Instance-level recognition

Cordelia Schmid
INRIA, Grenoble
Instance-level recognition

Search for particular objects and scenes in large databases
Finding the object despite possibly large changes in scale, viewpoint, lighting and partial occlusion

\[\Rightarrow \text{requires invariant description} \]
Difficulties

• Very large images collection → need for efficient indexing
 – Flickr has 2 billion photographs, more than 1 million added daily
 – Facebook has 15 billion images (~27 million added daily)
 – Large personal collections
 – Video collections, i.e., YouTube
Applications

Search photos on the web for particular places

Find these landmarks

...in these images and 1M more
Applications

- Take a picture of a product or advertisement
 → find relevant information on the web

PRENEZ EN PHOTO L'AFFICHE!

Accédez à la bande annonce, à tous les horaires et à la réservation.

Avec la participation de

UGC

TOUTLECIENE.COM
Applications

• Finding stolen/missing objects in a large collection
Applications

- Copy detection for images and videos
Applications

- Sony Aibo – Robotics
 - Recognize docking station
 - Communicate with visual cards
 - Place recognition
 - Loop closure in SLAM
Instance-level recognition

1) Local invariant features

2) Matching and recognition with local features

3) Efficient visual search

4) Very large scale indexing
1) Local invariant features

- Introduction to local features

- Harris interest points + SSD, ZNCC, SIFT

- Scale & affine invariant interest point detectors
Local features

Many local descriptors per image
Robust to occlusion/clutter + no object segmentation required

Photometric: distinctive
Invariant: to image transformations + illumination changes
Local features

- Interest Points
- Contours/lines
- Region segments
Local features

Interest Points
Patch descriptors, i.e. SIFT

Contours/lines
Mi-points, angles

Region segments
Color/texture histogram
Interest points / invariant regions

Harris detector

Scale/affine inv. detector
Contours / lines

- **Extraction de contours**
 - Zero crossing of Laplacian
 - Local maxima of gradients

- **Chain contour points (hysteresis)**, Canny detector

- **Recent contour detectors**
 - Global probability of boundary \((gPb)\) detector [Malik et al., UC Berkeley, CVPR'08]
 - Structured forests for fast edge detection \((SED)\) [Dollar and Zitnick, ICCV'13]
Regions segments / superpixels

Original image

Ground truth

Simple linear iterative clustering (SLIC)

Normalized cut [Shi & Malik], Mean Shift [Comaniciu & Meer],
Matching of local descriptors

Find corresponding locations in the image
Illustration – Matching

Interest points extracted with Harris detector (~ 500 points)
Interest points matched based on cross-correlation (188 pairs)
Global constraint - Robust estimation of the fundamental matrix

Illustration – Matching

99 inliers

89 outliers
Application: Panorama stitching

Images courtesy of A. Zisserman.
Overview

• Introduction to local features

• **Harris interest points + SSD, ZNCC, SIFT**

• Scale & affine invariant interest point detectors
Harris detector \cite{Harris88}

Based on the idea of auto-correlation

Important difference in all directions => interest point
Harris detector

Auto-correlation function for a point \((x, y)\) and a shift \((\Delta x, \Delta y)\)

\[
A(x, y) = \sum_{(x_k, y_k) \in W(x, y)} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2
\]
Harris detector

Auto-correlation function for a point \((x, y)\) and a shift \((\Delta x, \Delta y)\)

\[
A(x, y) = \sum_{(x_k, y_k) \in W(x, y)} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2
\]

\(W\)

\(A(x, y)\)\(\) small in all directions → uniform region
large in one directions → contour
large in all directions → interest point
Harris detector

Discret shifts are avoided based on the auto-correlation matrix

with first order approximation

\[I(x_k + \Delta x, y_k + \Delta y) = I(x_k, y_k) + (I_x(x_k, y_k) \quad I_y(x_k, y_k)) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \]

\[A(x, y) = \sum_{(x_k, y_k) \in W(x, y)} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2 \]

\[= \sum_{(x_k, y_k) \in W} \left(\begin{pmatrix} I_x(x_k, y_k) \\ I_y(x_k, y_k) \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \right)^2 \]
Harris detector

\[
\begin{pmatrix}
\Delta x \\
\Delta y
\end{pmatrix} = \begin{pmatrix}
\sum_{(x_k, y_k) \in W} (I_x(x_k, y_k))^2 & \sum_{(x_k, y_k) \in W} I_x(x_k, y_k)I_y(x_k, y_k) \\
\sum_{(x_k, y_k) \in W} I_x(x_k, y_k)I_y(x_k, y_k) & \sum_{(x_k, y_k) \in W} (I_y(x_k, y_k))^2
\end{pmatrix} \begin{pmatrix}
\Delta x \\
\Delta y
\end{pmatrix}
\]

