Instance level recognition III: Correspondence and efficient visual search

Josef Sivic
http://www.di.ens.fr/~josef

INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548
Laboratoire d’Informatique, Ecole Normale Supérieure, Paris

Part 1. Image matching and recognition with local features
 - Correspondence
 - Semi-local and global geometric relations
 - Robust estimation – RANSAC and Hough Transform

Part 2. Going large-scale
 - Approximate nearest neighbour matching
 - Bag-of-visual-words representation
 - Efficient visual search and extensions
 - Beyond bag-of-visual-words representations
 - Applications
Outline

Part 2. Going large-scale
- Approximate nearest neighbour matching
- Bag-of-visual-words representation
- Efficient visual search and extensions
- Beyond bag-of-visual-words representations
- Applications
Example II: Two images again

1000+ descriptors per image
Match regions between frames using SIFT descriptors and spatial consistency

Multiple regions overcome problem of partial occlusion
Approach - review

1. Establish tentative (or putative) correspondence based on local appearance of individual features (now)

2. Verify matches based on semi-local / global geometric relations (You have just seen this).
What about multiple images?

• So far, we have seen successful matching of a query image to a single target image using local features.

• How to generalize this strategy to multiple target images with reasonable complexity?

 • $10, 10^2, 10^3, \ldots, 10^7, \ldots 10^{10}, \ldots$ images?
Example: Visual search in an entire feature length movie

Visually defined query

“Find this bag”

“Charade” [Donen, 1963]

Demo:
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html
History of “large scale” visual search with local regions

- Schmid and Mohr ’97 – 1k images
- Sivic and Zisserman’03 – 5k images
- Nister and Stewenius’06 – 50k images (1M)
- Philbin et al.’07 – 100k images
- Chum et al.’07 + Jegou et al.’07 – 1M images
- Chum et al.’08 – 5M images
- Jegou et al. ’09 – 10M images
- Jegou et al. ’10 – ~100M images

All on a single machine in ~ 1 second!
Two strategies

1. Efficient approximate nearest neighbour search on local feature descriptors.

2. Quantize descriptors into a “visual vocabulary” and use efficient techniques from text retrieval.
 (Bag-of-words representation)
1. Compute local features in each image independently (Part 1)
2. “Label” each feature by a descriptor vector based on its intensity (Part 1)
3. Finding corresponding features is transformed to finding nearest neighbour vectors
4. Rank matched images by number of (tentatively) corresponding regions
5. Verify top ranked images based on spatial consistency (Part 2)
Finding nearest neighbour vectors

Establish correspondences between object model image and images in the database by **nearest neighbour matching** on SIFT vectors.

Solve following problem for all feature vectors, \(x_j \in \mathcal{R}^{128} \), in the query image:

\[
\forall j \quad NN(j) = \arg \min_i \| x_i - x_j \|
\]

where, \(x_i \in \mathcal{R}^{128} \), are features from all the database images.
Quick look at the complexity of the NN-search

N … images
M … regions per image (~1000)
D … dimension of the descriptor (~128)

Exhaustive linear search: $O(M N D)$

Example:
• Matching two images ($N=1$), each having 1000 SIFT descriptors
 Nearest neighbors search: 0.4 s (2 GHz CPU, implementation in C)
• Memory footprint: $1000 \times 128 = 128$kB / image

<table>
<thead>
<tr>
<th># of images</th>
<th>CPU time</th>
<th>Memory req.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 1,000$</td>
<td>~7min</td>
<td>(~100MB)</td>
</tr>
<tr>
<td>$N = 10,000$</td>
<td>~1h7min</td>
<td>(~ 1GB)</td>
</tr>
<tr>
<td>$N = 10^7$</td>
<td>~115 days</td>
<td>(~ 1TB)</td>
</tr>
<tr>
<td>$N = 10^{10}$</td>
<td>~300 years</td>
<td>(~ 1PB)</td>
</tr>
</tbody>
</table>

All images on Facebook:
$N = 10^{10}$ … ~300 years (~ 1PB)
Nearest-neighbor matching

Solve following problem for all feature vectors, x_j, in the query image:

$$\forall j \quad NN(j) = \arg \min_i ||x_i - x_j||$$

where x_i are features in database images.

