

Learning from Synthetic Humans

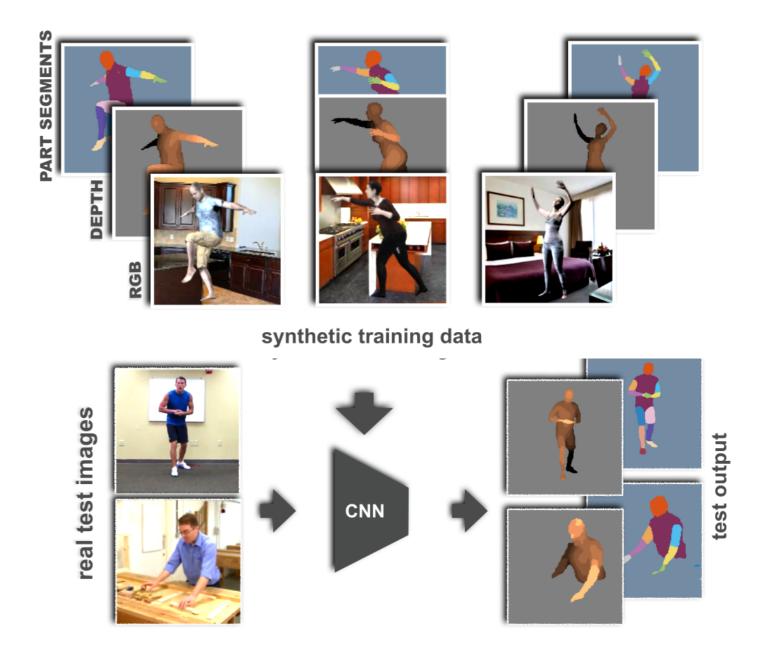
Gül Varol¹, Javier Romero², Xavier Martin¹, Naureen Mahmood², Michael J. Black², Ivan Laptev¹, Cordelia Schmid¹

 1 INRIA 2 MPI

Goal

- Generating synthetic but photo-realistic videos of people for training CNNs.
- Demonstrating advantages of this data for training:
 - 1. Human parts segmentation
 - 2. Human depth estimation

Inría



Motivation

- The annotation for 2D human pose is expensive to collect and difficult to extend.
- Manual labeling of 3D human pose, depth and motion is impractical.
- Synthetic data comes with rich ground truth.

Challenges

- Domain adaptation
- 1 Alexandre

Occlusion

• Multi-person

Object interaction

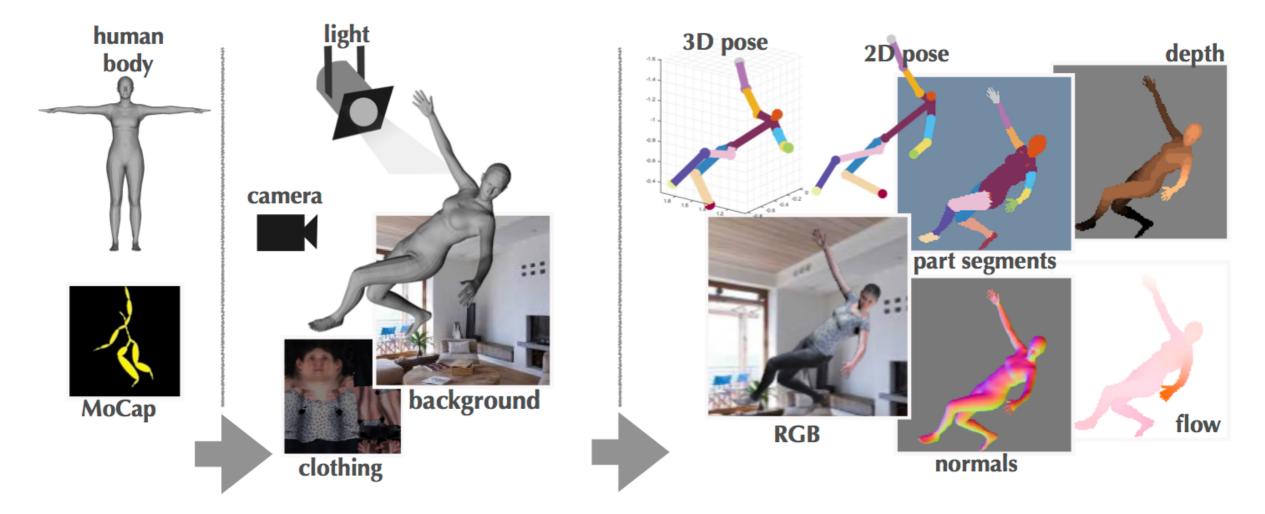
• Extreme poses

Ínría

SURREAL Dataset

Synthetic hUmans foR REAL tasks

A body with *random* 3D shape is configured in a *random* pose and a 2D image is rendered from a *random* camera with *random* lighting by compositing the human model with *random* texture on top of a *random* static scene image.