Auto-correlation matrix

the sum can be smoothed with a Gaussian

\[
\begin{pmatrix}
\Delta x \\
\Delta y
\end{pmatrix} = (\Delta x \quad \Delta y) \mathcal{G} \otimes \begin{pmatrix}
I_x^2 & I_xI_y \\
I_xI_y & I_y^2
\end{pmatrix} \begin{pmatrix}
\Delta x \\
\Delta y
\end{pmatrix}
\]
Harris detector

- Auto-correlation matrix

\[A(x, y) = G \otimes \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \]

- captures the structure of the local neighborhood
- measure based on eigenvalues of this matrix
 - 2 strong eigenvalues => interest point
 - 1 strong eigenvalue => contour
 - 0 eigenvalue => uniform region
Interpreting the eigenvalues

Classification of image points using eigenvalues of autocorrelation matrix

λ_1 and λ_2 are small;

λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$;

$\lambda_1 >> \lambda_2$;

$\lambda_2 >> \lambda_1$;

“Corner”

“Flat” region

“Edge”
Corner response function

\[R = \text{det}(A) - \alpha \text{trace}(A)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 \]

\[\alpha: \text{constant (0.04 to 0.06)} \]
Harris detector

• Cornerness function

\[R = \det(A) - k(\text{trace}(A))^2 = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2 \]

Reduces the effect of a strong contour

• Interest point detection
 – Treshold (absolut, relativ, number of corners)
 – Local maxima

\[f > \text{thresh} \land \forall x, y \in 8-\text{neighbourhood} \quad f(x, y) \geq f(x', y') \]
Harris Detector: Steps
Harris Detector: Steps

Compute corner response R
Harris Detector: Steps

Find points with large corner response: $R > \text{threshold}$
Harris Detector: Steps

Take only the points of local maxima of R
Harris Detector: Steps
Harris detector: Summary of steps

1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix \(A \) in a Gaussian window around each pixel
3. Compute corner response function \(R \)
4. Threshold \(R \)
5. Find local maxima of response function (non-maximum suppression)
Harris - invariance to transformations

• Geometric transformations
 – translation
 – rotation
 – similitude (rotation + scale change)
 – affine (valide for local planar objects)

• Photometric transformations
 – Affine intensity changes ($l \rightarrow a \cdot l + b$)
Harris Detector: Invariance Properties

- Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation
Harris Detector: Invariance Properties

- Scaling

Corner

All points will be classified as edges

Not invariant to scaling
Harris Detector: Invariance Properties

• Affine intensity change
 ✓ Only derivatives are used \Rightarrow invariance to intensity shift $I \rightarrow I + b$
 ✓ Intensity scale: $I \rightarrow aI$

Partially invariant to affine intensity change, dependent on type of threshold
Comparison of patches - SSD

Comparison of the intensities in the neighborhood of two interest points

SSD : sum of square difference

\[
\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} (I_1(x_1 + i, y_1 + j) - I_2(x_2 + i, y_2 + j))^2
\]

Small difference values \(\rightarrow\) similar patches
Comparison of patches

\[
\text{SSD}: \quad \frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} (I_1(x_1 + i, y_1 + j) - I_2(x_2 + i, y_2 + j))^2
\]

Invariance to photometric transformations?

Intensity changes (I \rightarrow I + b)

\[\Rightarrow \] Normalizing with the mean of each patch

\[
\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} ((I_1(x_1 + i, y_1 + j) - m_1) - (I_2(x_2 + i, y_2 + j) - m_2))^2
\]

Intensity changes (I \rightarrow aI + b)

\[\Rightarrow \] Normalizing with the mean and standard deviation of each patch

\[
\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1 + i, y_1 + j) - m_1}{\sigma_1} - \frac{I_2(x_2 + i, y_2 + j) - m_2}{\sigma_2} \right)^2
\]
Cross-correlation ZNCC

zero normalized SSD

\[
\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1 + i, y_1 + j) - m_1}{\sigma_1} - \frac{I_2(x_2 + i, y_2 + j) - m_2}{\sigma_2} \right)^2
\]

ZNCC: zero normalized cross correlation

\[
\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1 + i, y_1 + j) - m_1}{\sigma_1} \right) \left(\frac{I_2(x_2 + i, y_2 + j) - m_2}{\sigma_2} \right)
\]

ZNCC values between -1 and 1, 1 when identical patches in practice threshold around 0.5
Local descriptors

- Pixel values
- Greyvalue derivatives, differential invariants [Koenderink’87]
- SIFT descriptor [Lowe’99]
- SURF descriptor [Bay et al.’08]
- DAISY descriptor [Tola et al.’08, Windler et al’09]
- LIOP descriptor [Wang et al.’11]
- Recent patch descriptors based on CNN features [Brox et al.’15, Paulin et al.’15,…]
Local descriptors

