A Consistent Regularization Approach for Structured Prediction

Carlo Ciliberto, Alessandro Rudi, Lorenzo Rosasco

University of Genova
Istituto Italiano di Tecnologia - Massachusetts Institute of Technology
lcsl.mit.edu

Dec 9th, NIPS 2016

Structured Prediction

Outline

Standard Supervised Learning

Structured Prediction with SELF

 ${\sf Algorithm}$

Theory

 ${\sf Experiments}$

Conclusions

Outline

Standard Supervised Learning

Structured Prediction with SELF Algorithm Theory Experiments

Conclusions

Scalar Learning

Goal: given
$$(x_i, y_i)_{i=1}^n$$
, find $f_n : \mathcal{X} \to \mathcal{Y}$

Let
$$\mathcal{V} = \mathbb{R}$$

Parametrize

$$f(x) = w^{\top} \varphi(x) \qquad w \in \mathbb{R}^P \qquad \varphi : \mathcal{X} \to \mathbb{R}^P$$

Learn

$$f_n = w_n^{\top} \varphi(x)$$

$$w_n = \underset{w \in \mathbb{R}^P}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^n L(w^{\top} \varphi(x_i), y_i)$$

Multi-variate Learning

Goal: given $(x_i, y_i)_{i=1}^n$, find $f_n : \mathcal{X} \to \mathcal{Y}$

Let $\mathcal{V} = \mathbb{R}^{M}$

Parametrize

$$f(x) = W\varphi(x)$$
 $W \in \mathbb{R}^{M \times P}$ $\varphi : \mathcal{X} \to \mathbb{R}^{P}$

Learn

$$f_n(x) = W_n \varphi(x)$$

$$W_n = \underset{W \in \mathbb{R}^{M \times P}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(W\varphi(x_i), y_i)$$

Learning Theory

Expected Risk

$$\mathcal{E}(f) = \int_{\mathcal{X} \times \mathcal{Y}} L(f(x), y) \ d\rho(x, y)$$

Consistency

$$\lim_{n \to +\infty} \mathcal{E}(f_n) \ = \ \inf_f \ \mathcal{E}(f) \qquad (in \ probability)$$

Excess Risk Bounds

$$\mathcal{E}(f_n) - \inf_{f \in \mathcal{H}} \mathcal{E}(f) \lesssim \epsilon(n, \rho, \mathcal{H}) \qquad (w.h.p.)$$

Outline

Standard Supervised Learning

Structured Prediction with SELF

Algorithm
Theory
Experiments

Conclusions

(Un)Structured prediction

What if \mathcal{Y} is **not** a vector space? (e.g. strings, graphs, histograms, etc.)

- Q. How do we:
 - **▶** Parametrize
 - Learn
- a function $f: \mathcal{X} \to \mathcal{Y}$?

Possible Approaches

- Score-Learning Methods
 - + General algorithmic framework (e.g. StructSVM [Tsochandaridis et al '05])
 - Limited Theory ([McAllester '06])

- ► Surrogate/Relaxation approaches:
 - + Clear theory
 - Only for special cases
 (e.g. classification, ranking, multi-labeling etc.)
 [Bartlett et al '06, Duchi et al '10, Mroueh et al '12, Gao et al. '13]

Relaxation Approaches

1. Encoding

choose $c: \mathcal{Y} \to \mathbb{R}^M$

2. Learning

Given $(x_i, c(y_i))_{i=1}^n$, find $g_n : \mathcal{X} \to \mathbb{R}^M$

3. Decoding

choose $d: \mathbb{R}^M \to \mathcal{Y}$ and let $f_n(x) = (d \circ g_n)(x)$

Example I: Binary Classification

Let
$$\mathcal{Y} = \{-1, 1\}$$

- 1. $c: \{-1,1\} \to \mathbb{R}$ identity
- 2. Scalar learning $g_n: \mathcal{X} \to \mathbb{R}$

