Efficient visual search of local features

Cordelia Schmid
Matches

22 correct matches
Visual search

change in viewing angle
Image search system for large datasets

• **Issues** for very large databases
 • to reduce the query time
 • to reduce the storage requirements
Solution: fast descriptor search

- **Complexity**
 - $O(nd)$ for n features and d dimensions
 - Linear in the number of features / images

- **Speed up individual descriptor vector search**
 - kd-trees (k dim. tree), approximate nearest neighbor search
 - Binary tree in which each node is a k-dimensional point
 - Every split is associated with one dimension
Large scale object/scene recognition

- Each image described by approximately 2000 descriptors
 - 2×10^9 descriptors to index for one million images!

- Database representation in RAM:
 - Size of descriptors: 1 TB, search+memory intractable
Bag-of-features [Sivic&Zisserman'03]

- **“visual words”**:
 - 1 “word” (index) per local descriptor
 - only images ids in inverted file
 => 8 GB fits!

[Chum & al. 2007]
Indexing text with inverted files

Document collection:

<table>
<thead>
<tr>
<th>Term</th>
<th>List of hits (occurrences in documents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
<td>[d1:hit hit hit], [d4:hit hit] …</td>
</tr>
<tr>
<td>Common</td>
<td>[d1:hit hit], [d3: hit], [d4: hit hit hit] …</td>
</tr>
<tr>
<td>Sculpture</td>
<td>[d2:hit], [d3: hit hit hit] …</td>
</tr>
</tbody>
</table>

Need to map feature descriptors to “visual words”
Visual words: main idea

Map high-dimensional descriptors to tokens/words by quantizing the feature space

- Quantize via clustering, let cluster centers be the prototype "words"

K. Grauman, B. Leibe
Visual words: main idea

Map high-dimensional descriptors to tokens/words by quantizing the feature space

- Determine which word to assign to each new image region by finding the closest cluster center.
• Example: each group of patches belongs to the same visual word

Figure from Sivic & Zisserman, ICCV 2003
K-means clustering

- Minimizing sum of squared Euclidean distances between points x_i and their nearest cluster centers

Algorithm:
- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to it

- Local minimum, solution dependent on initialization

- Initialization important, run several times, select best
Visual words

• Map descriptors to words by quantizing the feature space
 – Quantize via k-means clustering to obtain visual words
 – Assign descriptor to closest visual word

• Bag-of-features as approximate nearest neighbor search

Bag-of-features matching function

\[f_q(x, y) = \delta_{q(x), q(y)} \]

where \(q(x) \) is a quantizer, i.e., assignment to visual word and \(\delta_{a,b} \) is the Kronecker operator (\(\delta_{a,b}=1 \) iff \(a=b \))
Inverted file index for images comprised of visual words

- Score each image by the number of common visual words (tentative correspondences)
- Dot product between bag-of-features
- Fast for sparse vectors!
Inverted file index for images comprised of visual words

- Weighting with tf-idf score: weight visual words based on their frequency

 - Tf: normalized term (word) t_i frequency in a document d_j
 \[
 tf_{ij} = \frac{n_{ij}}{\sum_k n_{kj}}
 \]

 - Idf: inverse document frequency, total number of documents divided by number of documents containing the term t_i
 \[
 idf_i = \log \frac{|D|}{|\{d : t_i \in d\}|}
 \]

 Tf-Idf: $tf - idf_{ij} = tf_{ij} \cdot idf_i$
Approximate nearest neighbor search evaluation

• ANN algorithms usually returns a short-list of nearest neighbors
 – this short-list is supposed to contain the NN with high probability
 – exact search may be performed to re-order this short-list

• Proposed quality evaluation of ANN search: trade-off between
 – **Accuracy:** NN recall = probability that the NN is in this list
 against
 – **Ambiguity removal** = proportion of vectors in the short-list
 - the lower this proportion, the more information we have about the vector
 - the lower this proportion, the lower the complexity if we perform exact search on the short-list

