

Recognizing human actions in still images: a study of bag-of-features and part-based representations

Vincent DELAITRE, Ivan LAPTEV and Josef SIVIC

INRIA - Willow Project, Ecole Normale Supérieure, Paris, France (CNRS/ENS/INRIA UMR 8548)

The Goal: We want to recognize human actions in still images:

photograph

a book

Motivations:

Running

Most of the work is on video but:

- Some actions are static and video may not help.
- Human actions are a natural description of many images.

Contributions:

- · Creation of a new dataset for human actions.
- · Quantitative evaluation of the statistical BOF model and the deformable part model.
- · Combination of those two models.
- · Investigation of the role of context.

Related work:

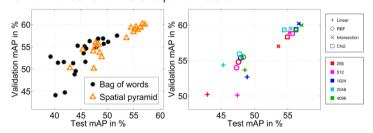
Related work on actions in still images has focused on specific domains such as sports or playing musical instruments. (Gupta et al. PAMI09, Yao and Fei-Fei CVPR10).

→ We want to study recognition of a more general set of human actions obtained from real images.

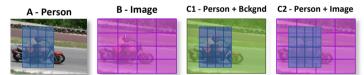
A new database for action classification:

We collected 968 images from Flickr.

→ Large variations in terms of camera-viewpoints, human poses, clothing, occlusion, backgrounds, lighting, object appearance.



The Spatial Pyramid Matching (SPM):


We use dense SIFT feature and investigated the role of different parameters:

- Visual vocabulary: built from a k-means clustering with K centers. K € {256, 512, 1024, 2048, 4096}.
- Image signature: spatial pyramid with L ∈ {0, 1, 2, 3} levels.
- Different kernels: Linear, RBF, Chi2, Intersection (the C and kernel parameters for the SVM are obtained by 5-fold cross-validation).

Performance for different parameters:

Using the context:

→ Taking the background into account improves performance:

Context	mAP	Accuracy
A - Person	56.7	55.9
B - Image	54.0	54.0
C1 - Person + Background	57.6	56.8
C2 - Person + Image	<u>59.6</u>	<u>58.9</u>

mAP: mean of the Average-Precision of each class.

Accuracy: mean of the diagonal of the confusion table.

The latent – SVM (Felzenszwalb et al. PAMI 2008):

- State-of-the-art for object and person detection
- We used the default parameters (3 components, 8 parts)

Example of model for 'Riding Horse': filters and part placement.

Performance of SPM and LSVM:

Action / Method	LSVM	SPM (C2)	SPM (C2) + LSVM
Interacting w. computer	30.2	58.2	<u>58.5</u>
Photographing	28.1	35.4	<u>37.4</u>
Playing music	56.3	<u>73.2</u>	73.1
Riding bike	68.7	82.4	<u>83.3</u>
Riding horse	60.1	69.6	77.0
Running	52.0	44.5	53.3
Walking	56.0	54.2	<u>57.5</u>
Mean average precison	50.2	59.6	<u>62.9</u>

- · LSVM benefits from the strength of pictorial models.
- · SPM takes advantages of the statistical representation of images.
- → Complementary models.

The combination 'SPM + LSVM' is achieved by adding the classification scores of both models.

Combining both models:

	1 4		太正	
SPM (C2) + LSVM	Photographing	Riding horse	Running	Photographing
SPM (C2)	Riding Bike	Riding horse	Int. w. comp.	Photographing
LSVM	Photographing	Riding bike	Walking	Photographing

- · SPM+LSVM often improves SPM on images with confusing (blurred, textureless, unusual) background but where the person is clearly
- SPM+LSVM appears to improve the LSVM output where camera viewpoint or the pose of the person are unusual.

Comparison with the state of the art:

- The sports dataset [Gupta et al. PAMI09]
 - Person-centered
 - Little background

Method	mAP	Acc.
Gupta et al.		78.7
Yao and Fei-Fei		83.3
SPM (B)	91.3	85.0
LSVM	77.2	73.3
SPM (B) + LSVM	<u>91.6</u>	85.0

• The PPMI (Person Playing Musical Instrument) dataset [Yao and Fei-Fei CVPR10]

Task 1: 7-class person playing musical instrument classification problem.

Task 2: Playing vs. non-playing musical instrument. 'Non-playing' means holding it.

	Task 1		Task 2	
Method	mAP	Acc.	mAP	Acc.
Yao and Fei-Fei		80.9		65.7
SPM (B) LSVM (9 parts) SPM (B) + LSVM	87.7 82.2 90.5	83.7 82.9 84.9	76.9 53.6 27.8	71.7 67.6 75.1