Overview

• Introduction to local features

• Harris interest points + SSD, ZNCC, SIFT

• Scale & affine invariant interest point detectors

• Evaluation and comparison of different detectors

• Region descriptors and their performance
Scale invariance - motivation

• Description regions have to be adapted to scale changes

• Interest points have to be repeatable for scale changes
Harris detector + scale changes

Repeatability rate

\[R(\varepsilon) = \frac{\left| \{(a_i, b_i) \mid \text{dist}(H(a_i), b_i) < \varepsilon\} \right|}{\max(\|a_i\|, \|b_i\|)} \]
Scale adaptation

Scale change between two images

\[
I_1 \left(\begin{array}{c} x_1 \\ y_1 \end{array} \right) = I_2 \left(\begin{array}{c} x_2 \\ y_2 \end{array} \right) = I_2 \left(\begin{array}{c} sx_1 \\ sy_1 \end{array} \right)
\]

Scale adapted derivative calculation
Scale adaptation

Scale change between two images

\[
I_1\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = I_2\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = I_2\begin{pmatrix} sx_1 \\ sy_1 \end{pmatrix}
\]

Scale adapted derivative calculation

\[
I_1\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \otimes G_{i_1...i_n}(\sigma) = s^n I_2\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \otimes G_{i_1...i_n}(s\sigma)
\]
Scale adaptation

\[G(\tilde{\sigma}) \otimes \begin{bmatrix} L_x^2(\sigma) & L_x L_y(\sigma) \\ L_x L_y(\sigma) & L_y^2(\sigma) \end{bmatrix} \]

where \(L_i(\sigma) \) are the derivatives with Gaussian convolution.
Scale adaptation

\[G(\tilde{\sigma}) \otimes \begin{bmatrix} L_x^2(\sigma) & L_x L_y(\sigma) \\ L_x L_y(\sigma) & L_y^2(\sigma) \end{bmatrix} \]

where \(L_t(\sigma) \) are the derivatives with Gaussian convolution

Scale adapted auto-correlation matrix

\[s^2 G(s \tilde{\sigma}) \otimes \begin{bmatrix} L_x^2(s\sigma) & L_x L_y(s\sigma) \\ L_x L_y(s\sigma) & L_y^2(s\sigma) \end{bmatrix} \]
Harris detector – adaptation to scale
Multi-scale matching algorithm

\[s = 1 \]

\[s = 3 \]

\[s = 5 \]
Multi-scale matching algorithm

\[s = 1 \]

8 matches
Multi-scale matching algorithm

Robust estimation of a global affine transformation

\[s = 1 \]
3 matches
Multi-scale matching algorithm

$s = 1$
3 matches

$s = 3$
4 matches
Multi-scale matching algorithm

- $s = 1$
 - 3 matches
- $s = 3$
 - 4 matches
- $s = 5$
 - 16 matches

Highest number of matches: correct scale
Matching results

Scale change of 5.7
Matching results

100% correct matches (13 matches)
Scale selection

• We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response

• However, Laplacian response decays as scale increases:

Why does this happen?
Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases.

$$\frac{1}{\sigma \sqrt{2\pi}}$$
Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases.
- To keep response the same (scale-invariant), must multiply Gaussian derivative by σ.
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2.
Effect of scale normalization

Original signal

Unnormalized Laplacian response

Scale-normalized Laplacian response

maximum
Blob detection in 2D

- Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]
Blob detection in 2D

- Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Scale-normalized: $\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$
Scale selection

- The 2D Laplacian is given by
 \[(x^2 + y^2 - 2\sigma^2) e^{-(x^2+y^2)/2\sigma^2} \] (up to scale)

- For a binary circle of radius \(r \), the Laplacian achieves a maximum at

\[\sigma = r / \sqrt{2} \]
We define the characteristic scale as the scale that produces peak of Laplacian response.

