Instance-level recognition:
Local invariant features

Cordelia Schmid
INRIA, Grenoble
Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance
Local features

Several / many local descriptors per image
Robust to occlusion/clutter + no object segmentation required

Photometric: distinctive
Invariant: to image transformations + illumination changes
Local features: interest points
Local features: Contours/segments
Local features: segmentation
Application: Matching

Find corresponding locations in the image
Illustration – Matching

Interest points extracted with Harris detector (~ 500 points)
Interest points matched based on cross-correlation (188 pairs)
Illustration – Matching

Global constraint - Robust estimation of the fundamental matrix

99 inliers

89 outliers
Application: Panorama stitching
Application: Instance-level recognition

Search for particular objects and scenes in large databases
Finding the object despite possibly large changes in scale, viewpoint, lighting and partial occlusion

→ requires invariant description
Difficulties

• Very large images collection → need for efficient indexing

 – Flickr has 2 billion photographs, more than 1 million added daily

 – Facebook has 15 billion images (~27 million added daily)

 – Large personal collections

 – Video collections, i.e., YouTube
Instance-level recognition: Approach

- Image content is transformed into local features invariant to geometric and photometric transformations
- Matching local invariant descriptors
Applications

Search photos on the web for particular places

Find these landmarks...in these images and 1M more
Applications

- Take a picture of a product or advertisement → find relevant information on the web

PRENEZ EN PHOTO L'AFFICHE !

Accédez à la bande annonce, à tous les horaires et à la réservation.

Avec la participation de

[Pixee – Milpix]
Applications

- Finding stolen/missing objects in a large collection
Applications

- Copy detection for images and videos

Query video

Search in 200h of video
Applications

- Sony Aibo – Robotics
 - Recognize docking station
 - Communicate with visual cards
 - Place recognition
 - Loop closure in SLAM
Local features - history

• Line segments [Lowe’87, Ayache’90]

• Interest points & cross correlation [Z. Zhang et al. 95]

• Rotation invariance with differential invariants [Schmid&Mohr’96]

• Scale & affine invariant detectors [Lindeberg’98, Lowe’99, Tuytelaars&VanGool’00, Mikolajczyk&Schmid’02, Matas et al.’02]

• Dense detectors and descriptors [Leung&Malik’99, Fei-Fei&Perona’05, Lazebnik et al.’06]

• Contour and region (segmentation) descriptors [Shotton et al.’05, Opelt et al.’06, Ferrari et al.’06, Leordeanu et al.’07]
Local features

1) Extraction of local features
 - Contours/segments
 - Interest points & regions
 - Regions by segmentation
 - Dense features, points on a regular grid

2) Description of local features
 - Dependant on the feature type
 - Contours/segments \rightarrow angles, length ratios
 - Interest points \rightarrow greylevels, gradient histograms
 - Regions (segmentation) \rightarrow texture + color distributions
Line matching

- Extraction de contours
 - Zero crossing of Laplacian
 - Local maxima of gradients

- Chain contour points (hysteresis)

- Extraction of line segments

- Description of segments
 - Mi-point, length, orientation, angle between pairs etc.
Experimental results – line segments

images 600 x 600
Experimental results – line segments

248 / 212 line segments extracted
Experimental results – line segments

89 matched line segments - 100% correct
Experimental results – line segments

3D reconstruction
Problems of line segments

• Often only partial extraction
 – Line segments broken into parts
 – Missing parts

• Information not very discriminative
 – 1D information
 – Similar for many segments

• Potential solutions
 – Pairs and triplets of segments
 – Interest points
Overview

• Introduction to local features

• **Harris interest points + SSD, ZNCC, SIFT**

• Scale & affine invariant interest point detectors

• Evaluation and comparison of different detectors

• Region descriptors and their performance
Harris detector [Harris & Stephens’88]

Based on the idea of auto-correlation

Important difference in all directions => interest point
Harris detector

Auto-correlation function for a point \((x, y)\) and a shift \((\Delta x, \Delta y)\)

\[
A(x, y) = \sum_{(x_k, y_k) \in W(x,y)} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2
\]
Auto-correlation function for a point \((x, y)\) and a shift \((\Delta x, \Delta y)\)

\[
A(x, y) = \sum_{(x_k, y_k) \in W(x, y)} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2
\]

\(W\)

\(A(x, y)\) \left\{ \begin{array}{c}
\text{small in all directions} \quad \rightarrow \quad \text{uniform region} \\
\text{large in one directions} \quad \rightarrow \quad \text{contour} \\
\text{large in all directions} \quad \rightarrow \quad \text{interest point}
\end{array} \right. \)
Harris detector