- Greyvalue derivatives
 - Convolution with Gaussian derivatives

\[v(x, y) = \begin{pmatrix}
 I(x, y) * G(\sigma) \\
 I(x, y) * G_x(\sigma) \\
 I(x, y) * G_y(\sigma) \\
 I(x, y) * G_{xx}(\sigma) \\
 I(x, y) * G_{xy}(\sigma) \\
 I(x, y) * G_{yy}(\sigma) \\
 \vdots
\end{pmatrix} \]

\[I(x, y) * G(\sigma) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x', y', \sigma) I(x - x', y - y') dx' dy' \]

\[G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]
Local descriptors

Notation for greyvalue derivatives [Koenderink'87]

\[\mathbf{v}(x, y) = \begin{pmatrix}
I(x, y) * G(\sigma) \\
I(x, y) * G_x(\sigma) \\
I(x, y) * G_y(\sigma) \\
I(x, y) * G_{xx}(\sigma) \\
I(x, y) * G_{xy}(\sigma) \\
I(x, y) * G_{yy}(\sigma) \\
\vdots \\
\end{pmatrix} = \begin{pmatrix}
L(x, y) \\
L_x(x, y) \\
L_y(x, y) \\
L_{xx}(x, y) \\
L_{xy}(x, y) \\
L_{yy}(x, y) \\
\vdots \\
\end{pmatrix} \]

Invariance?
Local descriptors – rotation invariance

Invariance to image rotation: differential invariants [Koen87]

\[
\begin{align*}
\text{gradient magnitude} & \quad L_x L_x + L_y L_y \\
\text{Laplacian} & \quad L_{xx} L_x + 2L_{xy} L_x L_y + L_{yy} L_{yy} \\
& \quad L_{xx} + L_{yy} \\
& \quad L_{xx} L_{xx} + 2L_{xy} L_{xy} + L_{yy} L_{yy} \\
& \quad \ldots
\end{align*}
\]
Laplacian of Gaussian (LOG)

\[LOG = G_{xx}(\sigma) + G_{yy}(\sigma) \]
SIFT descriptor [Lowe’99]

- Approach
 - 8 orientations of the gradient
 - 4x4 spatial grid
 - Dimension 128
 - soft-assignment to spatial bins
 - normalization of the descriptor to norm one
 - comparison with Euclidean distance
Local descriptors - rotation invariance

- Estimation of the dominant orientation
 - extract gradient orientation
 - histogram over gradient orientation
 - peak in this histogram

- Rotate patch in dominant direction
Local descriptors – illumination change

• Robustness to illumination changes
 in case of an affine transformation \(I_1(x) = aI_2(x) + b \)

• Normalization of the image patch with mean and variance
Invariance to scale changes

- Scale change between two images

- Scale factor s can be eliminated

- Support region for calculation!!
 - In case of a convolution with Gaussian derivatives defined by σ

\[
I(x, y) \ast G(\sigma) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x', y', \sigma) I(x - x', y - y') dx' dy'
\]

\[
G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)
\]
Overview

• Introduction to local features

• Harris interest points + SSD, ZNCC, SIFT

• Scale & affine invariant interest point detectors
Scale invariance - motivation

- Description regions have to be adapted to scale changes

- Interest points have to be repeatable for scale changes
Harris detector + scale changes

Repeatability rate

\[R(\varepsilon) = \frac{\left| \left\{ (a_i, b_i) \mid \text{dist}(H(a_i), b_i) < \varepsilon \right\} \right|}{\max(|a_i|, |b_i|)} \]
Scale adaptation

Scale change between two images

\[I_1 \left(\begin{array}{c} x_1 \\ y_1 \end{array} \right) = I_2 \left(\begin{array}{c} x_2 \\ y_2 \end{array} \right) = I_2 \left(\begin{array}{c} sx_1 \\ sy_1 \end{array} \right) \]

Scale adapted derivative calculation
Scale adaptation

Scale change between two images

\[
I_1 \left(\begin{array}{c} x_1 \\ y_1 \end{array} \right) = I_2 \left(\begin{array}{c} x_2 \\ y_2 \end{array} \right) = I_2 \left(\begin{array}{c} sx_1 \\ sy_1 \end{array} \right)
\]

Scale adapted derivative calculation

\[
I_1 \left(\begin{array}{c} x_1 \\ y_1 \end{array} \right) \otimes G_{i_1...i_n} (\sigma) = s^n I_2 \left(\begin{array}{c} x_2 \\ y_2 \end{array} \right) \otimes G_{i_1...i_n} (s\sigma)
\]
Harris detector – adaptation to scale

![Graph showing repeatability rate vs scale factor with two lines: one for Adapted and one for Standard.]