Scale selection

- For a point compute a value (gradient, Laplacian etc.) at several scales
- Normalization of the values with the scale factor e.g. Laplacian $|s^2(L_{xx} + L_{yy})|$
- Select scale s^* at the maximum \rightarrow characteristic scale

![Graph showing scale selection]

- Exp. results show that the Laplacian gives best results
Scale selection

- Scale invariance of the characteristic scale
Scale selection

• Scale invariance of the characteristic scale

– Relation between characteristic scales \(s \cdot s_1^* = s_2^* \)
Scale-invariant detectors

- Harris-Laplace (Mikolajczyk & Schmid’01)
- Laplacian detector (Lindeberg’98)
- Difference of Gaussian (Lowe’99)
Harris-Laplace

multi-scale Harris points

selection of points at maximum of Laplacian

→ invariant points + associated regions [Mikolajczyk & Schmid’01]
Matching results

213 / 190 detected interest points
Matching results

58 points are initially matched
Matching results

32 points are matched after verification – all correct
LOG detector

Convolve image with scale-normalized Laplacian at several scales

Detection of maxima and minima of Laplacian in scale space
Hessian detector

Hessian matrix

\[H(x) = \begin{bmatrix} L_{xx} & L_{xy} \\ L_{xy} & L_{yy} \end{bmatrix} \]

Determinant of Hessian matrix

\[DET = L_{xx}L_{yy} - L_{xy}^2 \]

Penalizes/eliminates long structures

- with small derivative in a single direction
Efficient implementation

- Difference of Gaussian (DOG) approximates the Laplacian: $\text{DOG} = G(k\sigma) - G(\sigma)$

- Error due to the approximation
DOG detector

- Fast computation, scale space processed one octave at a time

Local features - overview

- Scale invariant interest points
- **Affine invariant interest points**
- Evaluation of interest points
- Descriptors and their evaluation
Affine invariant regions - Motivation

- Scale invariance is not sufficient for large baseline changes.

Detected scale invariant region

Projected regions, viewpoint changes can locally be approximated by an affine transformation A.
Affine invariant regions - Motivation
Affine invariant regions - Example
Harris/Hessian/Laplacian-Affine

- Initialize with scale-invariant Harris/Hessian/Laplacian points

- Estimation of the affine neighbourhood with the second moment matrix [Lindeberg’94]

- Apply affine neighbourhood estimation to the scale-invariant interest points [Mikolajczyk & Schmid’02, Schaffalitzky & Zisserman’02]

- Excellent results in a comparison [Mikolajczyk et al.’05]
Affine invariant regions

• Based on the second moment matrix (Lindeberg’94)

\[
M = \mu(x, \sigma_I, \sigma_D) = \sigma_D^2 \mathbf{G}(\sigma_I) \otimes \begin{bmatrix}
L_x^2(x, \sigma_D) & L_xL_y(x, \sigma_D) \\
L_xL_y(x, \sigma_D) & L_y^2(x, \sigma_D)
\end{bmatrix}
\]

• Normalization with eigenvalues/eigenvectors

\[
x' = \frac{1}{\sqrt{\det{M}}} x
\]
Affine invariant regions

\[x'_R = A x'_L \]

\[x'_L = M^2_L x_L \]

\[x'_R = M^2_R x_R \]

Isotropic neighborhoods related by image rotation
Affine invariant regions - Estimation

- Iterative estimation – initial points
Affine invariant regions - Estimation

- Iterative estimation – iteration #1
Affine invariant regions - Estimation

- Iterative estimation – iteration #2
Affine invariant regions - Estimation

- Iterative estimation – iteration #3, #4
Harris-Affine versus Harris-Laplace
Harris/Hessian-Affine

Harris-Affine

Hessian-Affine
Harris-Affine
Hessian-Affine
22 correct matches
Matches

33 correct matches
Maximally stable extremal regions (MSER) [Matas’02]

- Extremal regions: connected components in a thresholded image (all pixels above/below a threshold)

- Maximally stable: minimal change of the component (area) for a change of the threshold, i.e. region remains stable for a change of threshold

- Excellent results in a recent comparison
Maximally stable extremal regions (MSER)

Examples of thresholded images

high threshold

low threshold
MSER
Overview

• Introduction to local features

• Harris interest points + SSD, ZNCC, SIFT

• Scale & affine invariant interest point detectors

• Evaluation and comparison of different detectors

• Region descriptors and their performance
Evaluation of interest points

- Quantitative evaluation of interest point/region detectors
 - points / regions at the same relative location and area