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions
Harris detector

Discret shifts are avoided based on the auto-correlation matrix

with first order approximation

\[I(x_k + \Delta x, y_k + \Delta y) = I(x_k, y_k) + (I_x(x_k, y_k) \ I_y(x_k, y_k)) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \]

\[A(x, y) = \sum_{(x_k, y_k) \in W(x, y)} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2 \]

\[= \sum_{(x_k, y_k) \in W} \left(\begin{pmatrix} I_x(x_k, y_k) \\ I_y(x_k, y_k) \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \right)^2 \]
Harris detector

$$=(\Delta x \quad \Delta y) \begin{bmatrix} \sum_{(x_k, y_k) \in W} (I_x(x_k, y_k))^2 & \sum_{(x_k, y_k) \in W} I_x(x_k, y_k)I_y(x_k, y_k) \\ \sum_{(x_k, y_k) \in W} I_x(x_k, y_k)I_y(x_k, y_k) & \sum_{(x_k, y_k) \in W} (I_y(x_k, y_k))^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

Auto-correlation matrix

the sum can be smoothed with a Gaussian

$$=(\Delta x \quad \Delta y) G \bigotimes \begin{bmatrix} I_x^2 & I_xI_y \\ I_xI_y & I_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$
Harris detector

- Auto-correlation matrix

\[A(x, y) = G \otimes \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \]

- captures the structure of the local neighborhood
- measure based on eigenvalues of this matrix
 - 2 strong eigenvalues => interest point
 - 1 strong eigenvalue => contour
 - 0 eigenvalue => uniform region
Interpreting the eigenvalues

Classification of image points using eigenvalues of autocorrelation matrix:

- \(\lambda_2 \), if \(\lambda_2 >> \lambda_1 \), then "Edge"
- \(\lambda_1 \) and \(\lambda_2 \) are large, \(\lambda_1 \sim \lambda_2 \), then "Corner"
- \(\lambda_1 \) and \(\lambda_2 \) are small, then "Flat" region
- \(\lambda_1 \), if \(\lambda_1 >> \lambda_2 \), then "Edge"
Corner response function

\[R = \det(A) - \alpha \text{trace}(A)^2 = \lambda_1 \lambda_2 - \alpha(\lambda_1 + \lambda_2)^2 \]

\(\alpha \): constant (0.04 to 0.06)
Harris detector

• Cornerness function

\[f = \det(A) - k(\text{trace}(A))^2 = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2 \]

Reduces the effect of a strong contour

• Interest point detection
 – Threshold (absolut, relatif, number of corners)
 – Local maxima

\[f > \text{thresh} \land \forall x, y \in 8-neighbourhood \quad f(x, y) \geq f(x', y') \]
Harris Detector: Steps
Harris Detector: Steps

Compute corner response R
Harris Detector: Steps

Find points with large corner response: $R > \text{threshold}$.
Harris Detector: Steps

Take only the points of local maxima of R
Harris Detector: Steps
Harris detector: Summary of steps

1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix A in a Gaussian window around each pixel
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function (non-maximum suppression)
Harris - invariance to transformations

- Geometric transformations
 - translation
 - rotation
 - similitude (rotation + scale change)
 - affine (valide for local planar objects)

- Photometric transformations
 - Affine intensity changes (I → a I + b)
Ellipse rotates but its shape (i.e. eigenvalues) remains the same.

Corner response R is invariant to image rotation.
Harris Detector: Invariance Properties

- Affine intensity change
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
 - ✓ Intensity scale: $I \rightarrow a I$

Partially invariant to affine intensity change, dependent on type of threshold
Harris Detector: Invariance Properties

- Scaling

Corner

All points will be classified as edges

Not invariant to scaling
Comparison of patches - SSD

Comparison of the intensities in the neighborhood of two interest points

SSD : sum of square difference

\[
\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} (I_1(x_1 + i, y_1 + j) - I_2(x_2 + i, y_2 + j))^2
\]

Small difference values \(\rightarrow\) similar patches
Comparison of patches

\[
\text{SSD} : \frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} (I_1(x_1 + i, y_1 + j) - I_2(x_2 + i, y_2 + j))^2
\]

Invariance to photometric transformations?

Intensity changes (I \rightarrow I + b)

=> Normalizing with the mean of each patch

\[
\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} ((I_1(x_1 + i, y_1 + j) - m_1) - (I_2(x_2 + i, y_2 + j) - m_2))^2
\]

Intensity changes (I \rightarrow aI + b)

=> Normalizing with the mean and standard deviation of each patch

\[
\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1 + i, y_1 + j) - m_1}{\sigma_1} - \frac{I_2(x_2 + i, y_2 + j) - m_2}{\sigma_2} \right)^2
\]
Cross-correlation ZNCC

zero normalized SSD

\[
\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1 + i, y_1 + j) - m_1}{\sigma_1} - \frac{I_2(x_2 + i, y_2 + j) - m_2}{\sigma_2} \right)^2
\]

ZNCC: zero normalized cross correlation

\[
\frac{1}{(2N+1)^2} \sum_{i=-N}^{N} \sum_{j=-N}^{N} \left(\frac{I_1(x_1 + i, y_1 + j) - m_1}{\sigma_1} \right) \left(\frac{I_2(x_2 + i, y_2 + j) - m_2}{\sigma_2} \right)
\]

ZNCC values between -1 and 1, 1 when identical patches in practice threshold around 0.5
Local descriptors

- Greyvalue derivatives
- Differential invariants [Koenderink’87]
- SIFT descriptor [Lowe’99]
Greyvalue derivatives: Image gradient

- The gradient of an image: \(\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \)

- The gradient points in the direction of most rapid increase in intensity

- The gradient direction is given by \(\theta = \tan^{-1} \left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \right) \)
 - how does this relate to the direction of the edge?

