Painting-to-3D model alignment via discriminative visual elements

Mathieu Aubry¹, Bryan Russell², Josef Sivic¹

¹ INRIA, WILLOW project-team, École Normale Supérieure ² Intel Labs

To appear in Transactions on Graphics (ToG)

Goal

Inputs: paintings, drawings, historical photographs, reference 3D model

Output: recovered artist/camera viewpoints

Why do this?

There are many non-photographic depictions of our world

Ultimate goal: to reason about these depictions

Applications

New ways to access archives for archaeology, history or architecture

Example: evolution of a particular place over time

1830

1852

1900

Application : archaeology

Problem statement

Inputs

Output

3D model

Painting

BELUIN PROPERTY A

Camera parameters Camera center, rotation, principal point, focal length Let's try to run Bundler...

Step 1: Compute putative correspondences using SIFT key point matching

Difficulty in finding correspondences

Color, geometry, illumination, shading, shadows and texture may be rendered by the artist in a realistic, but "non physical" manner

121 putative matches total across 563 photographs using SIFT matching
0 correct putative matches

Difficulty in finding correspondences

Local feature matching using SIFT:

Figure from [A. Shrivastava, T. Malisiewicz, A. Gupta, A. Efros Data-driven Visual Similarity for Cross-domain Image Matching SIGGRAPH Asia 2011]

See also: [Hauagge & Snavely CVPR 2012] [Chum & Matas CVPR 2006] [Russell, Sivic, Ponce, Dessalles 2011]

Related work: "mid-level" visual elements

Learn a **vocabulary of discriminative visual elements** that characterize a city.

[Doersch, Singh, Gupta, Sivic, Efros, What makes Paris look like Paris?, SIGGRAPH 2012]

See also [Singh et al. ECCV 2012], [Juneja et al. CVPR 2013], [Jain et al. CVPR 2013], ...

How to match a painting to a 3D model?

High level ideas

 Summarize a 3D model with a set of discriminative elements – "view-dependent distinct 3D fragments"

Recover the viewpoint of a painting by matching visual elements.

Challenges

 How can we select the set of meaningful visual elements out of all possible ones in the 3D model?
 Select the discriminative and reliable ones.

 How to compare a visual element in the 3D model and in the painting?

Treat as an object detection task.

Rendering representative views

Synthesize ~10,000 viewpoints for an architectural site

See also: [Irschara et al. CVPR 2009], [Baatz et al. ECCV 2012]

1. Represent query region q using HOG descriptor

See also exemplar SVM by [Malisiewicz et al., ICCV'11], [Shrivastava et al.'11]

Here used for weighted matching

- 1. Represent query region q using HOG descriptor
- 2. Train a linear classifier $f(x) = w^T x + b$ using q as a positive example and large number of negatives

region q:

- 1. Represent image region using HOG descriptor x
- 2. Train a linear classifier $f(x) = w^T x + b$
- 3. Find the best match in the painting maximizing the classification score f(x)

- 1. Represent image region using HOG descriptor x
- 2. Train a linear classifier $f(x) = w^T x + b$
- 3. Find the best match in the painting maximizing the classification score f(x)

Discriminative visual element: trained classifier $f(x) = w^T x + b$

How to choose discriminative visual elements representing architectural site?

See also [Doersch et al. SIGGRAPH 2012] [Singh et al. ECCV 2012], [Juneja et al. CVPR 2013]

Train classifier for each candidate region q:
 - {q,+1}, {x_i,-1} for i = 1..N (set of "generic" negatives)

$$E(w,b) = L(1, w^T q + b) + \frac{1}{N} \sum_{i=1}^{N} L(-1, w^T x_i + b)$$

Example: hinge loss (e-SVM)

$$L(y, s(x)) = (y - s(x))_+$$

– Example: square loss

$$L(y, s(x)) = (y - s(x))^2$$

For square loss E can be minimized in closed form [Bach&Harchaoui 2008; Gharbi et al. 2012; Hariharan et al. 2012]

$$w_{LS} = \frac{2}{2 + \|\Phi(q)\|^2} \Sigma^{-1} (q - \mu),$$

$$b_{LS} = -\frac{1}{2}(q+\mu)^T w_{LS},$$

$$E_{LS}^* = \frac{4}{2 + \|\Phi(q)\|^2},$$

where $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ denotes the mean of the negative examples, $\Sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu) (x_i - \mu)^{\top}$ their covariance and

$$\Phi(q) = \Sigma^{-\frac{1}{2}}(q-\mu).$$

- Train classifiers for all candidate regions in synthesized views
 Can be done in closed form [Gharbi et al. 2012; Hariharan et al. 2012]
- Score each classifier by its training cost E.
- Keep only the top N most discriminative visual elements.

