Face detection and recognition
Face detection & recognition

• Viola & Jones detector
 • Available in open CV

• Face recognition
 • Eigenfaces for face recognition
 • Metric learning identification
Face detection

Many slides adapted from P. Viola
Consumer application: iPhoto 2009

http://www.apple.com/ilife/iphoto/
Challenges of face detection

• Sliding window detector must evaluate tens of thousands of location/scale combinations

• Faces are rare: 0–10 per image
 • For computational efficiency, we should try to spend as little time as possible on the non-face windows
 • A megapixel image has $\sim 10^6$ pixels and a comparable number of candidate face locations
 • To avoid having a false positive in every image image, our false positive rate has to be less than 10^{-6}
The Viola/Jones Face Detector

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast

Key ideas
- *Integral images* for fast feature evaluation
- *Boosting* for feature selection
- *Attentional cascade* for fast rejection of non-face windows

Image Features

“Rectangle filters”

Value =

\[\sum (\text{pixels in white area}) - \sum (\text{pixels in black area}) \]
The integral image computes a value at each pixel \((x,y)\) that is the sum of the pixel values above and to the left of \((x,y)\), inclusive.

This can quickly be computed in one pass through the image.
Computing the integral image
Computing the integral image

Cumulative row sum: \(s(x, y) = s(x-1, y) + i(x, y) \)

Integral image: \(ii(x, y) = ii(x, y-1) + s(x, y) \)
Computing sum within a rectangle

- Let A, B, C, D be the values of the integral image at the corners of a rectangle.

- Then the sum of original image values within the rectangle can be computed as:
 $$\text{sum} = A - B - C + D$$

- Only 3 additions are required for any size of rectangle!
Feature selection

- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
Feature selection

• For a 24x24 detection region, the number of possible rectangle features is \(\sim 160,000 \)!

• At test time, it is impractical to evaluate the entire feature set

• Can we create a good classifier using just a small subset of all possible features?

• How to select such a subset?
Boosting

• Boosting is a classification scheme that works by combining *weak learners* into a more accurate ensemble classifier.

• Training consists of multiple *boosting rounds*
 • During each boosting round, we select a weak learner that does well on examples that were hard for the previous weak learners.
 • “Hardness” is captured by weights attached to training examples.

Training procedure

• Initially, weight each training example equally

• In each boosting round:
 • Find the weak learner that achieves the lowest *weighted* training error
 • Raise the weights of training examples misclassified by current weak learner

• Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
 • Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)
Boosting vs. SVM

• **Advantages of boosting**
 - Integrates classifier training with feature selection
 - Flexibility in the choice of weak learners, boosting scheme
 - Testing is very fast

• **Disadvantages**
 - Needs many training examples
 - Training is slow
 - Often doesn’t work as well as SVM (especially for many-class problems)
Boosting for face detection

• Define weak learners based on rectangle features

\[h_t(x) = \begin{cases}
1 & \text{if } p_t f_t(x) > p_t \theta_t \\
0 & \text{otherwise}
\end{cases} \]
Boosting for face detection

• Define weak learners based on rectangle features

• For each round of boosting:
 • Evaluate each rectangle filter on each example
 • Select best filter/threshold combination based on weighted training error
 • Reweight examples
Boosting for face detection

• First two features selected by boosting:

This feature combination can yield 100% detection rate and 50% false positive rate.
Attentional cascade

- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows.

- Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on.

- A negative outcome at any point leads to the immediate rejection of the sub-window.
Attentional cascade

- Chain classifiers that are progressively more complex and have lower false positive rates:

![Diagram of a three-stage classifier cascade with Receiver Operating Characteristic (ROC) curve on the right. The diagram shows a sequence of classifiers, starting with an image, followed by three stages of classification, leading to a final decision on whether the image contains a face or not. Each stage is represented by a classifier marked with 'T' for 'true' or 'F' for 'false', indicating the decision at each stage. The ROC curve illustrates the trade-off between the true positive rate and the false positive rate, showing how the cascaded classifiers improve the detection of faces.]
Attentional cascade

- The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages.
- A detection rate of 0.9 and a false positive rate on the order of 10^{-6} can be achieved by a 10-stage cascade if each stage has a detection rate of 0.99 ($0.99^{10} \approx 0.9$) and a false positive rate of about 0.30 ($0.3^{10} \approx 6 \times 10^{-6}$).
Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
 - Need to lower AdaBoost threshold to maximize detection (as opposed to minimizing total classification error)
 - Test on a validation set
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage
The implemented system

- **Training Data**
 - 5000 faces
 - All frontal, rescaled to 24x24 pixels
 - 300 million non-faces
 - 9500 non-face images
 - Faces are normalized
 - Scale, translation

- **Many variations**
 - Across individuals
 - Illumination
 - Pose
System performance

- Training time: “weeks” on 466 MHz Sun workstation
- 38 layers, total of 6061 features
- Average of 10 features evaluated per window on test set
- “On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds”
Output of Face Detector on Test Images
Profile Detection
Profile Features
Summary: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows
- Available in open CV
Face detection & recognition

• Viola & Jones detector

• Face recognition
 • Eigenfaces for face recognition
 • Metric learning identification
The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - 100x100 image = 10,000 dimensions
- However, relatively few 10,000-dimensional vectors correspond to valid face images
- We want to effectively model the subspace of face images
The space of all face images

- We want to construct a low-dimensional linear subspace that best explains the variation in the set of face images.
Principal Component Analysis

• Given: N data points $\mathbf{x}_1, \ldots, \mathbf{x}_N$ in \mathbb{R}^d

• We want to find a new set of features that are linear combinations of original ones:
 \[u(x_i) = \mathbf{u}^T(x_i - \mu) \]
 (μ: mean of data points)

• What unit vector \mathbf{u} in \mathbb{R}^d captures the most variance of the data?
Principal component analysis

• The direction that captures the maximum covariance of the data is the eigenvector corresponding to the largest eigenvalue of the data covariance matrix.