3.
$$d = sign : \mathbb{R} \to \{-1, 1\}$$

$$f_n(x) = sign(g_n(x))$$

Example II: Multi-class Classification

Let
$$\mathcal{Y} = \{1, \dots, M\}$$

- 1. $c: \mathcal{Y} \to \{e_1, \dots, e_M\} \subset \mathbb{R}^M$ canonical basis, $c(j) = e_j \in \mathbb{R}^M$
- 2. Multi-variate learning $g_n: \mathcal{X} \to \mathbb{R}^M$
- 3. $d: \mathbb{R}^M \to \{1, \dots, M\}$ $f_n(x) = \operatorname*{argmax}_{j=1,\dots,M} \underbrace{e_j^\top g_n(x)}_{j-\text{th value of } g_n(x)}$

A General Relaxation Approach

A General Relaxation Approach

Main Assumption. Structure Encoding Loss Function (SELF)

Given $\triangle: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, there exist:

- $lackbox{}{} \mathcal{H}_{\mathcal{Y}}$ RKHS with $c:\mathcal{Y}
 ightarrow \mathcal{H}_{\mathcal{Y}}$ feature map
- $V: \mathcal{H}_{\mathcal{Y}} \to \mathcal{H}_{\mathcal{Y}}$ bounded linear operator

such that:

$$\triangle(y, y') = \langle c(y), Vc(y') \rangle_{\mathcal{H}_{\mathcal{Y}}} \qquad \forall y, y' \in \mathcal{Y}$$

Note. If V is Positive Semidefinite $\Longrightarrow \triangle$ is a kernel.

SELF: Examples

▶ Binary classification: $c: \{-1,1\} \to \mathbb{R}$ and V=1.

▶ Multi-class classification: $c(j) = e_j \in \mathbb{R}^M$ and $V = \mathbf{1} - I \in \mathbb{R}^{M \times M}$.

▶ Kernel Dependency Estimation (KDE) [Weston et al. '02, Cortes et al. '05]: $\triangle(y,y')=1-h(y,y'), \quad h:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$ kernel on \mathcal{Y} .

SELF: Finite \mathcal{Y}

All \triangle on discrete \mathcal{Y} are SELF

Examples:

- ▶ **Strings**: edit distance, KL divergence, word error rate, . . .
- ▶ Ordered sequences: rank loss, . . .
- ▶ **Graphs/Trees**: graph/trees edit distance, subgraph matching . . .
- ▶ **Discrete subsets**: weighted overlap loss, . . .
- **.**..

SELF: More examples

▶ Histograms/Probabilities: e.g. χ^2 , Hellinger, . . .

► Manifolds: Diffusion distances

•

Relaxation with SELF

1. **Encoding**. $c: \mathcal{Y} \to \mathcal{H}_{\mathcal{Y}}$ canonical feature map of $\mathcal{H}_{\mathcal{Y}}$

2. Surrogate Learning. Multi-variate regression $g_n: \mathcal{X} \to \mathcal{H}_{\mathcal{Y}}$

3. Decoding. $f_n(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \langle c(y), Vg_n(x) \rangle_{\mathcal{H}_{\mathcal{Y}}}$

Surrogate Learning

Multi-variate learning with ridge regression

Parametrize

$$g(x) = W\varphi(x) \quad W \in \mathbb{R}^{M \times P} \quad \varphi : \mathcal{X} \to \mathbb{R}^{P}$$

Learn

$$g_n = W_n \varphi(x)$$

$$W_n = \underset{W \in \mathbb{R}^{M \times P}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \underbrace{\|W\varphi(x_i) - \underline{c(y_i)}\|_{\mathcal{H}_{\mathcal{Y}}}^2}_{\text{least-squares}}$$

Learning (cont.)

Solution¹ $g_n(x) = W_n \varphi(x)$

$$W_n = C \underbrace{(\Phi^{\top} \Phi)^{-1} \Phi^{\top}}_{A \in \mathbb{R}^{n \times n}} = CA$$

- ullet $\Phi = [\varphi(x_1), \dots, \varphi(x_n)] \in \mathbb{R}^{P \times n}$ input features
- ullet $C = [c(y_1), \ldots, c(y_n)] \in \mathbb{R}^{M imes n}$ output features

¹In practice add a regularizer!

