

Pose Estimation and Segmentation of People in 3D Movies

Karteek Alahari Josef Sivic Guillaume Seguin Ivan Laptev

WILLOW Team - Inria / École normale supérieure / CNRS - Paris, France

- pixel-wise **segmentation**
- **pose** estimates
- depth **ordering**

for multiple people in stereo movies

Motivation

- Many movies are now available in 3D (stereo)
- Develop a mid-level representation of stereoscopic video for recognition, editing, navigation
- Investigate **benefits of disparity** cues for segmentation and pose estimation
- Collect (noisy) training data of segmented people for monocular video

Contributions

- 1. A multi-person segmentation model for stereo videos
- combines multiple cues: disparity, colour, motion
- incorporates learnt **pose-specific** segmentation **masks**
- explicitly represents depth ordering and occlusions
- 2. A new annotated Inria 3DMovie Dataset for person detection, pose estimation and segmentation in indoor and outdoor scenes

Related work

- [1] Shotton et al., CVPR '11
- [2] Sheasby, Valentin, Crook and Torr, ACCV '12
- [3] Yang, Hallman, Ramanan and Fowlkes, CVPR '10
- [4] Yang and Ramanan, CVPR '11
- [5] Eichner, Marin-Jimenez, Zisserman and Ferrari, IJCV '12

Articulated pose masks

Example with persons 2 & 4:

Wrong ordering:
4 in front of 2

Correct ordering:

2 in front of 4

Inferring depth ordering

1. au determines the ordering of people in the scene There is one scalar disparity parameter au^p for each person p

- Poses are estimated as part positions and part states

- Pose masks are composed from state-specific part masks

product over persons in front of person p2. Given a depth ordering:

- State-specific part masks are learnt from ground truth segmentations

Person-specific

Positive evidence from current person

Pose masks

from occluding people

Negative evidences

5. Final potentials using au^* :

Evidence for person p

Disparity cues

Inria 3DMovie dataset

- Annotated stereo pairs from movies "StreetDance 3D" and "Pina"
- 440 training stereo pairs ; 36 test video sequences 2727 pairs
- Labelling: 686 person segmentations, 587 poses, 1158 person boxes

http://www.di.ens.fr/willow/research/stereoseg/

Person detection & Pose estimation

- HOG: HOG on RGB only
- HOGdisp: HOG on disparity only
- HOGcatHOGdisp: concatenation of both

Pose estimation

	[4]*	HOG	HOGdisp	HOGcomb
Head & Torso	0.989	0.989	0.991	0.998
Upper arms	0.839	0.856	0.869	0.889
Lower arms	0.518	0.559	0.535	0.594
Global	0.782	0.802	0.799	0.827

* This model was trained on the Buffy dataset We use the PCP measure from Eichner et al. [5] which evaluates the percentage of correctly estimated body parts

Person segmentation

Results on H2view [2]				
Method	Int. vs Union			
Upper body segmentation:				
Sheasby et al. [2]	0.735			
Proposed + pose mask	0.814			
Proposed + pose mask + temporal	0.825			
Full body segmentation:				
Sheasby et al. [2]	0.692			
Proposed + upper pose mask	0.706			

Evaluation: the intersection vs. union measure between each detected person segmentation and the corresponding ground truth