Together with the RGB image, 2D/3D pose, surface normals, optical flow, depth image, and segmentation map for body parts are generated.

Varol et al. Learning from Synthetic Humans, CVPR'17.

Ínría

SURREAL Dataset

- CAESARS dataset for human body shapes
- LSUN dataset for static background images
- CAESARS dataset and another collection of 3D scans for body textures (clothes)
- CMU dataset for MoCap sequences (marker data)

	#subjects	#sequences	#clips	#frames
Train Test	115 30	1,964 703	55,001 12,528	5,342,090 1,194,662
Total	145	2,607	67,582	6,536,752

SURREAL Dataset

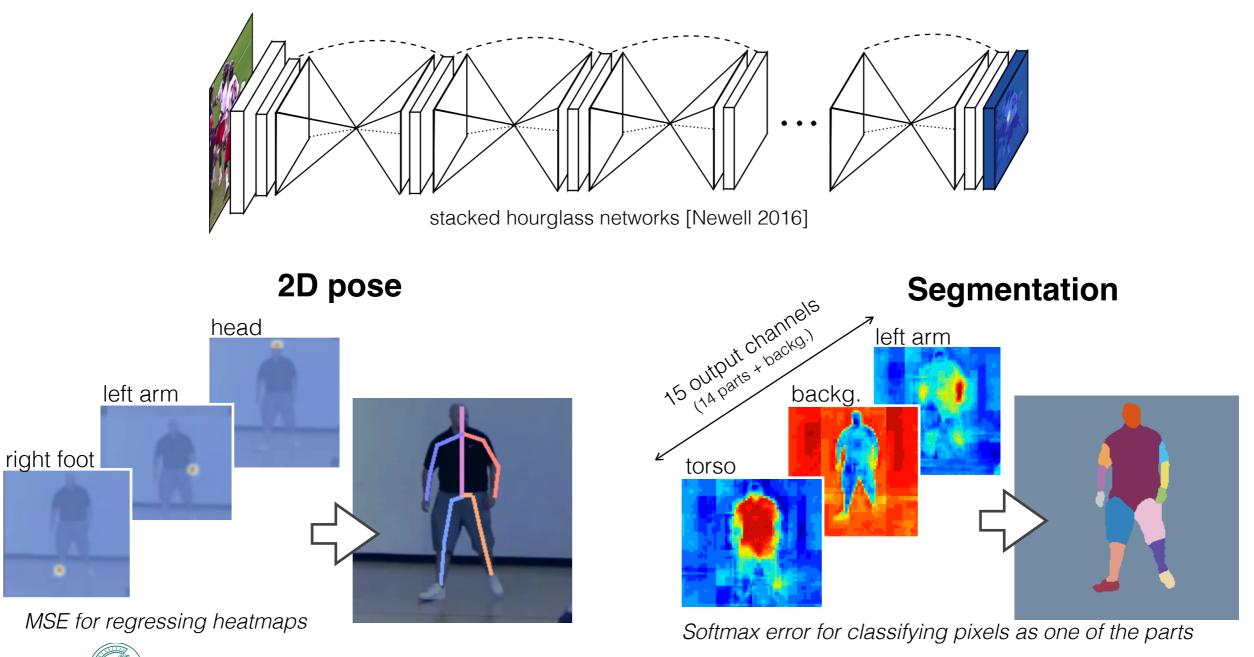
https://www.youtube.com/watch?v=SJ0vw6CzS7U

Tasks

- Human parts segmentation
- Human depth estimation

Approach - Segmentation

We build on the stacked hourglass network architecture introduced originally for 2D pose estimation problem, extend it for segmentation.

