Face detection and recognition

Detection

Recognition

“Sally”
Face detection & recognition

• Viola & Jones detector
 • Available in open CV

• Face recognition
 • Eigenfaces for face recognition
 • Metric learning identification
Face detection

Many slides adapted from P. Viola
Consumer application: iPhoto 2009

http://www.apple.com/ilife/iphoto/
Challenges of face detection

• Sliding window detector must evaluate tens of thousands of location/scale combinations

• Faces are rare: 0–10 per image
 • For computational efficiency, we should try to spend as little time as possible on the non-face windows
 • A megapixel image has ~10^6 pixels and a comparable number of candidate face locations
 • To avoid having a false positive in every image image, our false positive rate has to be less than 10^{-6}
The Viola/Jones Face Detector

• A seminal approach to real-time object detection

• Training is slow, but detection is very fast

• Key ideas
 • *Integral images* for fast feature evaluation
 • *Boosting* for feature selection
 • *Attentional cascade* for fast rejection of non-face windows

Image Features

“Rectangle filters”

Value =

\[\sum \text{(pixels in white area)} - \sum \text{(pixels in black area)} \]
Fast computation with integral images

• The *integral image* computes a value at each pixel \((x,y)\) that is the sum of the pixel values above and to the left of \((x,y)\), inclusive

• This can quickly be computed in one pass through the image
Computing the integral image
Computing the integral image

Cumulative row sum: \(s(x, y) = s(x-1, y) + i(x, y) \)
Integral image: \(ii(x, y) = ii(x, y-1) + s(x, y) \)
Computing sum within a rectangle

• Let A, B, C, D be the values of the integral image at the corners of a rectangle

• Then the sum of original image values within the rectangle can be computed as:
 $\text{sum} = A - B - C + D$

• Only 3 additions are required for any size of rectangle!
Feature selection

• For a 24x24 detection region, the number of possible rectangle features is ~160,000!
Feature selection

• For a 24x24 detection region, the number of possible rectangle features is ~160,000!

• At test time, it is impractical to evaluate the entire feature set

• Can we create a good classifier using just a small subset of all possible features?

• How to select such a subset?
Boosting

- Boosting is a classification scheme that works by combining *weak learners* into a more accurate ensemble classifier.

- Training consists of multiple *boosting rounds*
 - During each boosting round, we select a weak learner that does well on examples that were hard for the previous weak learners.
 - “Hardness” is captured by weights attached to training examples.

Training procedure

• Initially, weight each training example equally

• In each boosting round:
 • Find the weak learner that achieves the lowest weighted training error
 • Raise the weights of training examples misclassified by current weak learner

• Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
 • Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)
Boosting vs. SVM

• Advantages of boosting
 • Integrates classifier training with feature selection
 • Flexibility in the choice of weak learners, boosting scheme
 • Testing is very fast

• Disadvantages
 • Needs many training examples
 • Training is slow
 • Often doesn’t work as well as SVM (especially for many-class problems)
Boosting for face detection

- Define weak learners based on rectangle features

\[
h_t(x) = \begin{cases}
1 & \text{if } p_t f_t(x) > p_t \theta_t \\
0 & \text{otherwise}
\end{cases}
\]
Boosting for face detection

- Define weak learners based on rectangle features

- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Select best filter/threshold combination based on weighted training error
 - Reweight examples
Boosting for face detection

- First two features selected by boosting:

This feature combination can yield 100% detection rate and 50% false positive rate.
Attentional cascade

- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows.

- Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on.

- A negative outcome at any point leads to the immediate rejection of the sub-window.
Attentional cascade

- Chain classifiers that are progressively more complex and have lower false positive rates:

![Diagram of attentional cascade]

Receiver operating characteristic

- 0% False Pos
- 50% False Pos
- 100% False Pos

- 0% Detection
- 100% Detection

Classifier 1
- T
- F
- NON-FACE

Classifier 2
- T
- F
- NON-FACE

Classifier 3
- T
- F
- NON-FACE

FACE

- IMAGE SUB-WINDOW
- T
- F
- NON-FACE
Attentional cascade

- The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages.
- A detection rate of 0.9 and a false positive rate on the order of 10^{-6} can be achieved by a 10-stage cascade if each stage has a detection rate of 0.99 ($0.99^{10} \approx 0.9$) and a false positive rate of about 0.30 ($0.3^{10} \approx 6 \times 10^{-6}$).
Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
 - Need to lower AdaBoost threshold to maximize detection (as opposed to minimizing total classification error)
 - Test on a validation set
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage
The implemented system

• Training Data
 • 5000 faces
 – All frontal, rescaled to 24x24 pixels
 • 300 million non-faces
 – 9500 non-face images
 • Faces are normalized
 – Scale, translation

• Many variations
 • Across individuals
 • Illumination
 • Pose
System performance

- Training time: “weeks” on 466 MHz Sun workstation
- 38 layers, total of 6061 features
- Average of 10 features evaluated per window on test set
- “On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds”
Output of Face Detector on Test Images
Profile Detection
Profile Features
Summary: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows
- Available in open CV
Face detection & recognition

- Viola & Jones detector

- Face recognition
 - *Eigenfaces for face recognition*
 - Metric learning identification
The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - 100x100 image = 10,000 dimensions
- However, relatively few 10,000-dimensional vectors correspond to valid face images
- We want to effectively model the subspace of face images
The space of all face images

- We want to construct a low-dimensional linear subspace that best explains the variation in the set of face images.
Principal Component Analysis

• Given: N data points x_1, \ldots, x_N in \mathbb{R}^d

• We want to find a new set of features that are linear combinations of original ones:

$$u(x_i) = u^T(x_i - \mu)$$

(μ: mean of data points)

• What unit vector u in \mathbb{R}^d captures the most variance of the data?
Principal component analysis

- The direction that captures the maximum covariance of the data is the eigenvector corresponding to the largest eigenvalue of the data covariance matrix.

