Reconnaissance d’'objets et vision artificielle 2020

Learning visual representations
for robotics

lvan Laptev, INRIA



Announcements

* Final Project Presentations

— When: Jan 14 (Thrs): 10:30-16:00
Jan 15 (Fri): 10:30-16:00

— Where: if possible: Inria Paris research center, 2 Rue Simone IFF,
75012, Paris. Otherwise: online.

— Schedule: To be announced on the course web-page

 Final Projects:
— 110 FP proposals received
— Google Cloud credits 50%$ (+50% on request)

* Internship topics:
— Next lecture
— Will appear on the calss web-page
— Apply be emailing ivan.laptev@inria.fr attach CV + reference letters



This course so far...

Imaae classification Object detection Human pose estimation
2 | ?//':'5’ o = ‘

TTTTRTTRTe

Reconstructing hands and objects Learning tasks from instructional videos
Pa g o m\‘.; I ‘.'_’".- ‘: 4 ‘-7/

, »h “\‘\
- __Donkt jak »‘ygur car without
the :




This course so far...

Imaae classmcatlon Object detection Human pose estimation
\ J} = k

How do we know any of thls 1S useful’?

. | we \-u-'-vu"

ié‘r 7 s { E _7 > 1 "_‘\.A

> ““
m———

Reconstructing hands and objects Learning tasks from instructional videos

, »h “\‘\
- __Donkt jak »‘ygur car without
the :




This course so far...

Imaae classmcatlon Object detection Human pose estimation

Reconstructing hands and objects Learning tasks from instructional videos

[ \\
‘y@ur ar without
the !




Example: Learning skills from videos

SFV: Reinforcement Learning of
Physical Skills from Videos (with audio)
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R
Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik,
Pieter Abbeel, Sergey Levine
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UC Berkeley Nt/

Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Example: Learning skills from videos
Overview

Video Poses

\ Pose N\ Motion
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(RL)

Our framework consists of three components.

Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Example: Learning skills from videos
Overview

Video Poses

g: L“ } -

Given a video clip, the pose estimation stage
predicts the pose of the actor in each frame.

Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Example: Learning skills from videos

Overview
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The poses are processed by the motion reconstruction
stage to produce a higher-fidelity reference motion.

Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Example: Learning skills from videos

Overview
i Refere?ce Motion i
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In the motion imitation stage, a policy is trained with
reinforcement learning to imitate the reference motion.

Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Example: Learning skills from videos

Overview

Character Reference Motion Task: Hit Target

Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Example: Learning skills from videos

Reference Motion
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Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Example: Learning skills from videos

State + Action

State: Action:

* link positions * PD targets

* link velocities

Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Example: Learning skills from videos

Reward

re=wr; + a)Grf

/—

Imitation Objective

Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Example: Learning skills from videos

Reward
ry = a)Irl{ + a)Grf
Imitation Objective Task Objective

Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Example: Learning skills from videos

Motion Imitation via RL

Reference Motion Policy

and trained with RL to imitate the reference motion.

Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S. SFV: Reinforcement learning of physical skills from videos. ACM TOG 2019



Robotics more generally...



Structured

Factory Robots:
- Specialized, Task specific
- Very constrained factory

environment where everything
is predefined

> Unstructured

Collaborative Robots:

- Open environment with varying
conditions

- Needs to be generalist, handle
multiple tasks, collaborate with
people



Structured > Unstructured

Perception

- Perception is a key element for a robot to work in an open
world. One of the main component of Perception is Vision.

- Need for a robot with a good visual representation of its
environment.

How to learn actions given raw sensory input?



Perception-Action cycle

How to obtain ?Tg(a,t‘{)t) ?

Strategy 1. State-based
- estimate St from O¢

- use Newtonian physics and explicit
3D geometry to derive (¢t

St state
Ot observation

At action
T policy

estimating S; from o4 may be very hard



Perception-Action cycle

St
environment

How to obtain ?Tg(a,t‘{)t) ?