Decoding

Lemma (Ciliberto, Rudi, Rosasco '16)

Let $g_n(x) = CA \varphi(x)$ solution the surrogate problem. Then

$$f_n(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \langle c(y), Vg_n(x) \rangle_{\mathcal{H}_{\mathcal{Y}}}$$

can be written as

$$f_n(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \sum_{i=1}^n \alpha_i(x) \triangle (y, y_i)$$

where

$$(\alpha_1(x), \dots, \alpha_n(x))^{\top} = A \varphi(x) \in \mathbb{R}^n$$

Decoding

Sketch of the proof:

$$g_n(x) = CA \ \varphi(x) = \sum_{i=1}^n \alpha_i(x) c(y_i)$$
 with $(\alpha_1(x), \dots, \alpha_n(x))^\top = A \ \varphi(x) \in \mathbb{R}^n$

▶ Plugging $g_n(x)$ in

$$\begin{split} \langle c(y), Vg_n(x) \rangle_{\mathcal{H}_{\mathcal{Y}}} &= \langle c(y), V \sum_{i=1} \alpha_i(x) c(y_i) \rangle_{\mathcal{H}_{\mathcal{Y}}} \\ &= \sum_{i=1} \alpha_i(x) \ \langle c(y), Vc(y_i) \rangle_{\mathcal{H}_{\mathcal{Y}}} \\ &= \sum_{i=1}^n \alpha_i(x) \ \triangle \ (y, y_i) \end{split} \tag{SELF}$$

SELF Learning

Two steps:

1. Surrogate Learning

$$(\alpha_1(x), \dots, \alpha_n(x))^{\top} = A \varphi(x) \qquad A = (\Phi^{\top} \Phi + \lambda)^{-1} \Phi^{\top}$$

2. Decoding

$$f_n(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \sum_{i=1}^n \alpha_i(x) \triangle (y, y_i)$$

Note:

- ▶ Implicit encoding: no need to know $\mathcal{H}_{\mathcal{Y}}$, V (extends kernel trick)!
- lackbox Optimization over $\mathcal Y$ is problem specific and can be a challenge.

Connections with Previous Work

▶ Score-Learning approaches (e.g. StructSVM [Tsochandaridis et al '05]) In StructSVM is possible to choose any feature map on the output... ... here we show that this choice must be compatible with \triangle

lacktriangle Kernel dependency estimation, \triangle is (one minus) a kernel

Conditional mean embeddings ? [Smola et al '07]

Relaxation Analysis

Relaxation Analysis

Consider

$$\mathcal{E}(f) = \int_{\mathcal{X} \times \mathcal{Y}} \triangle(f(x), y) \ d\rho(x, y)$$

and

$$\mathcal{R}(g) = \int_{\mathcal{X} \times \mathcal{Y}} \|g(x) - c(y)\|^2 \ d\rho(x, y)$$

How are $\mathcal{R}(g_n)$ and $\mathcal{E}(f_n)$ related?

Relaxation Analysis

$$f_* = \underset{f:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \mathcal{E}(f)$$
 and $g_* = \underset{g:\mathcal{X} \to \mathcal{H}_{\mathcal{Y}}}{\operatorname{argmin}} \mathcal{R}(g)$

Key properties:

► Fisher Consistency (FC)

$$\mathcal{E}(d \circ g_*) = \mathcal{E}(f_*)$$

► Comparison Inequality (CI)

 $\exists~\theta:\mathbb{R}\to\mathbb{R}$ such that $\theta(r)\to 0$ when $r\to 0$ and

$$\mathcal{E}(d \circ g) - \mathcal{E}(f_*) \leq \theta(\mathcal{R}(g) - \mathcal{R}(g_*)) \qquad \forall g : \mathcal{X} \to \mathcal{H}_{\mathcal{Y}}$$

SELF Relaxation Analysis

Theorem (Ciliberto, Rudi, Rosasco '16)

 $\triangle: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ SELF loss, $g_*: \mathcal{X} \to \mathcal{H}_{\mathcal{Y}}$ least-square "relaxed" solution.

Then

► Fisher Consistency

$$\mathcal{E}(d \circ g_*) = \mathcal{E}(f_*)$$

▶ Comparison Inequality $\forall g: \mathcal{X} \rightarrow \mathcal{H}_{\mathcal{Y}}$

$$\mathcal{E}(d \circ g) - \mathcal{E}(f_*) \lesssim \sqrt{\mathcal{R}(g) - \mathcal{R}(g_*)}$$

SELF Relaxation Analysis (cont.)

