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Goal

• Generating synthetic but 
photo-realistic videos of 
people for training CNNs. 

• Demonstrating advantages of 
this data for training: 

1. Human parts segmentation 

2. Human depth estimation 
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Motivation

• The annotation for 2D human pose is expensive to 
collect and difficult to extend. 

• Manual labeling of 3D human pose, depth and 
motion is impractical. 

•  Synthetic data comes with rich ground truth.

3



Varol et al. Learning from Synthetic Humans, CVPR’17.

Challenges

• Domain adaptation 

• Multi-person 

• Extreme poses
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• Occlusion 

• Object interaction
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SURREAL Dataset 
Synthetic hUmans foR REAL tasks

5

A body with random 3D shape is configured in a random pose and a 2D image 
is rendered from a random camera with random lighting by compositing the 
human model with random texture on top of a random static scene image. 

Together with the RGB image, 2D/3D pose, surface normals, optical flow, depth 
image, and segmentation map for body parts are generated.
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• CAESARS dataset for human body shapes 

• LSUN dataset for static background images 

• CAESARS dataset and another collection of 3D scans for body textures (clothes) 

• CMU dataset for MoCap sequences (marker data)

SURREAL Dataset
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SURREAL Dataset
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https://www.youtube.com/watch?v=SJ0vw6CzS7U
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Tasks
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• Human parts segmentation 

• Human depth estimation
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We build on the stacked hourglass network architecture introduced 
originally for 2D pose estimation problem, extend it for segmentation.

Approach - Segmentation
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2D pose Segmentation

stacked hourglass networks [Newell 2016]

head left arm

MSE for regressing heatmaps Softmax error for classifying pixels as one of the parts 

15 output channels 

(14 parts + backg.)

left arm

right foot

backg.

torso
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Depth is continuous. However we are interested in the global pose of the 
person instead of the precise surface. We discretize depth of a person in 20 
values and pose depth estimation as a classification problem. 

We align depth maps so that the pelvis depth falls on the center of the axis 
and quantize the depth into 19 bins (9 behind and 9 in front of the pelvis).

Approach - Depth
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stacked hourglass networks [Newell 2016]
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Experiments - Datasets
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• SURREAL 
• validation on synthetic test set for segmentation and depth

• Freiburg Sitting People 
• segmentation dataset 

• Human3.6M 
• MoCap dataset with RGB videos 

• we generate ground truth for segmentation and depth

• MPII Human Pose 
• 2D pose dataset 

• no ground truth 

• qualitative results for segmentation and depth
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Experiments - Evaluation Metrics
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• Segmentation 

• Pixel accuracy 

• IOU (intersection over union) 

• Depth 

• RMSE (root mean squared error) 

• st-RMSE (scale and translation invariant RMSE) 

• pose-RMSE (RMSE evaluated on joint locations) 

• st-pose-RMSE
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Experiments - SURREAL Dataset
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Depth

RMSE 72.9 mm

st-RMSE 56.3 mm

Segmentation

IOU 69.13 %

Accuracy 80.61 %
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Experiments - Freiburg Sitting People Dataset
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Experiments - Human3.6M Dataset
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Experiments - Human3.6M Dataset
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(mm)
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Experiments - Human3.6M Dataset
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https://www.youtube.com/watch?v=bK4tAGOWayE
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multi-peopleocclusion

occlusion dress

Experiments - MPII Human Pose Dataset
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MoCap variation

We rendered synthetic data 
using Human3.6M MoCap. 

Tested on real-H3.6M

MoCap source

s-CMU s-H3.6M
depth - RMSE 2.57 2.44
segm - IOU (%) 42.82 48.11
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Experiments - Design choices

19

10 -2 10 -1 10 0 10 1 10 2

percentage of training samples

1.5

2

2.5

3

3.5

4

d
e
p
th

 -
 R

M
S

E

10 -2 10 -1 10 0 10 1 10 2

percentage of training samples

10

20

30

40

50

60

70

se
g

m
 -

 I
O

U
 (

%
)

Amount of data



Varol et al. Learning from Synthetic Humans, CVPR’17.

Conclusions
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• It is possible to learn from synthetic images of people. 

• We have shown the generalization capability of CNNs 
trained on synthetic people on two tasks: 

• segmentation, 

• depth estimation. 

• The rich ground truth can potentially be used for other 
tasks.
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Thanks
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www.di.ens.fr/willow/research/surreal

Data and code are available.

http://www.di.ens.fr/willow/research/surreal

