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Announcements

• Final Project Presentations

– When: Jan 14 (Thrs): 10:30-16:00

Jan 15 (Fri): 10:30-16:00

– Where: if possible: Inria Paris research center, 2 Rue Simone IFF, 

75012, Paris. Otherwise: online.

– Schedule: To be announced on the course web-page

• Final Projects:

– 110 FP proposals received

– Google Cloud credits 50$ (+50$ on request) 

• Internship topics:

– Next lecture

– Will appear on the calss web-page

– Apply be emailing ivan.laptev@inria.fr attach CV + reference letters
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…

Let’s connect it to applications
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Robotics more generally…



Factory Robots:

➔ Specialized, Task specific

➔ Very constrained factory 

environment where everything 

is predefined

Structured

Collaborative Robots:

➔ Open environment with varying 

conditions

➔ Needs to be generalist, handle 

multiple tasks, collaborate with 

people

Unstructured



Structured Unstructured

Perception

➔ Perception is a key element for a robot to work in an open 

world. One of the main component of Perception is Vision.

➔ Need for a robot with a good visual representation of its 

environment.

How to learn actions given raw sensory input?



Perception-Action cycle

state

observation

action

policy

How to obtain                       ? 

Strategy 1: State-based

- estimate        from 

- use Newtonian physics and explicit

3D geometry to derive

estimating       from       may be very hard



Perception-Action cycle

state

observation

action

policy

How to obtain                       ? 

Strategy 1: State-based

- estimate        from 

- use Newtonian physics and explicit

3D geometry to derive

Strategy 2: sensor-based

- learn                       from the data
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Imitation Learning





Imitation Learning: Limitations

Only optimize a local problem, a state-action 

distribution only describes the short term behavior. 

 lead to mismatch with long-term behavior.



Imitation Learning: DAgger

In each iteration, DAgger generates new examples using the current policy 

with corrections provided by the expert, then adds the new demonstrations to 

the dataset and optimize over it. Expert may have access to the 

simulator state during training 



Learning vision-guided robotic manipulation

[Robin Strudel Alexander Pashevich, Igor Kalevatykh, Ivan Laptev, Cordelia Schmid, 2019]



- Sample efficient approach: Combine Imitation Learning and Reinforcement Learning

- Policy transfer: Train in simulation, deploy on a real robot

Learning Implicit Representations

Learning to combine 

primitive skills

Sim2Real Policy 

Transfer

[1] Learning to combine primitive skills: A step towards versatile robotic manipulation, Robin Strudel*, Alexander Pashevich*, Igor Kalevatykh, Ivan Laptev, 

Josef Sivic, Cordelia Schmid, 2019. Under review.

[2] Learning to Augment Synthetic Images for Sim2Real Policy Transfer, Alexander Pashevich*, Robin Strudel*, Igor Kalevatykh, Ivan Laptev, Cordelia 

Schmid. IROS 2019.
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- Imitation learning (IL)

+ is good at solving short tasks

- requires a lot of demonstrations

- can not go beyond demonstrations

- Reinforcement learning (RL)

- can solve novel problems using only the reward function

- requires task-specific reward engineering

- is sample inefficient

- Our approach: RL selecting skills learnt with BC (RLBC)

Motivation



- Sample inefficient  → shorten the horizon of the RL by using discrete actions

- Reward shaping is difficult  → use a single sparse reward for RL

Motivation

Learn a vocabulary of BC skills Train a master policy       combining skills with RL 



Skills trained with Behavioral Cloning

Task: UR5 - Bowl

Task: UR5 - Breakfast





Robustness to perturbations



How to get a good sim2real transfer?



- Sample efficient approach: Combine Imitation Learning and Reinforcement Learning

- Policy transfer: Train in simulation, deploy on a real robot

Learning Implicit Representations

Learning to combine 

primitive skills

Sim2Real Policy 

Transfer

[1] Learning to combine primitive skills: A step towards versatile robotic manipulation, Robin Strudel*, Alexander Pashevich*, Igor Kalevatykh, Ivan Laptev, 

Josef Sivic, Cordelia Schmid, 2019. Under review.

