A Consistent Regularization Approach for Structured Prediction Carlo Ciliberto, Alessandro Rudi, Lorenzo Rosasco University of Genova Istituto Italiano di Tecnologia - Massachusetts Institute of Technology lcsl.mit.edu Dec 9th, NIPS 2016 #### Structured Prediction #### **Outline** Standard Supervised Learning Structured Prediction with SELF ${\sf Algorithm}$ Theory ${\sf Experiments}$ Conclusions ### **Outline** ### Standard Supervised Learning Structured Prediction with SELF Algorithm Theory Experiments Conclusions ## **Scalar Learning** **Goal**: given $$(x_i, y_i)_{i=1}^n$$, find $f_n : \mathcal{X} \to \mathcal{Y}$ Let $$\mathcal{V} = \mathbb{R}$$ Parametrize $$f(x) = w^{\top} \varphi(x) \qquad w \in \mathbb{R}^P \qquad \varphi : \mathcal{X} \to \mathbb{R}^P$$ Learn $$f_n = w_n^{\top} \varphi(x)$$ $$w_n = \underset{w \in \mathbb{R}^P}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^n L(w^{\top} \varphi(x_i), y_i)$$ ## Multi-variate Learning **Goal**: given $(x_i, y_i)_{i=1}^n$, find $f_n : \mathcal{X} \to \mathcal{Y}$ Let $\mathcal{V} = \mathbb{R}^{M}$ Parametrize $$f(x) = W\varphi(x)$$ $W \in \mathbb{R}^{M \times P}$ $\varphi : \mathcal{X} \to \mathbb{R}^{P}$ Learn $$f_n(x) = W_n \varphi(x)$$ $$W_n = \underset{W \in \mathbb{R}^{M \times P}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(W\varphi(x_i), y_i)$$ ### **Learning Theory** Expected Risk $$\mathcal{E}(f) = \int_{\mathcal{X} \times \mathcal{Y}} L(f(x), y) \ d\rho(x, y)$$ Consistency $$\lim_{n \to +\infty} \mathcal{E}(f_n) \ = \ \inf_f \ \mathcal{E}(f) \qquad (in \ probability)$$ Excess Risk Bounds $$\mathcal{E}(f_n) - \inf_{f \in \mathcal{H}} \mathcal{E}(f) \lesssim \epsilon(n, \rho, \mathcal{H}) \qquad (w.h.p.)$$ ### **Outline** Standard Supervised Learning #### Structured Prediction with SELF Algorithm Theory Experiments Conclusions # (Un)Structured prediction What if \mathcal{Y} is **not** a vector space? (e.g. strings, graphs, histograms, etc.) - Q. How do we: - **▶** Parametrize - Learn - a function $f: \mathcal{X} \to \mathcal{Y}$? ### **Possible Approaches** - Score-Learning Methods - + General algorithmic framework (e.g. StructSVM [Tsochandaridis et al '05]) - Limited Theory ([McAllester '06]) - ► Surrogate/Relaxation approaches: - + Clear theory - Only for special cases (e.g. classification, ranking, multi-labeling etc.) [Bartlett et al '06, Duchi et al '10, Mroueh et al '12, Gao et al. '13] ## **Relaxation Approaches** ### 1. Encoding choose $c: \mathcal{Y} \to \mathbb{R}^M$ ### 2. Learning Given $(x_i, c(y_i))_{i=1}^n$, find $g_n : \mathcal{X} \to \mathbb{R}^M$ ### 3. Decoding choose $d: \mathbb{R}^M \to \mathcal{Y}$ and let $f_n(x) = (d \circ g_n)(x)$ ### **Example I: Binary Classification** Let $$\mathcal{Y} = \{-1, 1\}$$ - 1. $c: \{-1,1\} \to \mathbb{R}$ identity - 2. Scalar learning $g_n: \mathcal{X} \to \mathbb{R}$ 3. $$d = sign : \mathbb{R} \to \{-1, 1\}$$ $$f_n(x) = sign(g_n(x))$$ ### **Example II: Multi-class Classification** Let $$\mathcal{Y} = \{1, \dots, M\}$$ - 1. $c: \mathcal{Y} \to \{e_1, \dots, e_M\} \subset \mathbb{R}^M$ canonical basis, $c(j) = e_j \in \mathbb{R}^M$ - 2. Multi-variate learning $g_n: \mathcal{X} \to \mathbb{R}^M$ - 3. $d: \mathbb{R}^M \to \{1, \dots, M\}$ $f_n(x) = \operatorname*{argmax}_{j=1,\dots,M} \underbrace{e_j^\top g_n(x)}_{j-\text{th value of } g_n(x)}$ ## A General Relaxation Approach ### **A General Relaxation Approach** Main Assumption. Structure Encoding Loss Function (SELF) Given $\triangle: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, there exist: - $lackbox{}{} \mathcal{H}_{\mathcal{Y}}$ RKHS with $c:\mathcal{Y} ightarrow \mathcal{H}_{\mathcal{Y}}$ feature map - $V: \mathcal{H}_{\mathcal{Y}} \to \mathcal{H}_{\mathcal{Y}}$ bounded linear operator such that: $$\triangle(y, y') = \langle c(y), Vc(y') \rangle_{\mathcal{H}_{\mathcal{Y}}} \qquad \forall y, y' \in \mathcal{Y}$$ **Note**. If V is Positive Semidefinite $\Longrightarrow \triangle$ is a kernel. ### **SELF: Examples** ▶ Binary classification: $c: \{-1,1\} \to \mathbb{R}$ and V=1. ▶ Multi-class classification: $c(j) = e_j \in \mathbb{R}^M$ and $V = \mathbf{1} - I \in \mathbb{R}^{M \times M}$. ▶ Kernel Dependency Estimation (KDE) [Weston et al. '02, Cortes et al. '05]: $\triangle(y,y')=1-h(y,y'), \quad h:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$ kernel on \mathcal{Y} . ### **SELF**: Finite \mathcal{Y} ### All \triangle on discrete \mathcal{Y} are SELF #### Examples: - ▶ **Strings**: edit distance, KL divergence, word error rate, . . . - ▶ Ordered sequences: rank loss, . . . - ▶ **Graphs/Trees**: graph/trees edit distance, subgraph matching . . . - ▶ **Discrete subsets**: weighted overlap loss, . . . - **.**.. ### **SELF:** More examples ▶ Histograms/Probabilities: e.g. χ^2 , Hellinger, . . . ► Manifolds: Diffusion distances **•** #### Relaxation with SELF 1. **Encoding**. $c: \mathcal{Y} \to \mathcal{H}_{\mathcal{Y}}$ canonical feature map of $\mathcal{H}_{\mathcal{Y}}$ 2. Surrogate Learning. Multi-variate regression $g_n: \mathcal{X} \to \mathcal{H}_{\mathcal{Y}}$ 3. Decoding. $f_n(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \langle c(y), Vg_n(x) \rangle_{\mathcal{H}_{\mathcal{Y}}}$ ### **Surrogate Learning** Multi-variate learning with ridge regression Parametrize $$g(x) = W\varphi(x) \quad W \in \mathbb{R}^{M \times P} \quad \varphi : \mathcal{X} \to \mathbb{R}^{P}$$ Learn $$g_n = W_n \varphi(x)$$ $$W_n = \underset{W \in \mathbb{R}^{M \times P}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \underbrace{\|W\varphi(x_i) - \underline{c(y_i)}\|_{\mathcal{H}_{\mathcal{Y}}}^2}_{\text{least-squares}}$$ ## Learning (cont.) Solution¹ $g_n(x) = W_n \varphi(x)$ $$W_n = C \underbrace{(\Phi^{\top} \Phi)^{-1} \Phi^{\top}}_{A \in \mathbb{R}^{n \times n}} = CA$$ - ullet $\Phi = [\varphi(x_1), \dots, \varphi(x_n)] \in \mathbb{R}^{P \times n}$ input features - ullet $C = [c(y_1), \ldots, c(y_n)] \in \mathbb{R}^{M imes n}$ output features ¹In practice add a regularizer! ## **Decoding** # Lemma (Ciliberto, Rudi, Rosasco '16) Let $g_n(x) = CA \varphi(x)$ solution the surrogate problem. Then $$f_n(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \langle c(y), Vg_n(x) \rangle_{\mathcal{H}_{\mathcal{Y}}}$$ can be written as $$f_n(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \sum_{i=1}^n \alpha_i(x) \triangle (y, y_i)$$ where $$(\alpha_1(x), \dots, \alpha_n(x))^{\top} = A \varphi(x) \in \mathbb{R}^n$$ ### **Decoding** #### Sketch of the proof: $$g_n(x) = CA \ \varphi(x) = \sum_{i=1}^n \alpha_i(x) c(y_i)$$ with $(\alpha_1(x), \dots, \alpha_n(x))^\top = A \ \varphi(x) \in \mathbb{R}^n$ ▶ Plugging $g_n(x)$ in $$\begin{split} \langle c(y), Vg_n(x) \rangle_{\mathcal{H}_{\mathcal{Y}}} &= \langle c(y), V \sum_{i=1} \alpha_i(x) c(y_i) \rangle_{\mathcal{H}_{\mathcal{Y}}} \\ &= \sum_{i=1} \alpha_i(x) \ \langle c(y), Vc(y_i) \rangle_{\mathcal{H}_{\mathcal{Y}}} \\ &= \sum_{i=1}^n \alpha_i(x) \ \triangle \ (y, y_i) \end{split} \tag{SELF}$$ ## **SELF Learning** Two steps: #### 1. Surrogate Learning $$(\alpha_1(x), \dots, \alpha_n(x))^{\top} = A \varphi(x) \qquad A = (\Phi^{\top} \Phi + \lambda)^{-1} \Phi^{\top}$$ #### 2. Decoding $$f_n(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \sum_{i=1}^n \alpha_i(x) \triangle (y, y_i)$$ #### Note: - ▶ Implicit encoding: no need to know $\mathcal{H}_{\mathcal{Y}}$, V (extends kernel trick)! - lackbox Optimization over $\mathcal Y$ is problem specific and can be a challenge. #### **Connections with Previous Work** ▶ Score-Learning approaches (e.g. StructSVM [Tsochandaridis et al '05]) In StructSVM is possible to choose any feature map on the output... ... here we show that this choice must be compatible with \triangle lacktriangle Kernel dependency estimation, \triangle is (one minus) a kernel Conditional mean embeddings ? [Smola et al '07] # **Relaxation Analysis** ### **Relaxation Analysis** Consider $$\mathcal{E}(f) = \int_{\mathcal{X} \times \mathcal{Y}} \triangle(f(x), y) \ d\rho(x, y)$$ and $$\mathcal{R}(g) = \int_{\mathcal{X} \times \mathcal{Y}} \|g(x) - c(y)\|^2 \ d\rho(x, y)$$ How are $\mathcal{R}(g_n)$ and $\mathcal{E}(f_n)$ related? ### **Relaxation Analysis** $$f_* = \underset{f:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \mathcal{E}(f)$$ and $g_* = \underset{g:\mathcal{X} \to \mathcal{H}_{\mathcal{Y}}}{\operatorname{argmin}} \mathcal{R}(g)$ Key properties: ► Fisher Consistency (FC) $$\mathcal{E}(d \circ g_*) = \mathcal{E}(f_*)$$ ► Comparison Inequality (CI) $\exists~\theta:\mathbb{R}\to\mathbb{R}$ such that $\theta(r)\to 0$ when $r\to 0$ and $$\mathcal{E}(d \circ g) - \mathcal{E}(f_*) \leq \theta(\mathcal{R}(g) - \mathcal{R}(g_*)) \qquad \forall g : \mathcal{X} \to \mathcal{H}_{\mathcal{Y}}$$ ### **SELF** Relaxation Analysis # Theorem (Ciliberto, Rudi, Rosasco '16) $\triangle: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ SELF loss, $g_*: \mathcal{X} \to \mathcal{H}_{\mathcal{Y}}$ least-square "relaxed" solution. #### Then ► Fisher Consistency $$\mathcal{E}(d \circ g_*) = \mathcal{E}(f_*)$$ ▶ Comparison Inequality $\forall g: \mathcal{X} \rightarrow \mathcal{H}_{\mathcal{Y}}$ $$\mathcal{E}(d \circ g) - \mathcal{E}(f_*) \lesssim \sqrt{\mathcal{R}(g) - \mathcal{R}(g_*)}$$ ## **SELF** Relaxation Analysis (cont.) ## Lemma (Ciliberto, Rudi, Rosasco '16) $\triangle: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ SELF loss. Then $$\mathcal{E}(f) = \int_{\mathcal{X}} \langle c(f(x)), Vg_*(x) \rangle_{\mathcal{H}_{\mathcal{Y}}} \ d\rho_{\mathcal{X}}(x)$$ where $g_*: \mathcal{X} \to \mathcal{H}_{\mathcal{Y}}$ minimizes $$\mathcal{R}(g) = \int_{\mathcal{X} \times \mathcal{Y}} \|g(x) - c(y)\|_{\mathcal{H}_{\mathcal{Y}}}^2 d\rho(x, y)$$ Least-squares on $\mathcal{H}_{\mathcal{V}}$ is a good surrogate loss ### **Consistency and Generalization Bounds** ## Theorem (Ciliberto, Rudi, Rosasco '16) If we consider a universal feature map and $\lambda = 1/\sqrt{n}$, then, $$\lim_{n \to \infty} \mathcal{E}(f_n) = \mathcal{E}(f_*), \quad ext{almost surely}$$ Moreover, under mild assumptions $$\mathcal{E}(f_n) - \mathcal{E}(f_*) \lesssim n^{-1/4}$$ (w.h.p.) #### Proof. Relaxation analysis + (kernel) ridge regression results $$\mathcal{R}(g_n) - \mathcal{R}(g_*) \lesssim n^{-1/2}$$ #### Remarks ► First result proving universal consistency and excess risk bounds for general structured prediction (partial results for KDE in [Gigure et al '13]) ▶ Rates are sharp for the class of SELF loss functions △: i.e. matching classification results. ► Faster rates under further regularity conditions. ### **Experiments: Ranking** $$\triangle_{rank}(f(x), y) = \sum_{i,j=1}^{M} \gamma(y)_{ij} \left(1 - \text{sign}(f(x)_i - f(x)_j)\right) / 2$$ | | Rank Loss | |-----------------------------|--------------------------------| | [Herbrich et al. '99] | 0.432 ± 0.008 | | [Dekel et al. $'04$] | 0.432 ± 0.012 | | [Duchi et al. '10] | 0.430 ± 0.004 | | [Tsochantaridis et al. '05] | 0.451 ± 0.008 | | [Ciliberto, Rudi, R. '16] | $\boldsymbol{0.396 \pm 0.003}$ | **Ranking** experiments on the MovieLens dataset with \triangle_{rank} [Dekel et al. '04, Duchi et al. '10]. ~ 1600 Movies for ~ 900 users. ### **Experiments: Digit Reconstruction** ### Digit reconstruction on USPS dataset | Loss | KDE | SELF | |---------------|-------------------|--------------------------------| | | \triangle_G | \triangle_H | | \triangle_G | 0.149 ± 0.013 | 0.172 ± 0.011 | | \triangle_H | 0.736 ± 0.032 | $\boldsymbol{0.647 \pm 0.017}$ | | \triangle_R | 0.294 ± 0.012 | $\boldsymbol{0.193 \pm 0.015}$ | - k Gaussian kernel on the output.Hellinger distance. - ightharpoonup $\triangle_R(f(x),y)$ Recognition accuracy of an SVM digit classifier. ### **Experiments: Robust Estimation** $$\triangle_{Cauchy}(f(x), y) = \frac{c}{2} \log(1 + \frac{\|f(x) - y\|^2}{c}) \qquad c > 0$$ | n | SELF | RNW | KRR | |------|-----------------|-----------------|-----------------| | 50 | 0.39 ± 0.17 | 0.45 ± 0.18 | 0.62 ± 0.13 | | 100 | 0.21 ± 0.04 | 0.29 ± 0.04 | 0.47 ± 0.09 | | 200 | 0.12 ± 0.02 | 0.24 ± 0.03 | 0.33 ± 0.04 | | 500 | 0.08 ± 0.01 | 0.22 ± 0.02 | 0.31 ± 0.03 | | 1000 | 0.07 ± 0.01 | 0.21 ± 0.02 | 0.19 ± 0.02 | | | | | | ### **Outline** Standard Supervised Learning Structured Prediction with SELF Algorithm Theory Experiments Conclusions ### Wrapping Up #### Contributions - 1. A relaxation/regularization framework for structured prediction. - 2. Theoretical guarantees: universal consistency+sharp bounds - 3. Promising empirical results #### Open Questions - Surrogate loss functions beyond least-squares. - Efficent decoding, exploit loss structure. - Tsybakov noise "like" conditions #### P.S. I have post-doc positions! Ping me if you are interested.