Nearest-neighbour matching is the major computational bottleneck

- Linear search performs dn operations for n features in the database and d dimensions
- No exact methods are faster than linear search for $d>10$
- Approximate methods can be much faster, but at the cost of missing some correct matches. Failure rate gets worse for large datasets.
Indexing local features: approximate nearest neighbor search

Best-Bin First (BBF), a variant of k-d trees that uses priority queue to examine most promising branches first [Beis & Lowe, CVPR 1997]

Locality-Sensitive Hashing (LSH), a randomized hashing technique using hash functions that map similar points to the same bin, with high probability [Indyk & Motwani, 1998]
K-d tree

- K-d tree is a **binary tree** data structure for organizing a set of points in a K-dimensional space.
- Each internal node is associated with an **axis aligned hyper-plane** splitting its associated points into two sub-trees.
- Dimensions with high variance are chosen first.
- Position of the splitting hyper-plane is chosen as the mean/median of the projected points – balanced tree.
K-d tree construction

Simple 2D example

Slide credit: Anna Atramentov
K-d tree query
K-d tree: Backtracking

Backtracking is necessary as the true nearest neighbor may not lie in the query cell.

But in some cases, almost all cells need to be inspected.

Figure 6.6
A bad distribution which forces almost all nodes to be inspected.

Figure: A. Moore
Solution: Approximate nearest neighbor K-d tree

Key ideas:

• Search k-d tree bins in order of distance from query

• Requires use of a priority queue

• Limit the number of neighbouring k-d tree bins to explore: only approximate NN is found

• Reduce the boundary effects by randomization
Randomized K-d trees

- How to choose the dimension to split and the splitting point?
 - Pick dimension with the highest variance
 - Split at the mean/median

- Multiple randomized trees increase the chances of finding nearby points

[Silpa-Anan and Hartley 2008, Philbin et al. 2007]
Approximate NN search using a randomized forest of K-d trees: Algorithm summary

1. Descent all (typically 8) trees to the leaf node

2. Search k-d tree bins in order of distance from query
 - Distance between the query and the bin is defined as the minimum distance between the query and any point on the bin boundary
 - Requires the use of a priority queue:
 - During lookup an entry is added to the priority queue about the option not taken
 - For multiple trees, the queue is shared among the trees
 - Limit the number of neighbouring K-d tree bins to explore (parameter of the algorithm, typically set to 512)
Randomized K-d trees: discussion

• Find approximate nearest neighbor in $O(\log N)$ time, where N is the number of data points.

• Increased memory requirements: needs to store multiple (~8) trees.

• Good performance in practice for recognition problems (NN-search for SIFT descriptors and image patches).

• Code available online:
 http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
Variation: K-means tree [Muja&Lowe, 2009]

- Partition of the space is determined by recursive application of k-means clustering.
- Cell boundaries are not axis aligned, but given by the set of cluster centers.
- Also called “tree structured vector quantization”.
- Finding nearest neighbor to a query point involves recursively finding nearest cluster center.
- Look-up complexity $O(\log N)$
- Also used for vocabulary quantization (see later) [Nister&Stewenius’06]
Example

3-nary tree construction:

Figure credit: David Nister
Example

Query look-up:

Figure credit: David Nister
Indexing local features: approximate nearest neighbor search

Best-Bin First (BBF), a variant of k-d trees that uses priority queue to examine most promising branches first [Beis & Lowe, CVPR 1997]

Locality-Sensitive Hashing (LSH), a randomized hashing technique using hash functions that map similar points to the same bin, with high probability [Indyk & Motwani, 1998]
Idea: construct hash functions $g: \mathbb{R}^d \rightarrow \mathbb{Z}^k$ such that

for any points p, q:

If $\|p - q\| \leq r$, then $\Pr[g(p) = g(q)]$ is “high” or “not-so-small”
If $\|p - q\| > cr$, then $\Pr[g(p) = g(q)]$ is “small”

Example of g: linear projections

$g(p) = \langle h_1(p), h_2(p), \ldots, h_k(p) \rangle$, where $h_{X,b}(p) = \lfloor (pX + b)/w \rfloor$

\(\lfloor . \rfloor \) is the “floor” operator.
X_i are sampled from a Gaussian.
w is the width of each quantization bin.
b is sampled from uniform distr. $[0, w]$.