[2] Learning to Augment Synthetic Images for Sim2Real Policy Transfer, Alexander Pashevich*, Robin Strudel*, Igor Kalevatykh, Ivan Laptev, Cordelia 

Schmid. IROS 2019.
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How to handle domain gap?

- Domain adaptation

- Domain randomization

Tobin et al., Domain Randomization for 

Transferring Deep Neural Networks from 

Simulation to the Real World, IROS 2017

Cubuk et al., AutoAugment: Learning Augmentation 

Policies from Data, CVPR 2019

Bousmalis et al., Using simulation and 

domain adaptation to improve efficiency of 

deep robotic grasping. ICRA 2018
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for manipulation tasks 

Texture Lightning



What randomization?

- Previous work: manual selection of random transformations

- Our contributions: Optimize the sequence of random transformations 

for manipulation tasks 

Texture Lightning

Q: How to choose 

suitable 

augmentations?



What randomization?

- Previous work: manual selection of random transformations

- Our contributions: Optimize the sequence of random transformations 

for manipulation tasks 

Texture Lightning

Q: How to choose 

suitable 

augmentations?

... Sim2Real 

Score



Augmentation function is a sequence of N primitive transformations. We consider 11 primitive 

transformations, for each of them we select magnitude and probability.

Examples of primitive transformations:
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Augmentation function is a sequence of N primitive transformations. We consider 11 primitive 

transformations, for each of them we select magnitude and probability.

Examples of primitive transformations:

For N=8, there are ~1014 possible augmentation functions.

original image affine gaussian noise edge noise bernoulli noise

Augmentation function space



Learning augmentation function

(task independent)

sim data

real data

MCTS + Cube

position regression

validation

training

1. Training network to in simulation to regress 

cube position (ResNet-18, 20000 depth 

images + cube position);

2. Evaluate network on real images (200 

validation images, predict cube position);

3. Use prediction error to find optimal 

sequence of augmentations with Monte-

Carlo Tree Search*.

Cube position regression as a proxy task

* Rémi Coulom, Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. ICCG 2006



Example of a learned augmentation function



1. Collect demonstrations in simulation

2. Augment demonstrations with learned function

3. Train policy on augmented data

Method pipeline



Cube prediction error (in cm) on synthetic and real depth 

images using different types of depth data augmentation.

Quantitative results: Proxy task

Cube position regression



Success rates for control policies executed 

on a real robot (20 trials per experiment).

Quantitative results: Control tasks

Cube picking Cubes stacking Cup placing



Learning to build 3D categories

[Alexander Pashevich, Igor Kalevatykh, Ivan Laptev and Cordelia Schmid IROS 2020]



Actions change the state of the world
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What actions are needed to change the world?

?

?

?
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What actions are needed to change the world?

?

?

?

?

We do not have an answer, but:

• We want to deal with diverse and complex scenes

• Assumption of a known state is unrealistic 

• Vision and learning are likely to be key ingredients in the solution 



Recent work on learning, vision and robotics

Great, but:

• Most work is looking at learning primitive actions 

• We want to learn the full task

P. Agrawal et al. Learning to 

Poke by Poking: Experiential 

Learning of Intuitive Physics. 

NIPS 2016

L. Pinto and A. Gupta. 

Supersizing Self-supervision: 

Learning to Grasp from 50K 

Tries and 700 Robot Hours. 

ICRA 2016.

D. Gandhi et al., 

Learning to Fly by 

Crashing. 

ICRA 2017

P. Sermanet et al., Time-

Constrastive Networks: Self-

Supervised Learning from 

Multi-View Observation ICRA 

2018



This work: Learning to build a 3D category



This work: Learning to build a 3D category

… let’s start simpler

?

before after

Given:

- 3D instance

- Category classifier





Method overview

• Discover action plans in state space

• Learn visual policies in the observation space



1. Disassemble a given 

instance N times;

2. Learn a value function NN 

from N disassemblies;

3. Use the value function to 

generate new instances.