Strategy 1. State-based
- estimate St from O¢

- use Newtonian physics and explicit
3D geometry to derive (¢t

St state
Ot observation

At action
T policy

Strategy 2. sensor-based
- learn ’ﬂ'g({lt‘{)t) from the data




Imitation Learning
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Imitation Learning

NAIPIR, WY EY T AT b gt

mo(az|oy) .
S; — state
0; — observation mo(as|oy) — policy
a; — action mo(ay|s;) — policy (fully observed)

Markov property
independent of s;_4

Slide credit: S. Levine



Imitation Learning

Recorded
steering
wheel angle

Adjust for shift Desired steering command

and rotation
- N Network
Left camera computed
- - steering
( ) — : command
Center camera ———» Random sfh'ﬂ m— CNN
L ) and rotation
—»
Right camera }— f
Back propagation -
weight adjustment

@ Collect a set of training data D = {(o7, a")}i=1..n where
actions are performed by an expert agent.

@ Train a model my to minimize
L(mg) = I(mo(07 ). a7 )

where [ is any loss function.
For example : L(my) = ||7g(0}) — aF||3



Imitation Learning

pones Demonstration by experts

T = (Yo, Yo, - W 1] D) D = [rdemo)N Record Depth Images Dy from Multiple Viewpoints.

. - " - v; linear velocity R*
§14l & g & U D b bt | J w, angular velocity R?
J | emdaillNad || | g, gripper velocity R
0y = (Dg-—2. Df—l.Dc) nﬂ(aflof)

Input of the network






Imitation Learning: Limitations

Only optimize a local problem, a state-action
distribution only describes the short term behavior.
=» lead to mismatch with long-term behavior.

— training trajectory
— g expected trajectory



Imitation Learning: DAgger

Execute 7, ;and query expert New data
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Supervised learning

In each iteration, DAgger generates new examples using the current policy
with corrections provided by the then adds the new demonstrations to

the dataset and optimize over it. Expert may have access to the
simulator state during training



Learning vision-guided robotic manipulation

[Robin Strudel Alexander Pashevich, Igor Kalevatykh, Ivan Laptev, Cordelia Schmid, 2019]



Learning Implicit Representations

- Sample efficient approach: Combine Imitation Learning and Reinforcement Learning
- Policy transfer: Train in simulation, deploy on a real robot

Sim2Real Policy

Learning to combine
Transfer

primitive skills

[1] Learning to combine primitive skills: A step towards versatile robotic manipulation, Robin Strudel*, Alexander Pashevich*, Igor Kalevatykh, lvan Laptev,
Josef Sivic, Cordelia Schmid, 2019. Under review.

[2] Learning to Augment Synthetic Images for Sim2Real Policy Transfer, Alexander Pashevich*, Robin Strudel*, Igor Kalevatykh, lvan Laptev, Cordelia
Schmid. IROS 2019.



Learning Implicit Representations

- Sample efficient approach: Combine Imitation Learning and Reinforcement Learning
- Policy transfer: Train in simulation, deploy on a real robot

Sim2Real Policy

Learning to combine
Transfer

primitive skills

[1] Learning to combine primitive skills: A step towards versatile robotic manipulation, Robin Strudel*, Alexander Pashevich*, Igor Kalevatykh, Ivan Laptev,
Josef Sivic, Cordelia Schmid, 2019. Under review.

[2] Learning to Augment Synthetic Images for Sim2Real Policy Transfer, Alexander Pashevich*, Robin Strudel*, Igor Kalevatykh, lvan Laptev, Cordelia
Schmid. IROS 2019.



