning
Goal: given (x;,y;)", find f, : X > )

Let Y =R
» Parametrize

flz)=w"p(x) weRP p: X > RP

» Learn

R
fn = w, p(x) wy, = argmin — »_ L(w " ¢(2;),y;)
weRP T i—1



Multi-variate Learning

Goal: given (z;,y;)" ;. find fr : X =Y

Let Y = RM
» Parametrize

f(z) = We(x) W e RMxP 0: X - RP

» Learn

RS
fn(z) = Wy o(2) W, = argmin — > " L(We(x;), ;)
WeRMxP T 1



Learning Theory

Expected Risk

» Consistency

lim &(f,) = il}f E(f) (in probability)

n—-+oo

» Excess Risk Bounds



Outline

Structured Prediction with SELF



(Un)Structured prediction

What if ) is not a vector space?
(e.g. strings, graphs, histograms, etc.)

Q. How do we:

» Parametrize

» Learn

a function f: X - Y 7



Possible Approaches

» Score-Learning Methods

+ General algorithmic framework (e.g. StructSVM [Tsochandaridis et al '05])
— Limited Theory ([McAIIester '06])

» Surrogate/Relaxation approaches:

+ Clear theory
— Only for special cases
(e.g. classification, ranking, multi-labeling etc.)
[Bartlett et al '06, Duchi et al '10, Mroueh et al '12, Gao et al. '13]



Relaxation Approaches

1. Encoding
choose ¢: Y — RM

2. Learning
Given (v, c(y;))y, find g, : X — RM

3. Decoding
choose d : RM — Y and let f,(z) = (do g,)()



Example I: Binary Classification

Let Y ={-1,1}

1. ¢: {-1,1} — R identity

2. Scalar learning g, : X = R

3. d=sign:R— {-1,1}

fn(x) = szgn(gn(x))



Example Il: Multi-class Classification

Let Y ={1,..., M}
1. c:Y—{e1,...,en} CRM canonical basis, c(j)=e; e RM
2. Multi-variate learning g, : X — RM
3. d:RM 5 {1,..., M)}
fule) = axgmax ] gala)

j=1,....M
j—th value of g, (z)



A General Relaxation Approach



A General Relaxation Approach

Main Assumption. Structure Encoding Loss Function (SELF)
Given A : Y x Y — R, there exist:

» Hy RKHS with ¢:)Y — Hy feature map
» V :Hy — Hy bounded linear operator

such that:
Ay, y') = (c), Ve Nny,  Yy,y' €

Note. If V is Positive Semidefinite = A is a kernel.



SELF: Examples

> Binary classification: ¢: {—1,1} = Rand V =1.

» Multi-class classification: ¢(j) =e; € RM and V =1 -1 € RM*M,

» Kernel Dependency Estimation (KDE) [weston et al. '02, Cortes et al. '05]:
Ay, y)=1—=h(y,y"), h:Yx)Y — R kernel on ).



SELF: Finite )

All A on discrete ) are SELF

Examples:
» Strings: edit distance, KL divergence, word error rate, ...
Ordered sequences: rank loss, ...

Graphs/Trees: graph/trees edit distance, subgraph matching ...

>
>
» Discrete subsets: weighted overlap loss, ...
>



SELF: More examples

» Histograms/Probabilities: e.g. x?, Hellinger, ...

» Manifolds: Diffusion distances



Relaxation with SELF

1. Encoding. ¢ : Y — Hy canonical feature map of Hy

2. Surrogate Learning. Multi-variate regression g, : X — Hy

3. Decoding. f,(z) = argmin (c(y), Vgn())n,
yeY



Surrogate Learning

Multi-variate learning with ridge regression

» Parametrize

g(x) =Wep(z) WeRMP o.x 5 RP

» Learn

n = Whn ¢(2) W, = argmin — Z [Wela:) — el 5,
WeRMXxF )

least-squares



Learning (cont.)

Solution?
gn(x) = Wy p(2)

W,=C(@'®)'oT =CA
\—,_/

A€Rnxn

® = [p(r1),...,p(x,)] € RE*™  input features
» C = e(y1),.--,clyn)] € RM*™  output features

Ln practice add a regularizer!



Decoding

Lemma (Ciliberto, Rudi, Rosasco '16)

Let g, (z) = CA p(x) solution the surrogate problem. Then

fn(x) = argmin (c(y), Vgn (),

yeY

can be written as

fule) = orgmin 3" (o) 2 (3,30
CE -

where
(1 (z),...,an(x))" = A o(x) € R"



Decoding

Sketch of the proof:

> gn(z) = CA @(x) = Y7 cui(w)e(ys)

with (aq(x),. .., an(z))T = A p(x) € R®

> Plugging g, (z) in
(o) Vaney = () V- it
=i O‘z( ) (e(y)s Ve(yi))wy

(SELF)
= Z?:l ai(z) A (y,y:)



SELF Learning

Two steps:

1. Surrogate Learning

(1 (x),...,an(x))" = A @(x) A=(@To4+ N 1o"

2. Decoding
fu(z) = argmin Y ai(z) A (y, 1)

vey =1

Note:
» Implicit encoding: no need to know Hy, V (extends kernel trick)!
» Optimization over ) is problem specific and can be a challenge.