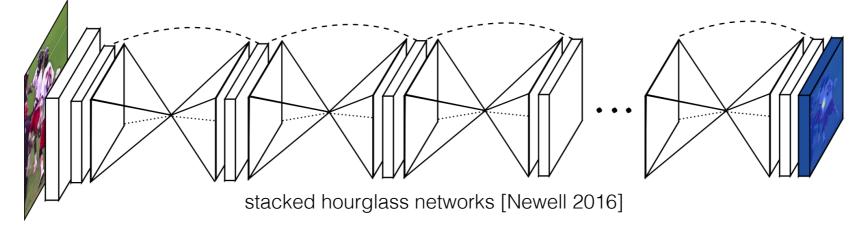


Varol et al. Learning from Synthetic Humans, CVPR'17.

Inría

Approach - Depth

Depth is continuous. However we are interested in the global pose of the person instead of the precise surface. We discretize depth of a person in 20 values and pose depth estimation as a classification problem.



We align depth maps so that the pelvis depth falls on the center of the axis and quantize the depth into 19 bins (9 behind and 9 in front of the pelvis).

Experiments - Datasets

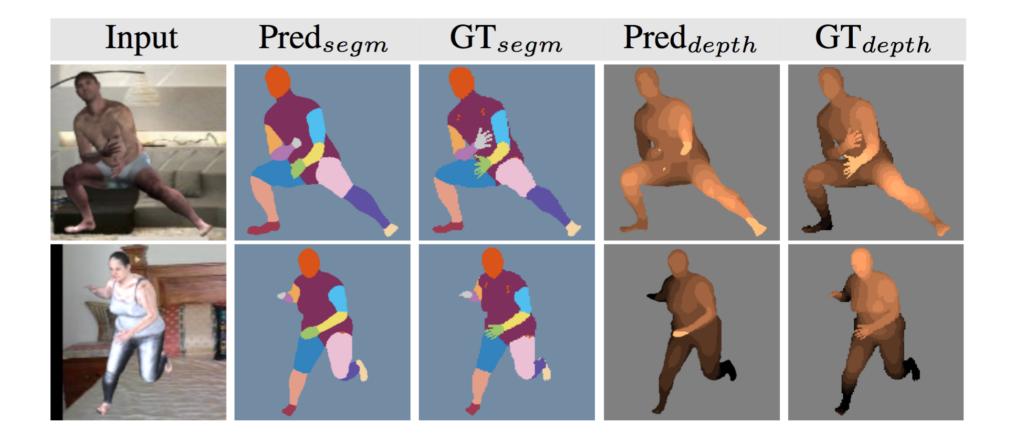
• SURREAL

- validation on synthetic test set for segmentation and depth
- Freiburg Sitting People
 - segmentation dataset
- Human3.6M
 - MoCap dataset with RGB videos
 - we generate ground truth for **segmentation** and **depth**
- MPII Human Pose
 - 2D pose dataset
 - no ground truth
 - $\ensuremath{\, \bullet \,}$ qualitative results for $\ensuremath{segmentation}$ and \ensuremath{depth}

Experiments - Evaluation Metrics

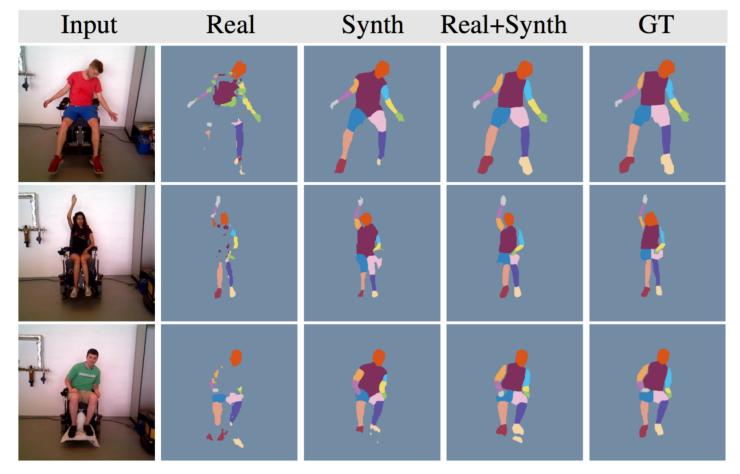
- Segmentation
 - Pixel accuracy
 - IOU (intersection over union)
- Depth
 - RMSE (root mean squared error)
 - st-RMSE (scale and translation invariant RMSE)
 - pose-RMSE (RMSE evaluated on joint locations)
 - st-pose-RMSE