Lemma (Ciliberto, Rudi, Rosasco '16)

 $\triangle: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ SELF loss. Then

$$\mathcal{E}(f) = \int_{\mathcal{X}} \langle c(f(x)), Vg_*(x) \rangle_{\mathcal{H}_{\mathcal{Y}}} \ d\rho_{\mathcal{X}}(x)$$

where $g_*: \mathcal{X} \to \mathcal{H}_{\mathcal{Y}}$ minimizes

$$\mathcal{R}(g) = \int_{\mathcal{X} \times \mathcal{Y}} \|g(x) - c(y)\|_{\mathcal{H}_{\mathcal{Y}}}^2 d\rho(x, y)$$

Least-squares on $\mathcal{H}_{\mathcal{V}}$ is a good surrogate loss

Consistency and Generalization Bounds

Theorem (Ciliberto, Rudi, Rosasco '16)

If we consider a universal feature map and $\lambda = 1/\sqrt{n}$, then,

$$\lim_{n \to \infty} \mathcal{E}(f_n) = \mathcal{E}(f_*), \quad ext{almost surely}$$

Moreover, under mild assumptions

$$\mathcal{E}(f_n) - \mathcal{E}(f_*) \lesssim n^{-1/4}$$
 (w.h.p.)

Proof.

Relaxation analysis + (kernel) ridge regression results

$$\mathcal{R}(g_n) - \mathcal{R}(g_*) \lesssim n^{-1/2}$$

Remarks

► First result proving universal consistency and excess risk bounds for general structured prediction (partial results for KDE in [Gigure et al '13])

▶ Rates are sharp for the class of SELF loss functions △: i.e. matching classification results.

► Faster rates under further regularity conditions.

Experiments: Ranking

$$\triangle_{rank}(f(x), y) = \sum_{i,j=1}^{M} \gamma(y)_{ij} \left(1 - \text{sign}(f(x)_i - f(x)_j)\right) / 2$$

	Rank Loss
[Herbrich et al. '99]	0.432 ± 0.008
[Dekel et al. $'04$]	0.432 ± 0.012
[Duchi et al. '10]	0.430 ± 0.004
[Tsochantaridis et al. '05]	0.451 ± 0.008
[Ciliberto, Rudi, R. '16]	$\boldsymbol{0.396 \pm 0.003}$

Ranking experiments on the MovieLens dataset with \triangle_{rank} [Dekel et al. '04, Duchi et al. '10]. ~ 1600 Movies for ~ 900 users.

Experiments: Digit Reconstruction

Digit reconstruction on USPS dataset

Loss	KDE	SELF
	\triangle_G	\triangle_H
\triangle_G	0.149 ± 0.013	0.172 ± 0.011
\triangle_H	0.736 ± 0.032	$\boldsymbol{0.647 \pm 0.017}$
\triangle_R	0.294 ± 0.012	$\boldsymbol{0.193 \pm 0.015}$

- k Gaussian kernel on the output.Hellinger distance.
- ightharpoonup $\triangle_R(f(x),y)$ Recognition accuracy of an SVM digit classifier.

Experiments: Robust Estimation

$$\triangle_{Cauchy}(f(x), y) = \frac{c}{2} \log(1 + \frac{\|f(x) - y\|^2}{c}) \qquad c > 0$$

n	SELF	RNW	KRR
50	0.39 ± 0.17	0.45 ± 0.18	0.62 ± 0.13
100	0.21 ± 0.04	0.29 ± 0.04	0.47 ± 0.09
200	0.12 ± 0.02	0.24 ± 0.03	0.33 ± 0.04
500	0.08 ± 0.01	0.22 ± 0.02	0.31 ± 0.03
1000	0.07 ± 0.01	0.21 ± 0.02	0.19 ± 0.02

Outline

Standard Supervised Learning

Structured Prediction with SELF Algorithm Theory Experiments

Conclusions

Wrapping Up

Contributions

- 1. A relaxation/regularization framework for structured prediction.
- 2. Theoretical guarantees: universal consistency+sharp bounds
- 3. Promising empirical results

Open Questions

- Surrogate loss functions beyond least-squares.
- Efficent decoding, exploit loss structure.
- Tsybakov noise "like" conditions

P.S.

I have post-doc positions! Ping me if you are interested.