Original image

Discriminative score: 1 / Energy

Note: Can be thought of as a generalization of local feature detection.

- Train classifiers for all candidate regions in synthesized views
 Can be done in closed form [Gharbi et al. 2012; Hariharan et al. 2012]
- Score each classifier by its training cost E.
- Keep only the top N most discriminative visual elements.

Note: Can be thought of as a generalization of local feature detection.

Related: Linear Discriminant Analysis

Let's

- consider a simple probabilistic model
- assume that the positive and negative class have Gaussians distribution
- assume that they same variance.

Related: Linear Discriminant Analysis

A log likelihood ratio test with this probabilistic mode leads to a classifier

$$s_{LDA}(x) = w_{LDA}^T x + b_{LDA}$$

With

$$w_{LDA} = \Sigma^{-1}(q - \mu_n)$$

$$b_{LDA} = \frac{1}{2} \left(\mu^T \Sigma^{-1} \mu - q^T \Sigma^{-1} q \right)$$

Note:
$$w_{LDA} = \left(1 + \frac{1}{2} \|\Phi(q)\|^2\right) w_{LS}$$

Duda, Hart, Stork, 2001 $\alpha = 1 + \frac{1}{2}$ Hariharan, Malik, Ramanan 2012 $\beta = b_{LDA}$ Gharbi, T. Malisiewicz, S. Paris, F. Durand, 2012 $\beta = b_{LDA}$

$$s_{LDA} = \alpha s_{LS} + \beta$$
$$\alpha = 1 + \frac{1}{2} \|\Phi(q)\|^2$$
$$\beta = b_{LD} = \alpha b_{LS}$$

 $\mathcal{A}\mathcal{O}_{LS}$

"Whitening interpretation"

Our detection and matching can be interpreted in the 'whitened space':

"Whitening interpretation"

Detection:

Big $|| \Phi(q) ||$ = discriminative

Calibrated discriminative matching

The LDA score improves over the LS score, but overrates low-contrast matches. Thus we add a constant such that the score of a zero HOG is 0.

$$s_{calib}(x) = s_{LDA}(x) - s_{LDA}(0)$$

= $(q - \mu)^T \Sigma^{-1} x.$

Results:

Matching method	mAP ("desceval")
Local symmetry [Hauagge and Snavely 2012]	0.58
Least squares regression (Sec. 4.2.2)	0.52
LDA (Sec. 4.2.3)	0.60
Ours (Sec. 4.2.5)	0.77

Filtering elements unstable across viewpoint

- Filter out elements unstable across viewpoint.
- 3D model provides ground truth matches in near-by views
- Require elements to be reliably detectable in near-by views

Top stable elements

Top unstable elements

See also [Doersch et al. SIGGRAPH 2012] [Singh et al. ECCV 2012], [Juneja et al. CVPR 2013]

Summary : discriminative visual element

• Back-project learnt discriminative elements onto the 3D model

See also [Doersch et al. SIGGRAPH 2012] [Singh et al. ECCV 2012], [Juneja et al. CVPR 2013]

Recovering viewpoint: RANSAC

Experiments

3D architectural sites

Venice (PMVS reconstruction from "Rome in a day" photographs) Venice (3D CAD model) Trevi Fountain (3D CAD model) Notre Dame of Paris (3D CAD model)

337 "Test queries"

85 historical photographs147 paintings60 drawings45 engravings

Results: historical photographs

Results: paintings and drawings

Scene distortion

Drawing errors

Different scene

Failures

Extreme change in depiction styles (smeared watercolor)

Part of the architectural site not covered by 3D model Extreme geometric distortion

Viewing

Quantitative evaluation

Quantitative evaluation - user study

(a) Good match

(b) Coarse match

	Good	Coarse	No
	match	match	match
SIFT on rendered views	40%	26%	33%
Viewpoint retrieval [Russell et al. 2011]	1%	39%	60%
Exemplar SVM [Shrivastava et al. 2011]	34%	18%	48%
mid-level painting visual elements	33%	29%	38%
3D discrim. visual elements (ours)	51%	21%	28%

NB: the performance of SIFT baseline drops if we don't consider photographs, when our algorithm results remain the same.

Comparison on benchmark dataset of [Hauggage and Snavely, 2012]

Matching method	mAP ("desceval")
Local symmetry [Hauagge and Snavely 2012]	0.58
Least squares regression (Sec. 4.2.2)	0.52
LDA (Sec. 4.2.3)	0.60
Ours (Sec. 4.2.5)	0.77

Fly-through video

Conclusions and open questions

- Automatic painting/image-to-3D model alignment is possible for a range of depiction styles
- We represent a 3D model by a compact set of visually distinct mid-level scene elements extracted from rendered views
- How to efficiently index paintings and historical photographs for visual search?
- How to model and cope with drawing error?