Experiments - SURREAL Dataset



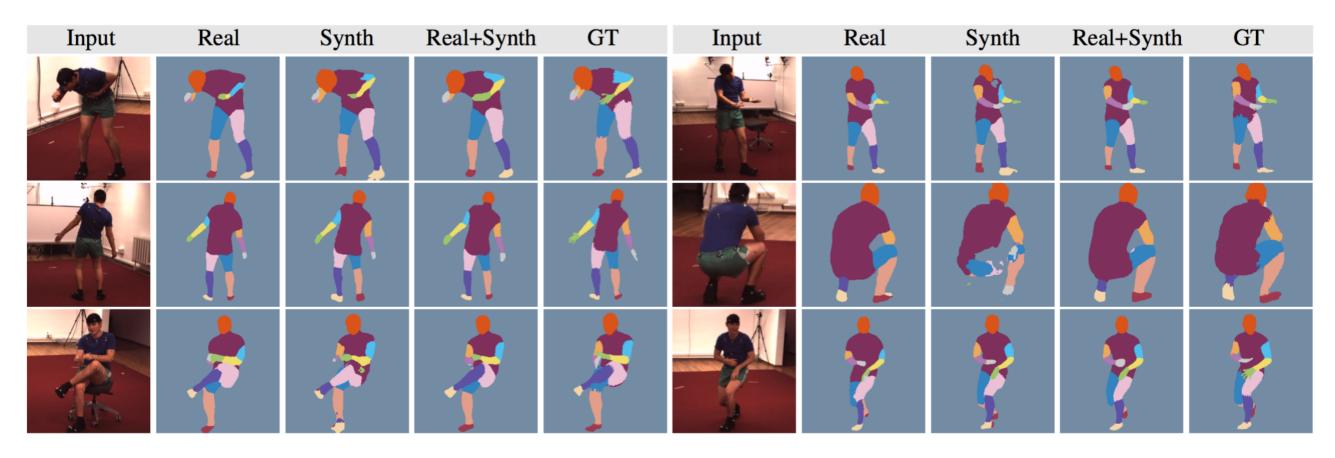
Segmentation		Depth		
IOU	69.13 %	RMSE	72.9 mm	
Accuracy	80.61 %	st-RMSE	56.3 mm	

Experiments - Freiburg Sitting People Dataset



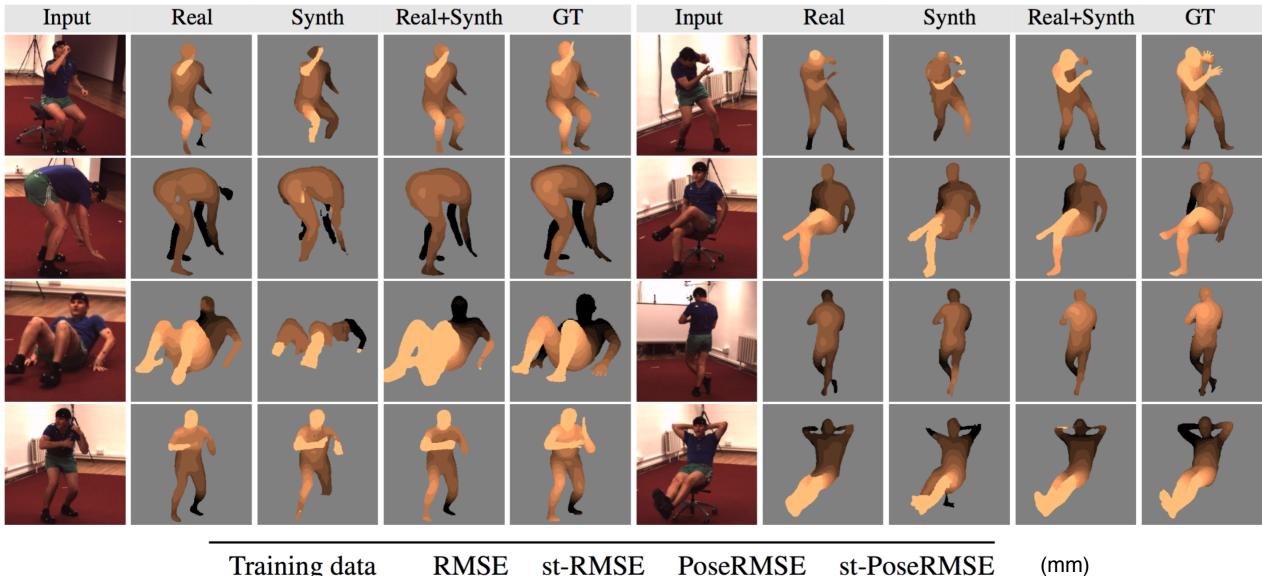
 Training data	Head IOU	Torso IOU	Legs _{up} IOU	mean IOU	mean Acc.
Real+Pascal[21]	-	-	-	64.10	81.78
Real	58.44	24.92	30.15	28.77	38.02
Synth	73.20	65.55	39.41	40.10	51.88
Synth+Real	72.88	80.76	65.41	59.58	78.14
Synth+Real+up	85.09	87.91	77.00	68.84	83.37