- The edge strength is given by the gradient magnitude

\[
\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}
\]
Differentiation and convolution

- Recall, for 2D function, $f(x,y)$:

\[
\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon} \right)
\]

- We could approximate this as

\[
\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}
\]

- Convolution with the filter

\[
\begin{bmatrix}
-1 & 1
\end{bmatrix}
\]
Finite difference filters

- Other approximations of derivative filters exist:

\[
\begin{align*}
\text{Prewitt:} & & M_x &= \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} \quad ; \quad M_y &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix} \\
\text{Sobel:} & & M_x &= \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \quad ; \quad M_y &= \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} \\
\text{Roberts:} & & M_x &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad ; \quad M_y &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\end{align*}
\]
Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

\[f(x) \]

\[\frac{d}{dx} f(x) \]

- Where is the edge?
Solution: smooth first

To find edges, look for peaks in \(\frac{d}{dx} (f * g) \)
Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: \(\frac{d}{dx} (f * g) = f * \frac{d}{dx} g \)

- This saves us one operation:
Local descriptors

- Greyvalue derivatives
 - Convolution with Gaussian derivatives

\[
v(x, y) = \begin{bmatrix}
I(x, y) * G(\sigma) \\
I(x, y) * G_x(\sigma) \\
I(x, y) * G_y(\sigma) \\
I(x, y) * G_{xx}(\sigma) \\
I(x, y) * G_{xy}(\sigma) \\
I(x, y) * G_{yy}(\sigma) \\
\vdots
\end{bmatrix}
\]

\[
I(x, y) * G(\sigma) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x', y', \sigma) I(x - x', y - y') dx' dy'
\]

\[
G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)
\]
Local descriptors

Notation for greyvalue derivatives [Koenderink’87]

\[
v(x, y) = \begin{pmatrix}
I(x, y) \ast G(\sigma) \\
I(x, y) \ast G_x(\sigma) \\
I(x, y) \ast G_y(\sigma) \\
I(x, y) \ast G_{xx}(\sigma) \\
I(x, y) \ast G_{xy}(\sigma) \\
I(x, y) \ast G_{yy}(\sigma) \\
\vdots \\
I(x, y) \ast G_{yy}(\sigma)
\end{pmatrix} = \begin{pmatrix}
L(x, y) \\
L_x(x, y) \\
L_y(x, y) \\
L_{xx}(x, y) \\
L_{xy}(x, y) \\
L_{yy}(x, y) \\
\vdots \\
L_{yy}(x, y)
\end{pmatrix}
\]

Invariance?
Local descriptors – rotation invariance

Invariance to image rotation: differential invariants \([Koen87]\)

Gradient magnitude

Laplacian

\[
\begin{bmatrix}
L \\
L_x L_x + L_y L_y \\
L_{xx} L_x + 2L_{xy} L_y + L_{yy} L_{yy} \\
L_{xx} + L_{yy} \\
L_{xx} L_{xx} + 2L_{xy} L_{xy} + L_{yy} L_{yy} \\
\cdots \\
\cdots \\
\cdots \\
\cdots \\
\end{bmatrix}
\]
Laplacian of Gaussian (LOG)

\[LOG = G_{xx}(\sigma) + G_{yy}(\sigma) \]
SIFT descriptor [Lowe’99]

- **Approach**
 - 8 orientations of the gradient
 - 4x4 spatial grid
 - Dimension 128
 - soft-assignment to spatial bins
 - normalization of the descriptor to norm one
 - comparison with Euclidean distance
Local descriptors - rotation invariance

• Estimation of the dominant orientation
 – extract gradient orientation
 – histogram over gradient orientation
 – peak in this histogram

• Rotate patch in dominant direction
Local descriptors – illumination change

- Robustness to illumination changes

 in case of an affine transformation \(I_1(x) = aI_2(x) + b \)
Local descriptors – illumination change

• Robustness to illumination changes in case of an affine transformation \(I_1(x) = aI_2(x) + b \)

• Normalization of derivatives with gradient magnitude

\[
\frac{(L_{xx} + L_{yy})}{\sqrt{L_x L_x + L_y L_y}}
\]
Local descriptors – illumination change

- Robustness to illumination changes in case of an affine transformation \(I_1(x) = aI_2(x) + b \)

- Normalization of derivatives with gradient magnitude

\[
\frac{(L_{xx} + L_{yy})}{\sqrt{L_x L_x + L_y L_y}}
\]

- Normalization of the image patch with mean and variance
Invariance to scale changes

- Scale change between two images

- Scale factor s can be eliminated

- Support region for calculation!!
 - In case of a convolution with Gaussian derivatives defined by σ

\[
I(x, y) * G(\sigma) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x', y', \sigma) I(x - x', y - y') dx' dy'
\]

\[
G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)
\]