[Datar-Immorlica-Indyk-Mirokni’04]
Locality Sensitive Hashing (LSH)

- Choose a random projection
- Project points
- Points close in the original space remain close under the projection
- Unfortunately, converse not true
- Answer: use multiple quantized projections which define a high-dimensional “grid”

Slide: Philbin, Chum, Isard, Zisserman
Locality Sensitive Hashing (LSH)

- Cell contents can be efficiently indexed using a hash table
- Repeat to avoid quantization errors near the cell boundaries
- Point that shares at least one cell = potential candidate
- Compute distance to all candidates

Slide: Philbin, Chum, Isard, Zisserman
LSH: discussion

In theory, query time is $O(kL)$, where k is the number of projections and L is the number of hash tables, i.e. independent of the number of points, N.

In practice, LSH has high memory requirements as large number of projections/hash tables are needed.

Code and more materials available online:
http://www.mit.edu/~andoni/LSH/

Hashing functions could be also data-dependent (PCA) or learnt from labeled point pairs (close/far).

See also:
http://www.sanjivk.com/EECS6898/ApproxNearestNeighbors_2.pdf
Comparison of approximate NN-search methods

FAST APPROXIMATE NEAREST NEIGHBORS
WITH AUTOMATIC ALGORITHM CONFIGURATION

Marius Muja, David G. Lowe

Computer Science Department, University of British Columbia, Vancouver, B.C., Canada
mariusm@cs.ubc.ca, lowe@cs.ubc.ca

Keywords: nearest-neighbors search, randomized kd-trees, hierarchical k-means tree, clustering.

Abstract: For many computer vision problems, the most time consuming component consists of nearest neighbor matching in high-dimensional spaces. There are no known exact algorithms for solving these high-dimensional problems that are faster than linear search. Approximate algorithms are known to provide large speedups with only minor loss in accuracy, but many such algorithms have been published with only minimal guidance on selecting an algorithm and its parameters for any given problem. In this paper, we describe a system that answers the question, “What is the fastest approximate nearest-neighbor algorithm for my data?” Our system will take any given dataset and desired degree of precision and use these to automatically determine the best algorithm and parameter values. We also describe a new algorithm that applies priority search on hierarchical k-means trees, which we have found to provide the best known performance on many datasets. After testing a range of alternatives, we have found that multiple randomized k-d trees provide the best performance for other datasets. We are releasing public domain code that implements these approaches. This library provides about one order of magnitude improvement in query time over the best previously available software and provides
Comparison of approximate NN-search methods

Dataset: 100K SIFT descriptors

Code for all methods available online, see Muja&Lowe’09

Figure: Muja&Lowe’09
Approximate nearest neighbour search (references)

So far …

- Linear exhaustive search can be prohibitively expensive for large image collections

- Answer (so far): approximate NN search methods
 - Randomized KD-trees
 - Locality sensitive hashing

- However, memory footprint can be still high.
 Example: $N = 10^7$ images, 10^{10} SIFT features with 128B per feature \Rightarrow 1TB of memory

Look how text-based search engines (Google) index documents – inverted files.
Indexing text with inverted files

Document collection:

<table>
<thead>
<tr>
<th>Term</th>
<th>List of hits (occurrences in documents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
<td>[d1:hit hit hit], [d4:hit hit] …</td>
</tr>
<tr>
<td>Common</td>
<td>[d1:hit hit], [d3: hit], [d4: hit hit hit] …</td>
</tr>
<tr>
<td>Sculpture</td>
<td>[d2:hit], [d3: hit hit hit] …</td>
</tr>
</tbody>
</table>

Inverted file:

Need to map feature descriptors to “visual words”.
Vector quantize descriptors
- Compute SIFT features from a subset of images
- K-means clustering (need to choose K)

[Sivic and Zisserman, ICCV 2003]
Visual words

Example: each group of patches belongs to the same visual word
Samples of visual words (clusters on SIFT descriptors):

More specific example
Samples of visual words (clusters on SIFT descriptors):

More specific example
Visual words

• First explored for texture and material representations
• *Texton* = cluster center of filter responses over collection of images
• Describe textures and materials based on distribution of prototypical texture elements.