- Furthermore, the top k orthogonal directions that capture the most variance of the data are the k eigenvectors corresponding to the k largest eigenvalues.
Eigenfaces: Key idea

- Assume that most face images lie on a low-dimensional subspace determined by the first k ($k<d$) directions of maximum variance.

- Use PCA to determine the vectors or “eigenfaces” u_1, \ldots, u_k that span that subspace.

- Represent all face images in the dataset as linear combinations of eigenfaces.

Eigenfaces example

Training images

x_1, \ldots, x_N
Eigenfaces example

Top eigenvectors: u_1, \ldots, u_k

Mean: μ
Eigenfaces example

• Face \mathbf{x} in “face space” coordinates:

$$
\mathbf{x} \rightarrow \left[\mathbf{u}_1^T (\mathbf{x} - \mu), \ldots, \mathbf{u}_k^T (\mathbf{x} - \mu) \right] = w_1, \ldots,w_k
$$

• Reconstruction:

$$
\hat{\mathbf{x}} = \mu + w_1 \mathbf{u}_1 + w_2 \mathbf{u}_2 + w_3 \mathbf{u}_3 + w_4 \mathbf{u}_4 + \ldots
$$
Recognition with eigenfaces

Process labeled training images:
- Find mean μ and covariance matrix Σ
- Find k principal components (eigenvectors of Σ) u_1, \ldots, u_k
- Project each training image x_i onto subspace spanned by principal components:
 $$(w_{i1}, \ldots, w_{ik}) = (u_1^T(x_i - \mu), \ldots, u_k^T(x_i - \mu))$$

Given novel image x:
- Project onto subspace:
 $$(w_1, \ldots, w_k) = (u_1^T(x - \mu), \ldots, u_k^T(x - \mu))$$
- Classify as closest training face in k-dimensional subspace

Limitations

- Global appearance method: not robust to misalignment, background variation
Limitations

- PCA assumes that the data has a Gaussian distribution (mean μ, covariance matrix Σ)

The shape of this dataset is not well described by its principal components
Limitations

• The direction of maximum variance is not always good for classification
Face detection & recognition

- Viola & Jones detector
 - Available in open CV

- Face recognition
 - Eigenfaces for face recognition
 - *Metric learning for face identification*
Learning metrics for face identification

• Are these two faces of the same person?

• Challenges:
 – pose, scale, lighting, ...
 – expression, occlusion, hairstyle, ...
 – generalization to people not seen during training

Metric Learning

- Most common form of learned metrics are Mahalanobis

\[d_M(x, y) = (x - y)^T M (x - y) \]

- \(M \) is a positive definite matrix

- Generalization of Euclidean metric (setting \(M = I \))

- Corresponds to Euclidean metric after linear transformation of the data

\[d_M(x, y) = (x - y)^T M (x - y) = (x - y)^T L^T L (x - y) = d_{L^2}(Lx, Ly) \]
Logistic Discriminant Metric Learning

• Classify pairs of faces based on distance between descriptors

\[d_M(x, y) = (x - y)^T M (x - y) \]

• Use sigmoid to map distance to class probability

\[p(y_{ij} = +1) = \sigma(b - d_M(x_i, x_j)) \]

\[\sigma(z) = \left(1 + \exp(-z)\right)^{-1} \]
Logistic Discriminant Metric Learning

• Mahalanobis distance linear in elements of M

$$d_M(x, y) = (x - y)^T M(x - y)$$
$$= z^T Mz = \sum_{i,j} z_i z_j M_{ij}$$

$$p(y_{ij} = +1) = \sigma(b - d_M(x_i, x_j))$$

• Linear logistic discriminant model
 • Distance is linear in elements of M
 • Learn maximum likelihood M and b

• Can use low-rank $M = L^T L$ to avoid overfitting
 • Loses convexity of cost function, effective in practice
Feature extraction process

- Detection of 9 facial features [Everingham et al. 2006]
 - using both appearance and relative position
 - using the constellation mode
 - leads to some pose invariance

- Each facial features described using SIFT descriptors
Feature extraction process

- Detection of 9 facial features
- Each facial features described using SIFT descriptors at 3 scales
- Concatenate 3x9 SIFTs into a vector of dimensionality 3456
Labelled Faces in the Wild data set

- Contains 12,233 faces of 5,749 different people (1,680 appear twice or more)
- Realistic intra-person variability
- Detections from Viola & Jones detector, false detections removed
- Pairs used in test are of people not in the training set
Experimental Results

- Various metric learning algorithms on SIFT representation

![Graph showing performance over projection dimensionality]

- Significant increases in performance when learning the metric
- Low-rank metric needs less dimensions than PCA to learn good metric
Experimental Results

- Low-rank LDML metrics using various scales of SIFT descriptor

- Surprisingly good performance using very few dimensions
- 20 dimensional descriptor instead of 3456 dim. concatenated SIFT just from linear combinations of the SIFT histogram bins
Comparing projections of LDML and PCA

• Using PCA and LDML to find two dimensional projection of the faces of Britney Spears and Jennifer Aniston