Bag-of-features for category recognition

Cordelia Schmid
Visual search

- Particular objects and scenes, large databases
Category recognition

- Image classification: assigning a class label to the image

Car: present
Cow: present
Bike: not present
Horse: not present
...
Category recognition

- Image classification: assigning a class label to the image

 ![Image with car and cow]

 Car: present
 Cow: present
 Bike: not present
 Horse: not present
 ...

- Object localization: define the location and the category

 ![Object localization diagram]
Difficulties: within object variations

Variability: Camera position, Illumination, Internal parameters

Within-object variations
Difficulties: within-class variations
Category recognition

• Robust image description
 – Appropriate descriptors for categories

• Statistical modeling and machine learning for vision
 – Use and validation of appropriate techniques
Why machine learning?

- Early approaches: simple features + handcrafted models
- Can handle only few images, simples tasks

Why machine learning?

- Early approaches: manual programming of rules
- Tedious, limited and does not take into account the data

![Diagram](image)

Figure 3. A system developed in 1978 by Ohta, Kanade and Sakai [33, 32] for knowledge-based interpretation of outdoor natural scenes. The system is able to label an image (c) into semantic classes: S-sky, T-tree, R-road, B-building, U-unknown.

Why machine learning?

- Today lots of data, complex tasks

Internet images, personal photo albums

Movies, news, sports
Why machine learning?

- Today lots of data, complex tasks

Surveillance and security

Medical and scientific images
Why machine learning?

• Today: Lots of data, complex tasks

• Instead of trying to encode rules directly, learn them from examples of inputs and desired outputs
Types of learning problems

• Supervised
 – Classification
 – Regression
• Unsupervised
• Semi-supervised
• Active learning
• ….
Supervised learning

Given training examples of inputs and corresponding outputs, produce the “correct” outputs for new inputs.

Two main scenarios:

- **Classification**: outputs are discrete variables (category labels). Learn a decision boundary that separates one class from the other.

- **Regression**: also known as “curve fitting” or “function approximation.” Learn a continuous input-output mapping from examples (possibly noisy).
Unsupervised Learning

• Given only *unlabeled* data as input, learn some sort of structure

• The objective is often more vague or subjective than in supervised learning. This is more of an exploratory/descriptive data analysis
Unsupervised Learning

- **Clustering**
 - Discover groups of “similar” data points
Unsupervised Learning

- **Quantization**
 - Map a continuous input to a discrete (more compact) output
Unsupervised Learning

- **Dimensionality reduction, manifold learning**
 - Discover a lower-dimensional surface on which the data lives
Unsupervised Learning

- **Density estimation**
 - Find a function that approximates the probability density of the data (i.e., value of the function is high for “typical” points and low for “atypical” points)
 - Can be used for **anomaly detection**
Other types of learning

- **Semi-supervised learning**: lots of data is available, but only small portion is labeled (e.g. since labeling is expensive)
Other types of learning

• **Semi-supervised learning:** lots of data is available, but only small portion is labeled (e.g. since labeling is expensive)
 - Why is learning from labeled and unlabeled data better than learning from labeled data alone?
Other types of learning

- **Active learning**: the learning algorithm can choose its own training examples, or ask a “teacher” for an answer on selected inputs.
Bag-of-features for image classification

- Origin: texture recognition
 - Texture is characterized by the repetition of basic elements or *textons*

Texture recognition

Bag-of-features for image classification

• Origin: bag-of-words
 • Orderless document representation: frequencies of words from a dictionary
 • Classification to determine document categories
Bag-of-features for image classification

Extract regions → Compute descriptors → Find clusters and frequencies → Compute distance matrix → Classification

[Nowak, Jurie & Triggs, ECCV’06], [Zhang, Marszalek, Lazebnik & Schmid, IJCV’07]
Bag-of-features for image classification

Step 1: Extract regions

Step 2: Compute descriptors and find clusters and frequencies

Step 3: Compute distance matrix and classify using SVM

References:
[Nowak, Jurie & Triggs, ECCV’06], [Zhang, Marszalek, Lazebnik & Schmid, IJCV’07]
Bag-of-features for image classification

- Excellent results in the presence of background clutter
Examples for misclassified images

Books- misclassified into faces, faces, buildings

Buildings- misclassified into faces, trees, trees

Cars- misclassified into buildings, phones, phones
Step 1: feature extraction

- Scale-invariant image regions + SIFT (see lecture 2)
 - Affine invariant regions give “too” much invariance
 - Rotation invariance in many cases “too” much invariance

- Dense descriptors
 - Improve results in the context of categories (for most categories)
 - Interest points do not necessarily capture “all” features
Dense features

- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
- Computation of the SIFT descriptor for each grid cells
Step 1: feature extraction

• Scale-invariant image regions + SIFT (see lecture 2)
 – Affine invariant regions give “too” much invariance
 – Rotation invariance for many realistic collections “too” much invariance

• Dense descriptors
 – Improve results in the context of categories (for most categories)
 – Interest points do not necessarily capture “all” features