Visual words: quantize descriptor space
Sivic and Zisserman, ICCV 2003

Nearest neighbour matching
• expensive to do for all frames
Nearest neighbour matching
- expensive to do for all frames

Vector quantize descriptors
Nearest neighbour matching
• expensive to do for all frames

Vector quantize descriptors
Nearest neighbour matching
• expensive to do for all frames

Vector quantize descriptors
Vector quantize the descriptor space (SIFT)

The same visual word
Representation: bag of (visual) words

Visual words are ‘iconic’ image patches or fragments
• represent their frequency of occurrence
• but not their position
Offline: Assign visual words and compute histograms for each image

- Detect patches
- Normalize patch
- Compute SIFT descriptor
- Find nearest cluster center

Represent image as a sparse histogram of visual word occurrences
Offline: create an index

• For fast search, store a “posting list” for the dataset
• This maps visual word occurrences to the images they occur in (i.e. like the “book index”)
At run time

- User specifies a query region
- Generate a short-list of images using visual words in the region
 1. Accumulate all visual words within the query region
 2. Use “book index” to find other frames with these words
 3. Compute similarity for images which share at least one word
At run time

- Score each image by the (weighted) number of common visual words (tentative correspondences)
- Worst case complexity is linear in the number of images N
- In practice, it is linear in the length of the lists ($<< N$)
Another interpretation: the bag-of-visual-words model

For a vocabulary of size K, each image is represented by a K-vector

$$
\mathbf{v}_d = (t_1, \ldots, t_i, \ldots, t_K)^\top
$$

where t_i is the number of occurrences of visual word i.

Images are ranked by the normalized scalar product between the query vector \mathbf{v}_q and all vectors in the database \mathbf{v}_d:

$$
f_d = \frac{\mathbf{v}_q^\top \mathbf{v}_d}{\|\mathbf{v}_q\|_2 \|\mathbf{v}_d\|_2}
$$

Scalar product can be computed efficiently using inverted file.

What if vectors are binary? What is the meaning of $\mathbf{v}_q^\top \mathbf{v}_d$?
1. Compute local features in each image independently (offline)
2. “Label” each feature by a descriptor vector based on its intensity (offline)
3. Finding corresponding features is transformed to finding nearest neighbour vectors
4. Rank matched images by number of (tentatively) corresponding regions
5. Verify top ranked images based on spatial consistency (The first part of this lecture)
1. Compute affine covariant regions in each frame independently (offline)
2. “Label” each region by a vector of descriptors based on its intensity (offline)
3. **Build histograms of visual words by descriptor quantization (offline)**
4. Rank retrieved frames by matching vis. word histograms using inverted files.
5. Verify retrieved frame based on spatial consistency (The first part of the lecture)
Visual words: discussion I.

Efficiency – cost of quantization

• Need to still assign each local descriptor to one of the cluster centers. Could be prohibitive for large vocabularies (K=1M)

• Approximate NN-search still needed
 • e.g. randomized k-d trees

• True also for building the vocabulary
 • approximate k-means [Philbin et al. 2007]
Visual words: discussion II.

Generalization

• Is vocabulary/quantization learned on one dataset good for searching another dataset?

• Experimentally observe a loss in performance.

But, see also a recent work by Jegou et al.:
Hamming Embedding and Weak Geometry Consistency for Large Scale Image Search, ECCV’2008
http://lear.inrialpes.fr/pubs/2008/JDS08a/
Visual words: discussion III.

What about quantization effects?
• Visual word assignment can change due to e.g. noise in region detection, descriptor computation or non-modeled image variation (3D effects, lighting)

See also:
Philbin et al. CVPR’08, http://www.robots.ox.ac.uk/~vgg/publications/html/philbin08-bibtex.html
Visual words: discussion IV.

• Need to determine the size of the vocabulary, K.

• Other algorithms for building vocabularies, e.g. agglomerative clustering / mean-shift, but typically more expensive.

• Supervised quantization?

Also give examples of images / descriptors which should and should not match.