Experiments - Human3.6M Dataset



	IO	U	Accuracy	
Training data	fg+bg	fg	fg+bg fg	
Real	49.61	46.32	58.54 55.69)
Synthetic	46.35	42.91	56.51 53.55	,)
Synthetic+Real	57.07	54.30	67.72 65.53	

Experiments - Human3.6M Dataset



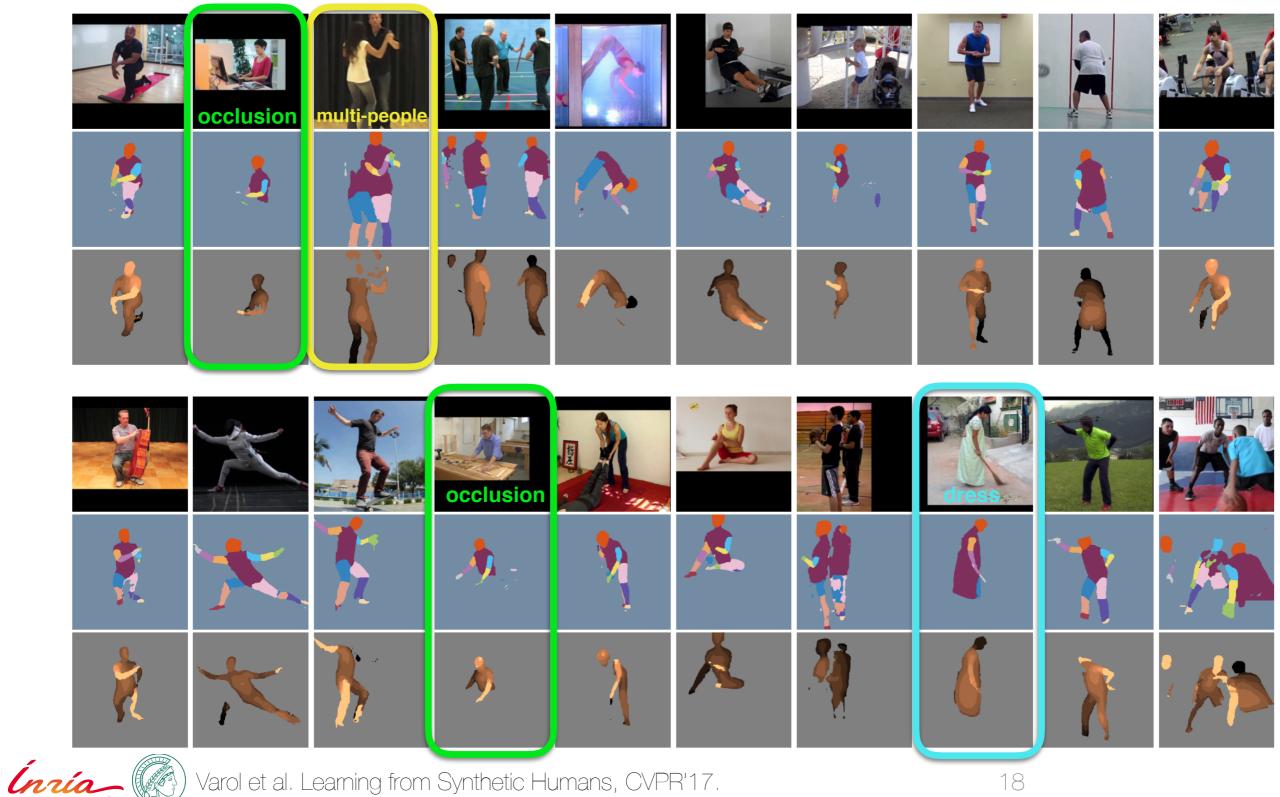
Training data	RMSE	st-RMSE	PoseRMSE	st-PoseRMSE	
Real	96.3	75.2	122.6	94.5	
Synthetic	111.6	98.1	152.5	131.5	
Synthetic+Real	90.0	67.1	92.9	82.8	