Motivation

Imitation learning (IL)
+ IS good at solving short tasks
requires a lot of demonstrations
can not go beyond demonstrations

Reinforcement learning (RL)
can solve novel problems using only the reward function
requires task-specific reward engineering
Is sample inefficient

Our approach: RL selecting skills learnt with BC (RLBC)



Motivation

- Sample inefficient — shorten the horizon of the RL by using discrete actions
- Reward shaping is difficult — use a single sparse reward for RL

Learn a vocabulary of BC skills ?ri

Input depth frames

Skill 1-hot encoding [ 1 ]

Ot ]si ..z

Output actions

FC(n)

Skill policy 1

FC(n)

Skill policy K

Master polic

Train a master policy ™m combining skills with RL
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Skills trained with Behavioral Cloning

Task: UR5 - Bowl

go to the cube godown and grasp lift the cube go to the bow

Task: UR5 - Breakfast

go tothe cup release an object







Robustness to perturbations

1.0 1.0
— RLBC — RLBC
—— BC-ordered —— BC-ordered
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Amount of position changes Amount of occlusions



How to get a good sim2real transfer?



Learning Implicit Representations

- Sample efficient approach: Combine Imitation Learning and Reinforcement Learning
- Policy transfer: Train in simulation, deploy on a real robot

Sim2Real Policy

Learning to combine
Transfer

primitive skills

[1] Learning to combine primitive skills: A step towards versatile robotic manipulation, Robin Strudel*, Alexander Pashevich*, Igor Kalevatykh, lvan Laptev,
Josef Sivic, Cordelia Schmid, 2019. Under review.

[2] Learning to Augment Synthetic Images for Sim2Real Policy Transfer, Alexander Pashevich*, Robin Strudel*, Igor Kalevatykh, lvan Laptev, Cordelia
Schmid. IROS 2019.



How to obtain training data?

- Physics simulators &
realistic computer graphics

+ Fast and scalable: Can generate millions of images
+ Full-state knowledge: Can use standard planning tools to generate demonstrations



How to obtain training data?

- Physics simulators &
realistic computer graphics

+ Fast and scalable: Can generate millions of images
+ Full-state knowledge: Can use standard planning tools to generate demonstrations
- Domain gap: trained policies do not transfer well to the real world

Synthetic Real Synthetic Real
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RGB Depth



How to obtain training data?

- Physics simulators &
realistic computer graphics

+ Fast and scalable: Can generate millions of images
+ Full-state knowledge: Can use standard planning tools to generate demonstrations
- Domain gap: trained policies do not transfer well to the real world
This work

Synthetic Real Synthetic Real

e

RGB Depth




How to handle domain gap?

- Domain adaptation

Bousmalis et al., Using simulation and
domain adaptation to improve efficiency of
deep robotic grasping. ICRA 2018

- Domain randomization

Tobin et al., Domain Randomization for
Transferring Deep Neural Networks from
Simulation to the Real World, IROS 2017

Wl

(b) Synthetic Images

() Syntheticimages Adapted with our Approach

(c) Real Images

Cubuk et al., AutoAugment: Learning Augmentation
Policies from Data, CVPR 2019

Original Sub-policy 2

Batch 1 . :
T =
- N B

Ba‘Ch 2 - w = |

Equalize, 0.4, 4
Rotate, 0.8, &

Sub-policy 1 Sub-policy 3 Sub-policy 4

Rotate, 0.2, 3
Solarize, 0.6, 8

Solanize, 0.6, 3
Equalize, 0.6, 7

Posterize, 0.8, 5
Equalize, 1.0, 2



How to handle domain gap?

- Domain adaptation

Bousmalis et al., Using simulation and
domain adaptation to improve efficiency of
deep robotic grasping. ICRA 2018

(b) Synthetic Images

() Syntheticimages Adapted with our Approach

(c) Real Images

This work

- Domain randomization

Tobin et al., Domain Randomization for
Transferring Deep Neural Networks from
Simulation to the Real World, IROS 2017

Wl

Cubuk et al., AutoAugment: Learning Augmentation
Policies from Data, CVPR 2019

Original

-
Equalize, 0.4, 4 Solanze, 0.6, 3

Rotate, 0.8, 8 Equalize, 06,7

Sub-policy 1

Sub-policy 2

Sub-policy 3 Sub-policy 4

el y ‘L‘ -
Rotate, 0.2, 3
Solarize, 0.6, 8

Posterize, 0.8, 5
Equalize, 1.0, 2




What randomization?