• ANN search algorithms usually have some parameters to handle this trade-off
• ANN algorithms return a list of potential neighbors

• **Accuracy:** NN recall = probability that the NN is in this list

• **Ambiguity removal:** = proportion of vectors in the short-list

• In BOF, this trade-off is managed by the number of clusters k
Vocabulary size

• The intrinsic matching scheme performed by BOF is weak
 – for a “small” visual dictionary: too many false matches
 – for a “large” visual dictionary: complexity, true matches are missed

• No good trade-off between “small” and “large”!
 – either the Voronoi cells are too big
 – or these cells can’t absorb the descriptor noise
 → intrinsic approximate nearest neighbor search of BOF is not sufficient
Hierarchical clustering

• Hierarchical clustering: fast assignment in case of large vocabularies
 – Vocabulary tree [Nister & Stewenius, CVPR 2006]
• Combined with multiple assignment
20K visual word: false matches
200K visual word: good matches missed
Hamming Embedding [Jegou et al. ECCV’08]

Representation of a descriptor \(x \)
- Vector-quantized to \(q(x) \) as in standard BOF
+ short binary vector \(b(x) \) for an additional localization in the Voronoi cell

Two descriptors \(x \) and \(y \) match if

\[
f_{\text{HE}}(x, y) = \begin{cases}
 (\text{tf-idf}(q(x)))^2 & \text{if } q(x) = q(y) \\
 0 & \text{otherwise}
\end{cases}
\]

where \(h(a,b) \) Hamming distance
Hamming Embedding

• Nearest neighbors for Hamming distance ≈ those for Euclidean distance
 → a metric in the embedded space reduces dimensionality curse effects

• Efficiency
 – Hamming distance = very few operations
 – Fewer random memory accesses: 3 x faster than BOF with same dictionary size!
Hamming Embedding

• **Off-line** (given a quantizer)
 – draw an orthogonal projection matrix P of size $d_b \times d$
 → this defines d_b random projection directions
 – for each Voronoi cell and projection direction, compute the median value for a learning set

• **On-line**: compute the binary signature $b(x)$ of a given descriptor
 – project x onto the projection directions as $z(x) = (z_1, \ldots z_{db})$
 – $b_i(x) = 1$ if $z_i(x)$ is above the learned median value, otherwise 0
ANN evaluation of Hamming Embedding

compared to BOW: at least 10 times less points in the short-list for the same level of accuracy

Hamming Embedding provides a much better trade-off between recall and ambiguity removal

Hamming Embedding provides a much better trade-off between recall and ambiguity removal.
Matching points - 20k word vocabulary

201 matches

240 matches

Many matches with the non-corresponding image!
Matching points - 200k word vocabulary

69 matches

35 matches

Still many matches with the non-corresponding one
Matching points - 20k word vocabulary + HE

83 matches

8 matches

10x more matches with the corresponding image!
Bag-of-features [Sivic&Zisserman’03]

- “visual words”:
 - 1 “word” (index) per local descriptor
 - only images ids in inverted file
 => 8 GB fits!

Inverted file

Query image

- Harris-Hessian-Laplace regions + SIFT descriptors
- Set of SIFT descriptors
- Bag-of-features processing + tf-idf weighting
- Sparse frequency vector
- Centroids (visual words)

Re-ranked list

Geometric verification

Ranked image short-list

[Chum & al. 2007]
Geometric verification

Use the **position** and **shape** of the underlying features to improve retrieval quality

Both images have many matches – which is correct?
Geometric verification

We can measure **spatial consistency** between the query and each result to improve retrieval quality.