Connections with Previous Work

» Score-Learning approaches (e.g. StructSVM [Tsochandaridis et al '05])
In StructSVM s possible to choose any feature map on the output...
... here we show that this choice must be compatible with A

» Kernel dependency estimation, A is (one minus) a kernel

» Conditional mean embeddings 7
[Smola et al '07]
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Relaxation Analysis

Consider

and

How are R(g,,) and E(f,,) related?



Relaxation Analysis

fv = argmin £(f) and g« = argmin R(g)
f:xX=Y g:X—=Hy

Key properties:

» Fisher Consistency (FC)
E(dog.) = E(f)
» Comparison Inequality (Cl)
36 :R — R such that §(r) — 0 when r — 0 and

E(dog) —E&(f) < 0(R(g9) —R(gx))  Vg: X —Hy



SELF Relaxation Analysis

Theorem (Ciliberto, Rudi, Rosasco '16)

A Y x Y — RSELF loss, g, : X — Hy least-square “relaxed” solution.

Then

» Fisher Consistency
E(dog.) =E(fs)

» Comparison Inequality Vg : X — Hy

E(dog)—E&(fs) S VR(9) —R(g+)



SELF Relaxation Analysis (cont.)

Lemma (Ciliberto, Rudi, Rosasco '16)

A :Y xY — RSELF loss. Then

where g, : X — Hy minimizes

R(g) = /X lote) = el dote. )

Least-squares on #y is a good surrogate loss



Consistency and Generalization Bounds

Theorem (Ciliberto, Rudi, Rosasco '16)

If we consider a universal feature map and A\ = 1/+/n, then,

lim &(f,) =&(f«), almost surely
n—oo

Moreover, under mild assumptions

E(fu) —E(f) S~V (whp)

Proof.

Relaxation analysis 4 (kernel) ridge regression results

R(gn) = R(gs) S~ 1/?



Remarks

» First result proving universal consistency and excess risk bounds for
general structured prediction (partial results for KDE in [Gigure et al
"13))

» Rates are sharp for the class of SELF loss functions A\: i.e.
matching classification results.

» Faster rates under further regularity conditions.



Experiments: Ranking

M
Avank(F(x),9) = D> ()i (1=sign(f(2)i — f();))/2
i,j=1
e Rank Loss
% [Herbrich et al. '99]  0.432 4 0.008
[Dekel et al. '04]  0.432 £ 0.012
; T T [Duchi et al. '10]  0.430 = 0.004
user:id ws [Tsochantaridis et al. '05]  0.451 £ 0.008
' "2’ [Ciliberto, Rudi, R. '16]  0.396 + 0.003

Ranking experiments on the Movielens dataset with A,qnk [Dekel et al. '04,
Duchi et al. "10]. ~ 1600 Movies for ~ 900 users.



Experiments: Digit Reconstruction

Digit reconstruction on USPS dataset

Loss KDE SELF
VaVel Ay
Ag  0.149 £0.013 0.172 £ 0.011
[-l' Ap  0.736+£0032  0.647 £0.017

Apr 0.294 £ 0.012 0.193 £ 0.015

> Aa(f(x),y) =1—k(f(z),y) k Gaussian kernel on the output.

> AH(f(x)vy) =

> Ar(f(2),y)

IV f(x) — Yl Hellinger distance.

Recognition accuracy of an SVM digit classifier.



Experiments: Robust Estimation

_ 2
Doy (F(@),y) = Slog(1 + L@ —vl”

>0
2 c ) ¢

n SELF RNW KRR

50 039 +017 045+0.18 0.62+0.13
100 0.21 £0.04 0.29 +£0.04 0.47 +0.09
200 0.12 +0.02 0.24 £0.03 0.33 £0.04
500 0.08 +0.01 0.22 £+ 0.02 0.31 £ 0.03

1000 0.07 £0.01 0.21 £0.02 0.19 &+ 0.02
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Wrapping Up

Contributions
1. A relaxation/regularization framework for structured prediction.
2. Theoretical guarantees: universal consistency-+sharp bounds

3. Promising empirical results

Open Questions
» Surrogate loss functions beyond least-squares.
» Efficent decoding, exploit loss structure.

» Tsybakov noise “like" conditions

P.S.
| have post-doc positions! Ping me if you are interested.
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