

Joint Discovery of Object States and Manipulation Actions

PSL 😥 Jean-Baptiste Alayrac[†], Josef Sivic^{†*}, Ivan Laptev[†], Simon Lacoste-Julien[‡] **†**INRIA/ENS, PSL, Paris *CIIRC, CTU in Prague **Goal and overview** Approach The problem: Relate manipulation actions and object states Y: state identification and discover them automatically from videos. • A set of **clips** containing the same **action**. Input: • An object detector for the class of interest. Precise temporal localization of the action. Z: action assignment • Spatial and temporal localization of states. \longrightarrow Action \longrightarrow State 2 State 1 -Model Action cost f(Z) + g(Y) + $\underset{Y \in \{0,1\}}{\text{minimize}}_{M \times 2}$ $Z \in \{0,1\}^T$ $Z \in \mathcal{Z}$ s.t. and saliency of action Action localization action cup
<mpty
</pre> pouring [Tx1] matrix

- **Output:**

Challenges:

- No temporal labels for object states and actions.
- Variability in appearance and motion.

Contributions:

- i. A joint model for object states discovery and actions localization.
- ii. An effective non-convex optimization algorithm for learning the model.
- iii. Promising results on a challenging dataset of instructional videos.

Dataset action/states

- **7** actions, ~**20-30s** per video,
- Time annotation for actions,
- Track level annotation for states with labels:

state 1 | state 2 | false positive | ambiguous

• Video extracted from YouTube, Instruction videos [2] and Charades [3].

Objects	Actions (#clips)	States	#Tracklets
wheel	{ remove (47), put (46)}	{attached, detached}	5447
coffee cup	${fill (57)}$	<i>{full, empty}</i>	1819
flower pot	$\{$ put plant (27) $\}$	{ <i>full, empty</i> }	2463
fridge	{ open (234), close (191)}	{open, closed}	7968
oyster	{ open (28)}	{open, closed}	1802

State cost function [1]:

Action cost function [1]:

State constraints \mathcal{V} :

Joint cost:

Relaxation:

Joint cost bilinear relaxation:

Action should be in between initial and final state.

• At least one constraint.

 $\min_{W_s \in \mathbb{R}^{d_s \times 2}}$

 $W_n \in \mathbb{R}^{d_n}$

states [Mx2] matrix

 $d(Z_n, Y_n) = \sum [t_y - t_{Z_n}]_+ + \sum [t_{Z_n} - t_y]_+,$

Optimization

klets

- Optimization using Frank-Wolfe [4],
- Use **DP** as the linear oracle to handle the constraints,
- Rounding with various techniques.

‡ MILA / DIRO, Université de Montréal

CZECH TECHNICAL UNIVERSITY IN PRAGUE

put	remove	fill	open	fill	open	close	Average	
wheel	wheel	pot	oyster	coff.cup	fridge	fridge	Average	
0.10	0.11	0.10	0.07	0.06	0.10	0.10	0.09	
0.25	0.12	0.11	0.23	0.14	0.19	0.22	0.18	
0.35	0.38	0.35	0.36	0.31	0.29	0.42	0.35	
0.35	0.48	0.35	0.38	0.30	0.40	0.37	0.38	
0.43	0.55	0.46	0.52	0.29	0.43	0.39	0.44	
0.52	0.59	0.50	0.45	0.39	0.47	0.47	0.48	
0.47	0.65	0.50	0.61	0.44	0.46	0.43	0.51	
0.55	0.56	0.56	0.52	0.46	0.45	0.49	0.51	
0.31	0.20	0.15	0.11	0.40	0.23	0.17	0.22	
0.24	0.13	0.11	0.14	0.26	0.29	0.23	0.20	
0.24	0.13	0.26	0.07	0.84	0.33	0.37	0.32	
0.67	0.57	0.48	0.32	0.82	0.57	0.44	0.55	
0.72	0.66	0.44	0.46	0.86	0.55	0.44	0.59	

	Method	put wheel	remove wheel	fill pot	open oyster	fill coff.cup	Ave.
State disc.	(c) Cstrs onlyState + det. sc.(g) Joint	0.23 0.33 0.38	0.34 0.48 0.53	0.25 0.28 0.25	0.29 0.40 0.43	0.11 0.13 0.20	0.24 0.32 0.36
	(g) Curated	0.63	0.68	0.63	0.63	0.53	0.62
ction local.	(i) Chance (iii) Action (iv) Joint	0.14 0.05 0.30	0.10 0.10 0.30	0.06 0.00 0.20	0.10 0.15 0.20	0.15 0.25 0.20	0.11 0.11 0.24
	(iv) Curated	0.53	0.35	0.32	0.40	0.59	0.44

our project webpage for code/data!