Feuille d'exercices n°10

Exercice 1

Montrer que la famille des sinus discrets :

$$s_k[n] = \lambda_k \sqrt{\frac{2}{N}} \sin\left(\frac{k\pi}{N}(n+1/2)\right)$$
 $(k = 1, ..., N, n = 0, ..., N-1)$

avec $\lambda_k = 1$ si k < N et $1/\sqrt{2}$ si k = N, est une base orthonormale de \mathbb{R}^N .

Exercice 2

On suppose que $(g_m)_{0 \leq m < N}$ est une base orthonormée de \mathbb{R}^N et qu'on dispose d'un algorithme rapide pour calculer la décomposition dans cette base de tout signal fini $x[n], 0 \le n < N$. On désigne par C(N) le temps de calcul de cet algorithme et on suppose que $C(N) \ll N^2$.

- 1. À partir de $(g_m)_{0 \le m \le N}$, déterminer une base orthonormée de $\mathbb{R}^{N \times N}$ et un algorithme rapide calculant la décomposition d'un signal sur cette base. Exprimer la complexité de cet algorithme en fonction
- 2. Donner un exemple qui rentre dans ce cadre, que vous avez vu en cours.

Exercice 3 : choix de la base du codage par transformée

On code un signal X en le décomposant sur une base orthonormale $(g_n)_{1 \le n \le N}$:

$$X = \sum_{n} \langle X, g_n \rangle g_n$$

 $X=\sum_n\langle X,g_n\rangle g_n$ On pose $A_n=\langle X,g_n\rangle$ et on quantifie puis on encode chaque $A_n.$

Dans cet exercice, on s'intéresse à la façon de choisir les g_n

1. En utilisant les résultats du cours, montrer que pour minimiser le nombre de bits nécessaires pour le codage à taux de distorsion fixée, il faut minimiser l'entropie différentielle moyenne :

$$\overline{H}_d = \frac{1}{N} \left(H_d(A_1) + \dots + H_d(A_N) \right)$$

- 2. On étudie le cas des processus gaussiens : on suppose que $X = (X_1, ..., X_N)$ est un vecteur gaussien de moyenne nulle dont on note K la matrice de covariance.
- a) On admet que l'entropie différentielle d'une variable aléatoire gaussienne centrée de variance 1 est $\log_2 \sqrt{2\pi e}$. Calculer l'entropie d'une variable aléatoire gaussienne de variance σ^2 .
- b) Pour tout n, on note σ_n^2 la variance de A_n . Exprimer \overline{H}_d en fonction des σ_n .
- c) Montrer que $(g_n)_{n\leq N}$ minimise l'entropie différentielle moyenne si et seulement si c'est une base de vecteurs propres de K.

[Indication : Vérifier que $\sigma_n^2 = \langle g_n, Kg_n \rangle$ puis utiliser la question 3.]

3. Montrer que si ϕ est une fonction strictement concave et si $(g_n)_{1 \leq n \leq N}$ est une base orthonormale de \mathbb{R}^N , alors $\sum_{n\leq N}\phi(\langle g_n,Kg_n\rangle)$ est minimale si et seulement si les (g_n) forment une base de vecteurs propres de K.

Exercice 4 : quantification non-linéaire

Soit X une variable aléatoire réelle de densité p(x).

Soit $(y_k)_{0 \le k \le K}$ une subdivision non-uniforme de $]-\infty;+\infty[$, avec $y_0=-\infty$ et $y_K=+\infty.$ Soit Q le quantificateur associé, avec :

$$Q_{|[y_{k-1},y_k[} = \frac{y_{k-1} + y_k}{2} \stackrel{\text{def}}{=} a_k \qquad (\forall k = 2, ..., K-1)$$

Soit $(\tilde{y}_k)_{0 \le k \le K}$ une subdivision uniforme : $\tilde{y}_0 = -\infty, \tilde{y}_K = +\infty$ et

$$\tilde{y}_2 - \tilde{y}_1 = \tilde{y}_3 - \tilde{y}_2 = \dots = \tilde{y}_{K-1} - \tilde{y}_{K-2}$$

Soit \tilde{Q} le quantificateur associé à cette subdivision, avec $\tilde{Q}_{|[\tilde{y}_{k-1},\tilde{y}_k[} = \frac{\tilde{y}_{k-1}+\tilde{y}_k}{2} \stackrel{\text{def}}{=} \tilde{a}_k$ pour tout k = 2, ..., K-1.

On suppose que Q et \tilde{Q} sont des quantificateurs haute résolution.

- 1. Montrer que l'on peut définir Q par une formule du type $Q = G^{-1} \circ \tilde{Q} \circ G$, avec G croissante et affine par morceaux sur chaque $[y_{k-1}; y_k]$. Calculer $G'(a_k)$ pour $2 \le k \le K 1$.
- 2. Calculer la distorsion $D = E(|X Q(X)|^2)$, en fonction de $\tilde{y}_1, \tilde{y}_{K-1}, K$, des $G'(a_k)$ et $p(a_k)$.
- 3. Donner une expression intégrale approchée de D pour K grand.
- 4. a) Calculer la distorsion minimale, pour le meilleur choix de G possible.

[Indication : utiliser l'inégalité de Hölder.]

b) Comparer avec la distorsion de \tilde{Q} .

Exercice 5

Soit X une variable aléatoire de loi p(x).

1. On considère le quantificateur Q non-uniforme sur K niveaux qui produit la distorsion minimale. On admettra ici que, dans l'approximation haute résolution, la distorsion associée est :

$$D \sim \frac{1}{12K^2} \left(\int p(x)^{1/3} dx \right)^3$$

[La démonstration fait l'objet de l'exercice précédent.]

a) On suppose que X est gaussienne, centrée, de variance σ^2 , et qu'on a $K=2^R$ (et on code chaque valeur quantifiée de X sur R bits). Montrer que la distorsion du quantificateur Q est à peu près :

$$D \sim C\sigma^2 2^{-2R}$$

où C est une constante qu'on calculera.

- b) Montrer que, pour ce choix de quantification, on ne peut pas obtenir un codage de longueur moyenne significativement meilleure que R bits.
- c) Comparer cette approche avec un quantificateur uniforme suivi d'un codage entropique (c'est-à-dire pour lequel le nombre de bits moyen est égal à l'entropie).
- 2. On code maintenant un vecteur aléatoire (A[1], ..., A[N]) gaussien. On note σ_i^2 la variance de A[i]. On quantifie chaque coordonnée A[i] séparément et on envoie le code de chaque composante quantifiée. Pour chaque i, on note R_i le nombre moyen de bits nécessaire pour le codage, après quantification.
- a) On suppose que le nombre moyen de bits $\overline{R} = (R_1 + ... + R_N)/N$ est fixé. Trouver la répartition qui minimise la distorsion globale $D = D_1 + ... + D_N$.
- b) Comparer au cas où le nombre de bits est constant : $R_1 = ... = R_N$.