Previous work: manual selection of random transformations

: i s :
. i. Lightning ‘ ‘ ﬁ

- Our contributions: Optimize the sequence of random transformations
for manipulation tasks

1) Cutout 2) EraseQObject 3) WhiteNoise

L IR AIR




What randomization?

Previous work: manual selection of random transformations

: i s :
. i. Lightning . ‘ ﬁ

- Our contributions: Optimize the sequence of random transformations

for manipulation tasks

Q: How to choose
suitable
augmentations?

1) Cutout 2) EraseQObject 3) WhiteNoise

LR IR/



What randomization?

- Previous work: manual selection of random transformations

: i s :
. i. Lightning ‘ ‘ ﬁ

- Our contributions: Optimize the sequence of random transformations
for manipulation tasks

Q: How to choose

1) Cutout 2) EfﬂSEUbjECt 3) WhiteNoise SUltabIe

augmentations?
- : —
Sim2Real
" —
n " Score
& ]



Augmentation function space

Augmentation function is a sequence of N primitive transformations. We consider 11 primitive
transformations, for each of them we select magnitude and probability.

Examples of primitive transformations:

original image affine gaussian noise edge noise bernoulli noise



Augmentation function space

Augmentation function is a sequence of N primitive transformations. We consider 11 primitive
transformations, for each of them we select magnitude and probability.

Examples of primitive transformations:

original image affine gaussian noise edge noise bernoulli noise

For N=8, there are ~10'4 possible augmentation functions.



Cube position regression as a proxy task

Learning augmentation function
(task independent)

training

_1

MCTS + Cube
position regression

.

validation

real data '

1. Training network to in simulation to regress
cube position (ResNet-18, 20000 depth
Images + cube position);

2. Evaluate network on real images (200
validation images, predict cube position);

3. Use prediction error to find optimal

sequence of augmentations with Monte-
Carlo Tree Search*,

* Rémi Coulom, Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. ICCG 2006



Example of a learned augmentation function

1) Cutout 2) EraseObject 3) WhiteNoise 4) EdgeNoise
(3, 66%) (‘table’, 33%) (0.04, 100%) (2, 33%)

Original sim

5) Scale 6) SaltNoise 7) Posterize 8) Sharpness
([0.97,1.03], 66%) (0.03, 66%) (5, 66%) ([1.5, 2], 33%)




Method pipeline

Learning augmentation function

Training control policies Running control policies

(task independent) (no real data) (real world)
g. . l Sim2Real LA Sim2Real

sim data

MCTS + Cube
= position regression

validation

real data

[—

control
policy

laugmentation

function

BC policy learning
on augmented images

1. Collect demonstrations in simulation
2. Augment demonstrations with learned function
3. Train policy on augmented data



Quantitative results: Proxy task

Augmentation Error in sim Error in real

i None 0.63 £ 0.50 6.52 = 5.04
11 Random (8 operations) 6.56 == 4.05 5.77 &= 3.12
iii Handcrafted (4 operations) 0.99 + 0.68 2.35 + 1.36
iv Learned (1 operation) 1.19 + 0.87 1.86 + 2.45
v Learned (4 operations) 1.21 £0.78 1.17 £ 0.71
vi Learned (8 operations) 1.31 £ 0.90 1.09 £ 0.73

Cube position regression

Cube prediction error (in cm) on synthetic and real depth
iImages using different types of depth data augmentation.



Quantitative results: Control tasks

Augmentation Pick  Stack Cup Placing
None 3/20 1720 0/20
Handcrafted (4 operations)  9/20  2/20 6/20
Learned (1 operation) 8/20 1720 1/20
Learned (8 operations) 19/20 18/20 15/20

Success rates for control policies executed
on a real robot (20 trials per experiment).