- Repeatability rate: percentage of corresponding points

- Two points/regions are corresponding if
 - location error small
 - area intersection large

Evaluation criterion

repeatability = \frac{\#\text{corresponding regions}}{\#\text{detected regions}} \cdot 100\%
Evaluation criterion

\[
\text{repeatability} = \frac{\#\text{corresponding regions}}{\#\text{detected regions}} \cdot 100\%
\]

\[
\text{overlap error} = (1 - \frac{\text{intersection}}{\text{union}}) \cdot 100\%
\]
Dataset

• Different types of transformation
 – Viewpoint change
 – Scale change
 – Image blur
 – JPEG compression
 – Light change

• Two scene types
 – Structured
 – Textured

• Transformations within the sequence (homographies)
 – Independent estimation
Viewpoint change (0-60 degrees)

structured scene

textured scene
Zoom + rotation (zoom of 1-4)

structured scene

textured scene
Blur, compression, illumination

- Blur - structured scene
- Blur - textured scene
- Light change - structured scene
- Jpeg compression - structured scene
Comparison of affine invariant detectors

Viewpoint change - structured scene

repeatability %

correspondences

reference image

20

40

60
Comparison of affine invariant detectors

Scale change

repeatability %

reference image 2.8

reference image 4
Conclusion - detectors

• Good performance for large viewpoint and scale changes

• Results depend on transformation and scene type, no one best detector

• Detectors are complementary
 – MSER adapted to structured scenes
 – Harris and Hessian adapted to textured scenes

• Performance of the different scale invariant detectors is very similar (Harris-Laplace, Hessian, LoG and DOG)

• Scale-invariant detector sufficient up to 40 degrees of viewpoint change
Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance
Region descriptors

- Normalized regions are
 - invariant to geometric transformations except rotation
 - not invariant to photometric transformations
Descriptors

- Regions invariant to geometric transformations except rotation
 - rotation invariant descriptors
 - normalization with dominant gradient direction

- Regions not invariant to photometric transformations
 - invariance to affine photometric transformations
 - normalization with mean and standard deviation of the image patch
Descriptors

- Extract affine regions
- Normalize regions
- Eliminate rotational + illumination
- Compute appearance descriptors

SIFT (Lowe ’04)
Descriptors

• Gaussian derivative-based descriptors
 – Differential invariants \((\text{Koenderink and van Doorn’87})\)
 – Steerable filters \((\text{Freeman and Adelson’91})\)

• SIFT \((\text{Lowe’99})\)
• Moment invariants \([\text{Van Gool et al.’96}]\)
• Shape context \([\text{Belongie et al.’02}]\)
• SIFT with PCA dimensionality reduction
• Gradient PCA \([\text{Ke and Sukthankar’04}]\)
• SURF descriptor \([\text{Bay et al.’08}]\)
• DAISY descriptor \([\text{Tola et al.’08, Windler et al’09}]\)
Comparison criterion

- **Descriptors should be**
 - Distinctive
 - Robust to changes on viewing conditions as well as to errors of the detector

- **Detection rate (recall)**
 - \(\frac{\text{correct matches}}{\text{correspondences}} \)

- **False positive rate**
 - \(\frac{\text{false matches}}{\text{all matches}} \)

- **Variation of the distance threshold**
 - \(\text{distance} (d_1, d_2) < \text{threshold} \)

[K. Mikolajczyk & C. Schmid, PAMI’05]
Viewpoint change (60 degrees)
Scale change (factor 2.8)
Conclusion - descriptors

• SIFT based descriptors perform best

• Significant difference between SIFT and low dimension descriptors as well as cross-correlation

• Robust region descriptors better than point-wise descriptors

• Performance of the descriptor is relatively independent of the detector
Available on the internet

http://lear.inrialpes.fr/software

• Binaries for detectors and descriptors
 – Building blocks for recognition systems

• Carefully designed test setup
 – Dataset with transformations
 – Evaluation code in matlab
 – Benchmark for new detectors and descriptors