E.g.:
Visual search using local regions (references)

J. Sivic, A. Zisserman, Text retrieval approach to object matching in videos, ICCV, 2003
J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, CVPR, 2007
H. Jegou, M. Douze, C. Schmid, Hamming embedding and weak geometric consistency for large scale image search, ECCV’2008
H. Jégou, M. Douze, C. Schmid and P. Pérez, Aggregating local descriptors into a compact image representation, CVPR’2010
Efficient visual search for objects and places

Oxford Buildings Search - demo

http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html
Example
Search results 1 to 20 of 104841

1
ID: oxc1_hertford_000011
Score: 1816.000000
Putative: 2325
Inliers: 1816
Hypothesis: 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Detail

2
ID: oxc1_all_souls_000075
Score: 352.000000
Putative: 645
Inliers: 352
Hypothesis: 1.162245 0.041211 -70.414459 -0.012913 1.146417 91.276093

Detail

3
ID: oxc1_hertford_000064
Score: 278.000000
Putative: 527
Inliers: 278
Hypothesis: 0.928686 0.076134 169.954620 -0.041703 0.937558 97.962112

Detail
Oxford buildings dataset

- Automatically crawled from flickr

- Consists of:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Resolution</th>
<th># images</th>
<th># features</th>
<th>Descriptor size</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>1024 × 768</td>
<td>5,062</td>
<td>16,334,970</td>
<td>1.9 GB</td>
</tr>
<tr>
<td>ii</td>
<td>1024 × 768</td>
<td>99,782</td>
<td>277,770,833</td>
<td>33.1 GB</td>
</tr>
<tr>
<td>iii</td>
<td>500 × 333</td>
<td>1,040,801</td>
<td>1,186,469,709</td>
<td>141.4 GB</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,145,645</td>
<td>1,480,575,512</td>
<td>176.4 GB</td>
</tr>
</tbody>
</table>
Oxford buildings dataset

- Landmarks plus queries used for evaluation

- Ground truth obtained for 11 landmarks

- Evaluate performance by mean Average Precision
Measuring retrieval performance: Precision - Recall

- **Precision**: % of returned images that are relevant
- **Recall**: % of relevant images that are returned
A good AP score requires both high recall and high precision.

Performance measured by mean Average Precision (mAP) over 55 queries on 100K or 1.1M image datasets.
Mean Average Precision variation with vocabulary size

<table>
<thead>
<tr>
<th>vocab size</th>
<th>bag of words</th>
<th>spatial</th>
</tr>
</thead>
<tbody>
<tr>
<td>50K</td>
<td>0.473</td>
<td>0.599</td>
</tr>
<tr>
<td>100K</td>
<td>0.535</td>
<td>0.597</td>
</tr>
<tr>
<td>250K</td>
<td>0.598</td>
<td>0.633</td>
</tr>
<tr>
<td>500K</td>
<td>0.606</td>
<td>0.642</td>
</tr>
<tr>
<td>750K</td>
<td>0.609</td>
<td>0.630</td>
</tr>
<tr>
<td>1M</td>
<td>0.618</td>
<td>0.645</td>
</tr>
<tr>
<td>1.25M</td>
<td>0.602</td>
<td>0.625</td>
</tr>
</tbody>
</table>

![Graph showing mean average precision variation with vocabulary size]
• high precision at low recall (like google)
• variation in performance over query
• none retrieve all instances
Why aren’t all objects retrieved?

Obtaining visual words is like a sensor measuring the image

“noise” in the measurement process means that some visual words are missing or incorrect, e.g. due to

- Missed detections
- Changes beyond built in invariance
- Quantization effects

Consequence: Visual word in query is missing in target image
Query Expansion in text

In text:
- Reissue top n responses as queries
- Pseudo/blind relevance feedback
- Danger of topic drift

In vision:
- Reissue spatially verified image regions as queries
Query Expansion: Text

Original query: Hubble Telescope Achievements

Query expansion: Select top 20 terms from top 20 documents according to tf-idf

Added terms: Telescope, hubble, space, nasa, ultraviolet, shuttle, mirror, telescopes, earth, discovery, orbit, flaw, scientists, launch, stars, universe, mirrors, light, optical, species
Automatic query expansion

Visual word representations of two images of the same object may differ (due to e.g. detection/quantization noise) resulting in missed returns