Cube picking Cubes stacking Cup placing



Learning to build 3D categories

[Alexander Pashevich, Igor Kalevatykh, Ivan Laptev and Cordelia Schmid IROS 2020]



Actions change the state of the world

before




Actions change the state of the world

after




Actions change the state of the world

before after




Actions change the state of the world




What actions are needed to change the world?




What actions are needed to change the world?

We do not have an answer, but:

® We want to deal with diverse and complex scenes
® Assumption of a known state is unrealistic
® Vision and learning are likely to be key ingredients in the solution



Recent work on learning, vision and robotics

P. Agrawal et al. Learning to E L. Pinto and A. Gupta.

Poke by Poking: Experiential 2| Supersizing Self-supervision:
Learning of Intuitive Physics. ez P Learning to Grasp from 50K
“ o= Tries and 700 Robot Hours.

NIPS 2016
< ICRA 2016.

D. Gandhi et al.,
Learning to Fly by
Crashing.

ICRA 2017

P. Sermanet et al., Time-
Constrastive Networks: Self-
Supervised Learning from
Multi-View Observation ICRA
2018

Great, but:

® Most work is looking at learning primitive actions
® \We want to learn the TUll task



This work: Learning to build a 3D category




This work: Learning to build a 3D category

... let’s start simpler

Given:
- 3D instance “

- Category classifier

&g
>

before after






Method overview

State space § Observation space (0

Unmake 1. Learn Value 1. Render states Learn CNN
Function V/ 2. Generate action policy mwith BC

.. \&'1 2. Generate new a; . heatmaps and Sim2Real
“ _ object instances /‘
A Sn—1 h ﬁ —

NS == I .’* A
Input . ?)az-g » » HourGIass

Pick

A

. CNN
object i state-action °
instance Sp—2 pairs (s;, a;) for !—E h Object category
. . building objects built by real
. robot

® Discover action plans in state space
® Learn visual policies in the observation space



State space: Make by unmaking

Goals:
State space S

- Find new instances
- Generate state-action pairs 1. Learn Value
Function V
2. Generate new a; ‘
. . object instances
1. Disassemble a given “ -
Instance N times; S S
2. Learn a value function NN Input »
) ) object state-action
from N disassemblies; instance pairs (s;, a:) for
3. Use the value function to : : building objects

generate new instances.



State space: Unmake

—1

V:§—R V(Si):’yn
v v
ll::lL

Bow
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Value: 1 Y Y? Y3 v?



State space: Unmake

V:S§—R V(Sz) = N

®
AR

Unmake

Y Y2 y3

>



State space: Unmake

®

N

L]
=
unmake make
-—> - =+_ ) =+_ -->
8 B

=
.\.

=

Learn a value function NN from N
disassemblies: Generate state-actions pairs

i = arg min MSE(V,,(s;), V(SZ))
n



Learning in observation space

Goal:
- Learn visual policy

Observation space O

1. Render states Learn CNN
1. Render observations 2. Generate action policy 7 with BC
. a; heatmaps and Sim2Real
from states; /’.

Pick

2. Generate heatmaps o . \‘B b K
from actions; e - . - ; ﬁ q
Al b » W £

3. Train a hourglass CNN .
state-action
with Behaviour Cloning  pairs (s;, a;) for . Object category
built by real
robot

\ .h
. i i :
and sim2real [1]. uilding objects

Place

[1] A. Pashevich, R. Strudel, I. Kalevatykh, |. Laptev, and C. Schmid, “Learning to augment synthetic images for sim2real policy transfer,” IROS 2019.