• Color-based descriptors

• Shape-based descriptors
Step 2: Quantization
Step 2: Quantization
Step 2: Quantization

Visual vocabulary

Clustering
Examples for visual words

<table>
<thead>
<tr>
<th>Category</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airplanes</td>
<td></td>
</tr>
<tr>
<td>Motorbikes</td>
<td></td>
</tr>
<tr>
<td>Faces</td>
<td></td>
</tr>
<tr>
<td>Wild Cats</td>
<td></td>
</tr>
<tr>
<td>Leaves</td>
<td></td>
</tr>
<tr>
<td>People</td>
<td></td>
</tr>
<tr>
<td>Bikes</td>
<td></td>
</tr>
</tbody>
</table>
Step 2: Quantization

- Cluster descriptors
 - K-mean
 - Gaussian mixture model

- Assign each visual word to a cluster
 - Hard or soft assignment

- Build frequency histogram
K-means Clustering: Cost function

- Partition dataset $\{x_1, \ldots, x_N\}$ in K clusters
- Clusters characterized by cluster prototypes $\{\mu_1, \ldots, \mu_K\}$
 - Assign x to closest prototype
- Cost function

$$J(\{\mu_k\}) = \sum_{n=1}^{N} \min_k \|x_n - \mu_k\|^2$$

- Non-differentiable, non-convex
K-means clustering

- We want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers

Algorithm:
- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to it
K-means Clustering: Example

Images showing different clusters in 2D space with varying cluster configurations.
K-means clustering

• Local minimum, solution dependent on initialization

• Initialization important, run several times
 – Select best solution, min cost
From clustering to vector quantization

• Clustering is a common method for learning a visual vocabulary or codebook
 – Unsupervised learning process
 – Each cluster center produced by k-means becomes a codevector
 – Codebook can be learned on separate training set
 – Provided the training set is sufficiently representative, the codebook will be “universal”

• The codebook is used for quantizing features
 – A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 – Codebook = visual vocabulary
 – Codevector = visual word
Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting

- Computational efficiency
 - Vocabulary trees
 (Nister & Stewenius, 2006)

- Soft quantization: Gaussian mixture instead of k-means
Gaussian mixture model (GMM)

Gaussian density

\[\mathcal{N}(\mathbf{x}; \mu, \Sigma) = (2\pi)^{(-d/2)}|\Sigma|^{-1/2} \exp \left(-\frac{1}{2} (\mathbf{x} - \mu)^\top \Sigma^{-1} (\mathbf{x} - \mu) \right) \]
Mixture of Gaussians: weighted sum of Gaussians

\[p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x; \mu_k, \Sigma_k) \]

\[p(z_n = k | x_n) = \frac{p(z_n = k)p(x_n | z_n = k)}{p(x_n)} = \frac{\pi_k \mathcal{N}(x_n; \mu_k, \Sigma_k)}{\sum_{k'} \pi_{k'} \mathcal{N}(x_n; \mu_{k'}, \Sigma_{k'})} \equiv q_{nk} \]
Mixture of Gaussians: Maximum Likelihood Estimation

- Given a data set \(\mathbf{X} = \{\mathbf{x}_1, \ldots, \mathbf{x}_N\} \) find clustering
 - clustering induced by mixture model
 - fit mixture parameters \(\{\pi_k, \mu_k, \Sigma_k\} \) to data

- Find parameters that maximize data (log-)likelihood
 - let the \(\mathbf{x}_n \) independently distributed according to according mixture

\[
\log p(\mathbf{X}) = \log \prod_{n=1}^{N} p(\mathbf{x}_n) = \sum_{n=1}^{N} \log p(\mathbf{x})
\]

\[
= \sum_n \log \left\{ \sum_k \pi_k \mathcal{N}(\mathbf{x}; \mu_k, \Sigma_k) \right\}
\]

- Not convex, and not trivial to maximize.
Mixture of Gaussians: EM algorithm

1. Initialize parameters \(\{\mu_k, \Sigma_k, \pi_k\}\)

2. **Expectation Step**: Evaluate responsibilities:

\[
q_{nk} = p(z_n = k|x_n)
\] \hspace{1cm} (1)

3. **Maximization Step**: Re-estimate parameters:

\[
\pi_{k}^{\text{new}} = \frac{\sum_n q_{nk}}{N}
\]

\[
\mu_{k}^{\text{new}} = \frac{1}{\sum_n q_{nk}} \sum_n q_{nk} x_n
\]

\[
\Sigma_{k}^{\text{new}} = \frac{1}{\sum_n q_{nk}} \sum_n q_{nk} (x_n - \mu_k)(x_n - \mu_k)^\top
\]

4. Evaluate log-likelihood \(\log p(\mathbf{X})\), and check for convergence (go to step 2).
Hard or soft assignment

- **K-means** → hard assignment
 - Assign to the closest cluster center
 - Count number of descriptors assigned to a center

- **Gaussian mixture model** → soft assignment
 - Estimate distance to all centers
 - Sum over number of descriptors

- **Frequency histogram**
Image representation

frequency

codewords