State space: Make by unmaking

Goals: 

- Find new instances

- Generate state-action pairs



State space: Unmake

Value:       1                   𝛄 𝛄2 𝛄3 𝛄4

Unmake
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State space: Unmake

unmake

-->

make

-->

Learn a value function NN from N 

disassemblies: Generate state-actions pairs



1. Render observations 

from states;

2. Generate heatmaps

from actions;

3. Train a hourglass CNN 

with Behaviour Cloning 

and sim2real [1].

[1] A. Pashevich, R. Strudel, I. Kalevatykh, I. Laptev, and C. Schmid, “Learning to augment synthetic images for sim2real policy transfer,” IROS 2019.

Learning in observation space

Goal: 

- Learn visual policy
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How to give a talk and write a paper

Slides by Bill Freeman, MIT:

Lecture notes by Bill Freeman, MIT:

Other sources:

http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf
http://billf.mit.edu/sites/default/files/documents/cvprPapers.pdf

http://www.di.ens.fr/willow/teaching/recvis12/slides/slideNotes23TalksPapers.pdf

http://www.cs.berkeley.edu/~messer/Bad_talk.html
http://www-psych.stanford.edu/~lera/talk.html

http://www.cs.berkeley.edu/~messer/Bad_talk.html
http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf
http://billf.mit.edu/sites/default/files/documents/cvprPapers.pdf
http://www.di.ens.fr/willow/teaching/recvis12/slides/slideNotes23TalksPapers.pdf
http://www.cs.berkeley.edu/~messer/Bad_talk.html
http://www-psych.stanford.edu/~lera/talk.html


No free lunch

The more you work on a talk, the better it 
gets:  if you work on it for 3 hours, the talk 
you give will be better than if you had only 
worked on it for 2 hours.  If you work on it 
for 5 hours, it will be better still.  7 hours, 
better yet…

Slides by A. Torralba



All talks are important

There are no unimportant talks. 

There are no big or small audiences. 

Prepare each talk with the same enthusiasm.

Slides by A. Torralba



How to give a talk

Delivering: 
Look at the audience! Try not to talk to your laptop or 

to the screen. Instead, look at the other humans in 
the room.

You have to believe in what you present, be confident… 
even if it only lasts for the time of your presentation.

Do not be afraid to acknowledge limitations of 
whatever you are presenting. Limitations are good. 
They leave job for the people to come. Trying to hide 
the problems in your work will make the preparation 
of the talk a lot harder and your self confidence will 
be hurt.  

Slides by A. Torralba



The different kinds of talks you’ll have to give as 
a researcher

• 2-5 minute talks

• 20 -30 minute conference presentations

• 30-60 minute colloquia

Slides by A. Torralba



http://groups.csail.mit.edu/vision/courses/6.869/lectures/lecture23TalksAndPapers.pdf

Slides by W. Freeman

http://www.cs.berkeley.edu/~messer/Bad_talk.html


In your talk try answering the 
following questions

• What problem did you address?

• Why is it interesting?

• Why is it hard?

• What was the key to your approach?

• How well did it work?

http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf
Slides by W. Freeman

http://www.cs.berkeley.edu/~messer/Bad_talk.html


See more at:

http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf

http://www.cs.berkeley.edu/~messer/Bad_talk.html


Sources on writing technical papers

• How to Get Your SIGGRAPH Paper Rejected, Jim Kajiya, SIGGRAPH 
1993 Papers Chair, 
http://www.siggraph.org/publications/instructions/rejected.html

• Ted Adelson's Informal guidelines for writing a paper, 1991. 
http://www.ai.mit.edu/courses/6.899/papers/ted.htm

• Notes on technical writing, Don Knuth, 1989. 

• What's wrong with these equations, David Mermin, Physics Today, 
Oct., 1989. http://www.ai.mit.edu/courses/6.899/papers/mermin.pdf

• Ten Simple Rules for Mathematical Writing, Dimitri P. Bertsekas
http://www.mit.edu:8001/people/dimitrib/Ten_Rules.html

http://www.ai.mit.edu/courses/6.899/papers/knuthAll.pdf

Slides by A. Torralba