Building arches with blocks
Height: 3U



Building arches with new primitives
(unseen during training)



Learning Obstacle Representations
for Neural Motion Planning

Robin Strudel Ricardo Garcia Justin Carpentier  Jean-Paul Laumond

Ilvan Laptev Cordelia Schmid
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« Berkeley Deep RL Course CS 294 by Sergey Levine:
http://rail.eecs.berkeley.edu/deeprilcourse-fal7/

« An Algorithmic Perspective on Imitation Learning, 2018
T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel,

Y. Peters.

 Allesandro Lazaric RL Course:
http://chercheurs.lille.inria.fr/~lazaric/
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How to give a talk and write a paper

Slides by Bill Freeman, MIT:

http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf
http://billf.mit.edu/sites/default/files/documents/cvprPapers.pdf

Lecture notes by Bill Freeman, MIT:

http://www.di.ens.fr/willow/teaching/recvis12/slides/slideNotes23TalksPapers.pdf

Other sources:

http://www.cs.berkeley.edu/~messer/Bad talk.html
http://www-psych.stanford.edu/~lera/talk.html



http://www.cs.berkeley.edu/~messer/Bad_talk.html
http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf
http://billf.mit.edu/sites/default/files/documents/cvprPapers.pdf
http://www.di.ens.fr/willow/teaching/recvis12/slides/slideNotes23TalksPapers.pdf
http://www.cs.berkeley.edu/~messer/Bad_talk.html
http://www-psych.stanford.edu/~lera/talk.html

No free lunch

The more you work on a talk, the better it
gets: if you work on it for 3 hours, the talk
you give will be better than if you had only
worked on it for 2 hours. If you work on it
for 5 hours, it will be better still. 7 hours,
better yet...

Slides by A. Torralba



All talks are important

There are no unimportant talks.
There are no big or small audiences.

Prepare each talk with the same enthusiasm.

Slides by A. Torralba



How to give a talk

Delivering:

Look at the audience! Try not to talk to your laptop or
to the screen. Instead, look at the other humans in
the room.

You have to believe in what you present, be confident...
even if it only lasts for the time of your presentation.

Do not be afraid to acknowledge limitations of
whatever you are presenting. Limitations are good.
They leave job for the people to come. Trying to hide
the problems in your work will make the preparation
of the talk a lot harder and your self confidence will
be hurt.

Slides by A. Torralba



The different kinds of talks you’ll have to give as
a researcher

e 2-5 minute talks
e 20 -30 minute conference presentations
* 30-60 minute colloquia

Slides by A. Torralba



Very short talks

« Rehearse it.

« (ut things out that aren’t essential. You can refer to them
at a high level.

* You might focus on answering just a few questions, eg:
what 1s the problem? Why is it interesting? Why is it
hard?

« Typically these talks are just little advertisements for a
poster or for some other (longer) talk. So you just need to

show people that the problem is interesting and that you’re
fun to talk with.

* These talks can convey important info--note popularity of
SIGGRAPH fast forward session.

http://groups.csail.mit.edu/vision/courses/6.869/lectures/lecture23TalksAndPapers.pdf
Slides by W. Freeman



http://www.cs.berkeley.edu/~messer/Bad_talk.html

In your talk try answering the
following questions

nat problem did you address?
ny is it interesting?
ny is it hard?

=S ===

nat was the key to your approach?
* How well did it work?

http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf

Slides by W. Freeman


http://www.cs.berkeley.edu/~messer/Bad_talk.html

See more at:

Writing papers and giving talks

Bill Freeman
MIT CSAIL
May 2, 2011

http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf



http://www.cs.berkeley.edu/~messer/Bad_talk.html

Sources on writing technical papers

How to Get Your SIGGRAPH Paper Rejected, Jim Kajiya, SIGGRAPH

1993 Papers Chair,
http://www.siggraph.org/publications/instructions/rejected.html

Ted Adelson's Informal guidelines for writing a paper, 1991.
http://www.ai.mit.edu/courses/6.899/papers/ted.htm

Notes on technical writing, Don Knuth, 1989.

http://www.ai.mit.edu/courses/6.899/papers/knuthAll.pdf

What's wrong with these equations, David Mermin, Physics Today,
Oct., 1989. http://www.ai.mit.edu/courses/6.899/papers/mermin.pdf

Ten Simple Rules for Mathematical Writing, Dimitri P. Bertsekas
http://www.mit.edu:8001/people/dimitrib/Ten_Rules.html

Slides by A. Torralba