- Many spatially consistent matches – **correct result**
- Few spatially consistent matches – **incorrect result**
Geometric verification

Gives localization of the object
Geometric verification

- Remove outliers, matches contain a high number of incorrect ones
- Estimate geometric transformation
- Robust strategies
 - RANSAC
 - Hough transform
Geometric verification – example

1. Query

2. Initial retrieval set (bag of words model)

3. Spatial verification (re-rank on # of inliers)
Ground truth obtained for 11 landmarks
Evaluate performance by mean Average Precision
Measuring retrieval performance: Precision - Recall

- Precision: % of returned images that are relevant
- Recall: % of relevant images that are returned

![Graph showing precision vs recall](image)
Average Precision

- A good AP score requires both high recall and high precision
- Application-independent

Performance measured by mean Average Precision (mAP) over 55 queries on 100K or 1.1M image datasets
INRIA holidays dataset

- Evaluation for the INRIA holidays dataset, 1491 images
 - 500 query images + 991 annotated true positives
 - Most images are holiday photos of friends and family
- 1 million & 10 million distractor images from Flickr
- Vocabulary construction on a different Flickr set
- Almost real-time search speed

- Evaluation metric: mean average precision (in [0,1], bigger = better)
 - Average over precision/recall curve
Holiday dataset – example queries
Dataset: Venice Channel

Query

Base 1

Base 2

Base 3

Base 4
Dataset: San Marco square
Example distractors - Flickr
Experimental evaluation

- Evaluation on our holidays dataset, 500 query images, 1 million distracter images
- Metric: mean average precision (in [0,1], bigger = better)
Results – Venice Channel

Demo at http://bigimbaz.inrialpes.fr
Towards larger databases?

- BOF can handle up to ~10 M d’images
 - with a limited number of descriptors per image
 - 40 GB of RAM
 - search = 2 s

- Web-scale = billions of images
 - With 100 M per machine
 - search = 20 s, RAM = 400 GB
 - not tractable!
Recent approaches for very large scale indexing

- Hessian-Affine regions + SIFT descriptors
- Bag-of-features processing + tf-idf weighting
- Sparse frequency vector
- Centroids (visual words)
- Vector compression
- Vector search
- Re-ranked list
- Geometric verification
- Ranked image short-list

Query image

Set of SIFT descriptors
Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. ‘07–’09]
- GIST descriptors with Spectral Hashing [Torralba et al. ‘08]
- Compressing the BoF representation (miniBof) [Jegou et al. ‘09]
- Aggregating local desc into a compact image representation [Jegou et al. ‘10]
- Efficient object category recognition using classemes [Torresani et al.’10]
Compact image representation

- Aim: improving the tradeoff between
 - search speed
 - memory usage
 - search quality

- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm

[H. Jegou et al., Aggregating local desc into a compact image representation, CVPR’10]
Aggregation of local descriptors

- Problem: represent an image by a single fixed-size vector:

 set of n local descriptors \rightarrow 1 vector

- Most popular idea: BoF representation [Sivic & Zisserman 03]

 - sparse vector
 - highly dimensional
 \rightarrow high dimensionality reduction introduces loss

- Alternative: Fisher Kernels [Perronnin et al 07]

 - non sparse vector
 - excellent results with a small vector dimensionality
 \rightarrow our method (VLAD) in the spirit of this representation
VLAD: vector of locally aggregated descriptors

- Simplification of Fisher kernels

- Learning: a vector quantifier (k-means)
 - output: \(k\) centroids (visual words): \(c_1, \ldots, c_i, \ldots c_k\)
 - centroid \(c_i\) has dimension \(d\)

- For a given image
 - assign each descriptor to closest center \(c_i\)
 - accumulate (sum) descriptors per cell
 \[v_i := v_i + (x - c_i) \]

- VLAD (dimension \(D = k \times d\))

- The vector is L2-normalized
VLADs for corresponding images

SIFT-like representation per centroid (+ components: blue, - components: red)

- good coincidence of energy & orientations
VLAD performance and dimensionality reduction

- We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP, %)
- Dimension is reduced to from D to D’ dimensions with PCA