• Furthermore, the top k orthogonal directions that capture the most variance of the data are the k eigenvectors corresponding to the k largest eigenvalues.
Eigenfaces: Key idea

• Assume that most face images lie on a low-dimensional subspace determined by the first k ($k<d$) directions of maximum variance

• Use PCA to determine the vectors or “eigenfaces” u_1, \ldots, u_k that span that subspace

• Represent all face images in the dataset as linear combinations of eigenfaces

Eigenfaces example

Training images

\[x_1, \ldots, x_N \]
Eigenfaces example

Top eigenvectors: $u_1, \ldots u_k$

Mean: μ
Eigenfaces example

• Face \mathbf{x} in “face space” coordinates:

$$
\mathbf{x} \rightarrow [u_1^T (\mathbf{x} - \mu), \ldots, u_k^T (\mathbf{x} - \mu)]
= w_1, \ldots, w_k
$$

• Reconstruction:

$$\hat{\mathbf{x}} = \mu + w_1 u_1 + w_2 u_2 + w_3 u_3 + w_4 u_4 + \ldots$$
Recognition with eigenfaces

Process labeled training images:
• Find mean μ and covariance matrix Σ
• Find k principal components (eigenvectors of Σ) u_1, \ldots, u_k
• Project each training image x_i onto subspace spanned by principal components:
 $$(w_{i1}, \ldots, w_{ik}) = (u_1^T(x_i - \mu), \ldots, u_k^T(x_i - \mu))$$

Given novel image x:
• Project onto subspace:
 $$(w_1, \ldots, w_k) = (u_1^T(x - \mu), \ldots, u_k^T(x - \mu))$$
• Classify as closest training face in k-dimensional subspace

Limitations

- Global appearance method: not robust to misalignment, background variation
Limitations

- PCA assumes that the data has a Gaussian distribution (mean μ, covariance matrix Σ)

The shape of this dataset is not well described by its principal components
Limitations

- The direction of maximum variance is not always good for classification.
Face detection & recognition

• Viola & Jones detector
 • Available in open CV

• Face recognition
 • Eigenfaces for face recognition
 • *Metric learning for face identification*
Learning metrics for face identification

• Are these two faces of the same person?

• Challenges:
 – pose, scale, lighting, ...
 – expression, occlusion, hairstyle, ...
 – generalization to people not seen during training

Metric Learning

• Most common form of learned metrics are Mahalanobis

\[d_M(x,y) = (x - y)^T M(x - y) \]

• \(M \) is a positive definite matrix

• Generalization of Euclidean metric (setting \(M=I \))

• Corresponds to Euclidean metric after linear transformation of the data

\[d_M(x,y) = (x - y)^T M(x - y) = (x - y)^T L^T L (x - y) = d_{L^2}(Lx, Ly) \]
Logistic Discriminative Metric Learning

- Classify pairs of faces based on distance between descriptors
 \[d_M(x, y) = (x - y)^T M(x - y) \]

- Use sigmoid to map distance to class probability
 \[p(y_{ij} = +1) = \sigma(b - d_M(x_i, x_j)) \]
 \[\sigma(z) = \left(1 + \exp(-z)\right)^{-1} \]
Logistic Discriminant Metric Learning

• Mahanalobis distance linear in elements of M

\[
d_M(x, y) = (x - y)^T M (x - y)
= z^T M z = \sum_{i,j} z_i z_j M_{ij}
\]

\[
p(y_{ij} = +1) = \sigma \left(b - d_M(x_i, x_j) \right)
\]

• Linear logistic discriminant model
 • Distance is linear in elements of M
 • Learn maximum likelihood M and b

• Can use low-rank $M = L^T L$ to avoid overfitting
 • Loses convexity of cost function, effective in practice
Feature extraction process

• Detection of 9 facial features [Everingham et al. 2006]
 • using both appearance and relative position
 • using the constellation mode
 • leads to some pose invariance

• Each facial features described using SIFT descriptors
Feature extraction process

- Detection of 9 facial features
- Each facial features described using SIFT descriptors at 3 scales
- Concatenate 3x9 SIFTs into a vector of dimensionality 3456
Labelled Faces in the Wild data set

- Contains 12,233 faces of 5,749 different people (1,680 appear twice or more)
- Realistic intra-person variability
- Detections from Viola & Jones detector, false detections removed
- Pairs used in test are of people not in the training set
Experimental Results

- Various metric learning algorithms on SIFT representation

- Significant increases in performance when learning the metric
- Low-rank metric needs less dimensions than PCA to learn good metric
Experimental Results

- Low-rank LDML metrics using various scales of SIFT descriptor

- Surprisingly good performance using very few dimensions
- 20 dimensional descriptor instead of 3456 dim. concatenated SIFT just from linear combinations of the SIFT histogram bins
Comparing projections of LDML and PCA

- Using PCA and LDML to find two dimensional projection of the faces of Britney Spears and Jennifer Aniston