![Images of images with detection points marked.]

- **Graph:**
 - Y-axis: Repeatability Rate (%)
 - X-axis: Scale Factor
 - Two lines: Adapted (solid red) and Standard (dashed blue)

- **Images:**
 - Top image: Mountain scene with detection points
 - Bottom image: Mountain scene with detection points and a bounding box

The graph illustrates the performance of the Harris detector adapted to scale against the standard version. As the scale factor increases, the repeatability rate decreases for both versions, but the adapted version maintains a higher rate compared to the standard version.
Scale selection

- For a point compute a value (gradient, Laplacian etc.) at several scales
- Normalization of the values with the scale factor
 e.g. Laplacian $|s^2(L_{xx} + L_{yy})|$
- Select scale s^* at the maximum \rightarrow characteristic scale

Exp. results show that the Laplacian gives best results
Scale selection

- Scale invariance of the characteristic scale

![Image of scale selection with a graph showing the norm of the Laplacian against scale, and an arrow pointing to a closer view of the image with a circle highlighting a feature.]

\[\text{norm. Lap.} \]

\[\text{scale} \]
Scale selection

• Scale invariance of the characteristic scale

• Relation between characteristic scales \(s \cdot s_1^* = s_2^* \)
Scale-invariant detectors

- Harris-Laplace (Mikolajczyk & Schmid’01)
- Laplacian detector (Lindeberg’98)
- Difference of Gaussian (SIFT detector, Lowe’99)
Harris-Laplace

- Multi-scale Harris points
- Selection of points at maximum of Laplacian

→ Invariant points + associated regions [Mikolajczyk & Schmid’01]
Matching results

213 / 190 detected interest points
Matching results

58 points are initially matched
Matching results

32 points are matched after verification – all correct
LOG detector

Convolve image with scale-normalized Laplacian at several scales

\[\text{LOG} = s^2 (G_{xx}(\sigma) + G_{yy}(\sigma)) \]

Detection of maxima and minima of Laplacian in scale space
Efficient implementation

- Difference of Gaussian (DOG) approximates the Laplacian: $DOG = G(k\sigma) - G(\sigma)$

- Error due to the approximation
DOG detector

- Fast computation, scale space processed one octave at a time

Affine invariant regions - Motivation

- Scale invariance is not sufficient for large baseline changes

Detected scale invariant region

Projected regions, viewpoint changes can locally be approximated by an affine transformation A
Affine invariant regions - Motivation
Affine invariant regions - Example
Harris/Hessian/Laplacian-Affine

• Initialize with scale-invariant Harris/Hessian/Laplacian points

• Estimation of the affine neighbourhood with the second moment matrix [Lindeberg’94]

• Apply affine neighbourhood estimation to the scale-invariant interest points [Mikolajczyk & Schmid’02, Schaffalitzky & Zisserman’02]

• Excellent results in a comparison [Mikolajczyk et al.’05]
Affine invariant regions

- Based on the second moment matrix (Lindeberg’94)

\[
M = \mu(x, \sigma_I, \sigma_D) = \sigma_D^2 G(\sigma_I) \otimes \begin{bmatrix}
L_x^2(x, \sigma_D) & L_x L_y(x, \sigma_D) \\
L_x L_y(x, \sigma_D) & L_y^2(x, \sigma_D)
\end{bmatrix}
\]

- Normalization with eigenvalues/eigenvectors

\[
x' = \frac{1}{M^2} x
\]
Affine invariant regions

\[x_R = Ax_L \]

\[x_L' = M_{L}^{\frac{1}{2}} x_L \]

\[x_R' = M_{R}^{\frac{1}{2}} x_R \]

Isotropic neighborhoods related by image rotation
Affine invariant regions - Estimation

- Iterative estimation – initial points
Affine invariant regions - Estimation

- Iterative estimation – iteration #1
Affine invariant regions - Estimation

- Iterative estimation – iteration #2
Harris-Affine versus Harris-Laplace

Harris-Affine

Harris-Laplace
Harris/Hessian-Affine

Harris-Affine

Hessian-Affine
Harris-Affine
Hessian-Affine
Matches

22 correct matches
Matches

33 correct matches
Maximally stable extremal regions (MSER) [Matas’02]

- Extremal regions: connected components in a thresholded image (all pixels above/below a threshold)

- Maximally stable: minimal change of the component (area) for a change of the threshold, i.e. region remains stable for a change of threshold

- Excellent results in a recent comparison
Maximally stable extremal regions (MSER)

Examples of thresholded images

high threshold

low threshold
MSER