Initial returns may be used to add new relevant visual words to the query

Strong spatial model prevents ‘drift’ by discarding false positives

[Chum, Philbin, Sivic, Isard, Zisserman, ICCV’07; Chum, Mikulik, Perdoch, Matas, CVPR’11]
Visual query expansion - overview

1. Original query

2. Initial retrieval set

3. Spatial verification

4. New enhanced query

5. Additional retrieved images
Query Expansion

Query Image

Originally retrieved image

Originally not retrieved
Query Expansion
Query Expansion
Query Expansion
Query Expansion

New expanded query is formed as

- the average of visual word vectors of spatially verified returns
- only inliers are considered
- regions are back-projected to the original query image
Demo
Quantization errors

Typically, quantization has a significant impact on the final performance of the system [Sivic03,Nister06,Philbin07]

Quantization errors split features that should be grouped together and confuse features that should be separated
Overcoming quantization errors

- Soft-assign each descriptor to multiple cluster centers [Philbin et al. 2008, Van Gemert et al. 2008]

Learning a vocabulary to overcome quantization errors [Mikulik et al. ECCV 2010, Philbin et al. ECCV 2010]
Beyond bag-of-visual-words I.

Hamming embedding [Jegou&Schmid 2008]

• Standard quantization using bag-of-visual-words
• Additional localization in the Voronoi cell by a binary signature
Beyond bag-of-visual-words II.

VLAD – Vector of locally aggregated descriptors [Jegou et al. 2010] but see also [Perronin et al. 2010]

Measure (and quantize) the difference vectors from the cluster center.

More next lecture (C. Schmid)
Locality-constrained linear coding.
[Wang et al. CVPR 2010]

- Represent data point as a linear combination of nearby cluster centers.
- Store the coefficients of linear combination.

Used for category-level classification.

Connection to sparse coding - more at lecture 5 (J. Ponce)
Other recent work

Learning a vocabulary to overcome quantization errors
[Mikulik et al. ECCV 2010, Philbin et al. ECCV 2010]

Large scale image clustering [Chum et al. CVPR 2009, Philbin et al. IJCV 2010, Li et al., ECCV 2008]

Matching in structured datasets (3D landmarks or street-view images)
What objects/scenes local regions do not work on?
What objects/scenes local regions do not work on?

E.g. texture-less objects, objects defined by shape, deformable objects, wiry objects.
Example applications of large scale visual search and matching
Application: Internet-based inpainting

Photo-editing using images of the same place

[Whyte, Sivic and Zisserman, 2009], but see also [Hays and Efros, 2007].
Application: place recognition (retrieval in a structured (on a map) database)

[Knopp, Sivic, Pajdla, ECCV 2010]
Correctly recognized examples
More correctly recognized examples

<table>
<thead>
<tr>
<th>Query</th>
<th>Top ranked image</th>
<th>Query</th>
<th>Top ranked image</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Matching and 3D reconstruction in large unstructured datasets.

See also [Havlena, Torrii, Knopp and Pajdla, CVPR 2009].
Example of the final 3D point cloud and cameras

57,845 downloaded images, 11,868 registered images. This video: 4,619 images.
Mobile visual search

Bing visual scan

Snaptell.com, Moodstocks.com

and others...
Example

Vision Science: Photons to Phenomenology (Hardcover)
Stephen E. Palmer

Vision Science
Photons to Phenomenology
Stephen E. Palmer

$88.00 $83.35
Ships from and sold by Amazon.com
Eligible for FREE Super Saver Shipping

In Stock

Slide credit: I. Laptev
kooaba Paperboy delivers digital extras for print
by kooabaChannel
What next?

Searchable visual memory?

Figure: iphoneography.com
What next?

Visual search for texture-less, wiry, or deformable objects..

.. also faces/people and their actions
[see I. Laptev’s lectures]
The IKEA problem

Recognize all IKEA furniture in all YouTube videos
Example a recent work:
Smooth object retrieval using a bag of boundaries
by Arandjelovic and Zisserman, ICCV 2011

Query

Retrieved matches
Category-level visual search [See later lectures.]

Query

See also e.g. [Torresani et al. ECCV 2010]
Recognize and match non-photographic depictions
Automatic alignment of paintings and photographs depicting the same 3D scene [Russell, Sivic, Ponce and Dessales, 2011]