<table>
<thead>
<tr>
<th>Aggregator</th>
<th>k</th>
<th>D</th>
<th>D’=D (no reduction)</th>
<th>D’=128</th>
<th>D’=64</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoF</td>
<td>1,000</td>
<td>1,000</td>
<td>41.4</td>
<td>44.4</td>
<td>43.4</td>
</tr>
<tr>
<td>BoF</td>
<td>20,000</td>
<td>20,000</td>
<td>44.6</td>
<td>45.2</td>
<td>44.5</td>
</tr>
<tr>
<td>BoF</td>
<td>200,000</td>
<td>200,000</td>
<td>54.9</td>
<td>43.2</td>
<td>41.6</td>
</tr>
<tr>
<td>VLAD</td>
<td>16</td>
<td>2,048</td>
<td>49.6</td>
<td>49.5</td>
<td>49.4</td>
</tr>
<tr>
<td>VLAD</td>
<td>64</td>
<td>8,192</td>
<td>52.6</td>
<td>51.0</td>
<td>47.7</td>
</tr>
<tr>
<td>VLAD</td>
<td>256</td>
<td>32,768</td>
<td>57.5</td>
<td>50.8</td>
<td>47.6</td>
</tr>
</tbody>
</table>

Observations:
- VLAD better than BoF for a given descriptor size
 → comparable to Fisher kernels for these operating points
- Choose a small D if output dimension D’ is small
Product quantization for nearest neighbor search

- Vector split into m subvectors: $y \rightarrow [y_1 | \ldots | y_m]$

- Subvectors are quantized separately by quantizers $q(y) = [q_1(y_1) | \ldots | q_m(y_m)]$ where each q_i is learned by k-means with a limited number of centroids

- Example: $y = 128$-dim vector split in 8 subvectors of dimension 16
 - each subvector is quantized with 256 centroids -> 8 bit
 - very large codebook $256^8 \sim 1.8 \times 10^{19}$

\Rightarrow 8 subvectors x 8 bits = 64-bit quantization index
Joint optimization of VLAD and dimension reduction-indexing

- For VLAD
 - The larger k, the better the raw search performance
 - But large k produce large vectors, that are harder to index

- Optimization of the vocabulary size
 - Fixed output size (in bytes)
 - D' computed from k via the joint optimization of reduction/indexing
 - Only k has to be set

 ➔ end-to-end parameter optimization
Results on the Holidays dataset with various quantization parameters
Results on standard datasets

- **Datasets**
 - University of Kentucky benchmark score: nb relevant images, max: 4
 - INRIA Holidays dataset score: mAP (%)

<table>
<thead>
<tr>
<th>Method</th>
<th>bytes</th>
<th>UKB</th>
<th>Holidays</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoF, k=20,000</td>
<td>10K</td>
<td>2.92</td>
<td>44.6</td>
</tr>
<tr>
<td>BoF, k=200,000</td>
<td>12K</td>
<td>3.06</td>
<td>54.9</td>
</tr>
<tr>
<td>miniBOF</td>
<td>20</td>
<td>2.07</td>
<td>25.5</td>
</tr>
<tr>
<td>miniBOF</td>
<td>160</td>
<td>2.72</td>
<td>40.3</td>
</tr>
<tr>
<td>VLAD k=16, ADC 16 x 8</td>
<td>16</td>
<td>2.88</td>
<td>46.0</td>
</tr>
<tr>
<td>VLAD k=64, ADC 32 x10</td>
<td>40</td>
<td>3.10</td>
<td>49.5</td>
</tr>
</tbody>
</table>

\(D' = 64\) for \(k=16\) and \(D' = 96\) for \(k=64\)

ADC (subvectors) x (bits to encode each subvector)

miniBOF: “Packing Bag-of-Features”, ICCV’09
Large scale experiments (10 million images)

- Exhaustive search of VLADs, D’=64
 - 4.77s

- With the product quantizer
 - Exhaustive search with ADC: 0.29s
 - Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file
Large scale experiments (10 million images)

Database size: Holidays+images from Flickr

Timings

- ADC: 0.286s
- IVFADC: 0.014s
- SH \approx 0.267s