Ínciano Inverteurs du Monde numérique

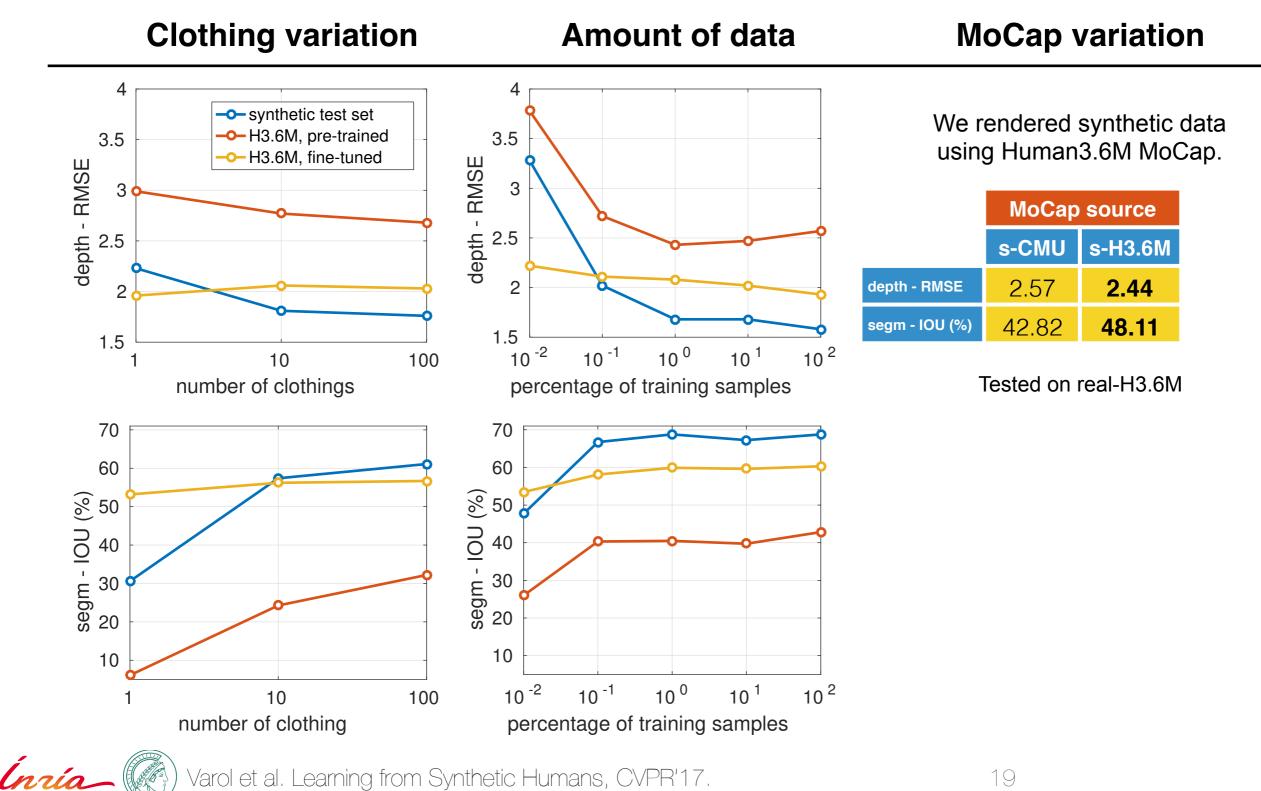
Experiments - Human3.6M Dataset

https://www.youtube.com/watch?v=bK4tAGOWayE

Experiments - MPII Human Pose Dataset



Experiments - Design choices



Conclusions

- It is possible to learn from synthetic images of people.
- We have shown the generalization capability of CNNs trained on synthetic people on two tasks:
 - segmentation,
 - depth estimation.
- The rich ground truth can potentially be used for other tasks.

Thanks

www.di.ens.fr/willow/research/surreal

Data and code are available.

