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Goal 

Inputs: paintings, drawings,  
historical photographs, 

reference 3D model 
Output: recovered artist/camera viewpoints 









Why do this? 

There are many non-photographic depictions of our world 

Ultimate goal: to reason about these depictions 



Applications 

New ways to access archives for   
 archaeology, history or architecture 

1830 1852 1900 

Example: evolution of a particular place over time 



Application : archaeology 









Problem statement 

Inputs Output 

3D model Camera parameters Painting 

Camera center, rotation, 
principal point, focal length 



Let’s try to run Bundler… 

Step 1: Compute putative correspondences using 
SIFT key point matching 



Difficulty in finding correspondences 

•  121 putative matches total across 563 photographs using SIFT matching 
•  0 correct putative matches 

Color, geometry, illumination, shading, shadows and texture may be  
rendered by the artist in a realistic, but “non physical” manner 



Figure from [A. Shrivastava, T. Malisiewicz, A. Gupta, A. Efros 
Data-driven Visual Similarity for Cross-domain Image Matching  
SIGGRAPH Asia 2011] 

See also:  
 [Hauagge & Snavely CVPR 2012] 
 [Chum & Matas CVPR 2006] 
 [Russell, Sivic, Ponce, Dessalles 2011] 

Local feature matching using SIFT: 

Difficulty in finding correspondences 



Related work: “mid-level” visual elements 

See also [Singh et al. ECCV 2012], [Juneja et al. CVPR 2013], [Jain et al. CVPR 2013], … 

Learn a vocabulary of 
discriminative visual elements 
that characterize a city. 

(a) Original Image (b) Superpixels (c) Seed blocks

Figure 3. Selecting seed blocks. The super-pixels (b) suggest characteristic regions of the image, and blocks are formed for these. Blocks
with low spatial gradient are discarded.

model of the part. This is particularly important because in
image descriptors such as HOG most of the feature com-
ponents correspond to irrelevant or instance specific details.
Discriminative learning can extract the distinctive informa-
tion (e.g. shape), while generative modeling (e.g. k-means
clustering) has difficulty in doing so and constructing “se-
mantic” clusters.

LDA acceleration. The downside of this mining process is
that the part detector must be learned multiple times. Us-
ing a standard procedure that involves hard negative mining
for each trained detector [9, 32] would then be very costly.
We use instead the LDA technique of [13], which can be
seen as learning once a soft but universal model of negative
patches (a similar method is described in [12]). In practice,
the parameter vector w of a part classifier is learned simply
as w = ⌃�1

(x̄ � µ0) where x̄ is the mean of the HOG
features of the positive part samples, µ0 is the mean of the
HOG blocks in the dataset, and ⌃ the corresponding covari-
ance matrix. HOG blocks are searched at all locations at the
same four scales of Sect. 2.1.

2.3. Selection: identifying distinctive parts

Our notion of a discriminative block is that it should oc-
cur in many of the images of the class from which it is
learnt, but not in many images from other classes. How-
ever, it is not reasonable to assume that parts (represented
by blocks) are so discriminative that they only occur in the
class from which they are learnt. For example, the door of a
washing machine will occur in the laundromat class, but can
also occur in the kitchen or garage class. Similarly, a gothic
arch can appear in both the church and cloister class. How-
ever, one would not expect these parts to appear in many
other of the indoor classes. In contrast, a featureless wall
could occur in almost any of the classes.

In selecting the block classifiers we design a novel mea-
sure to capture this notion. The block classifiers were learnt
on training images for a particular class, and they are tested
as detectors on validation images of all classes. Blocks

(a) Seed (b) Round 1 (c) Round 2 (d) Round 3 (e) Round 4 (f) Round 5

Figure 4. Mining of part instances. The seed (initial) block is on
the left. On the right the additional example blocks added to the
positive training set for retraining the part detector are shown in the
order that they are added. Note that mining uses blocks selected
from a certain scene category, but no other supervision is used.

learned from a class are not required to be detected only
from images of that class; instead, the milder constraint that
the distribution of classes in which the block is detected
should have low entropy is imposed. In this manner, dis-
tinctive but shareable mid-level parts can be selected. For
the laundromat example above, we would expect the wash-
ing machine door to be detected in only a handful of the
classes, so the entropy would be low. In contrast the block
for a wall would be detected across many classes, so its dis-
tribution would be nearer uniform across classes, and hence
the entropy higher.

To operationalize this requirement, each block is evalu-
ated in a sliding-window manner on each validation image.
Then, five block occurrences are extracted from each image
by max-pooling in five image regions, corresponding to the
spatial subdivisions used in the encoding of Sect. 3. Each

[Doersch, Singh, Gupta, Sivic, Efros, What 
makes Paris look like Paris?, SIGGRAPH 
2012] 



How to match a painting to a 3D model? 



High level ideas 

•  Summarize a 3D model with a set of discriminative 
elements – “view-dependent distinct 3D fragments” 

•  Recover the viewpoint of a painting by matching visual 
elements. 

… 



Challenges 

•  How can we select the set of meaningful visual elements 
out of all possible ones in the 3D model? 
•  Select the discriminative and reliable ones. 

•  How to compare a visual element in the 3D model and in 
the painting? 
•  Treat as an object detection task. 

. 
. . 



Rendering representative 
views 

Finding discriminative 
visual elements 

3D model depiction 

Calibrated discriminative 
matching  

Recovering viewpoint  

Viewpoint of the depiction 
in the 3D model 

Filtering elements unstable 
across viewpoint 

Algorithm outline 
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(a) Top 4 stable patches (b) Top 4 unstable patches

Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
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ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
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set of parameters via camera resectioning [Hartley and Zisserman
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point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
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rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
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Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features

… 
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
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more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.
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ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.
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In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.
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and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features

… 

Painting-to-3D Model Alignment Via Discriminative Visual Elements • 7

(a) Top 4 stable patches (b) Top 4 unstable patches

Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 2. Example of sampled viewpoints. Camera positions are sampled
on the ground plane on a regular 100⇥100 grid. 24 camera orientations are
used for each viewpoint. Cameras not viewing any portion of the 3D model
are discarded. This procedure results in about 45,000 valid views for this
3D model.

tal camera rotations assuming no in-plane rotation of the camera.
For each horizontal rotation we sample 2-3 vertical rotations (pitch
angles) depending on the 3D model. Views where no significant
portion of the 3D model is visible are discarded. This procedure re-
sults in between 7,000 and 45,000 views depending on the size of
the 3D site. An example of the sampled camera positions is shown
in figure 2. Note that the rendered views form only an intermediate
representation and can be discarded after element detectors are ex-
tracted. Note also that as we aim to use 3D models of different type
and quality, we did not use any advanced rendering techniques, e.g.
to produce illumination effects such as shadows or specularities.

Learning discriminative visual elements from rendered views is
described next.

4.2 Finding discriminative candidate elements
The aim is to find a set of mid-level visual elements that are dis-
criminative for the given 3D site. In the following, we formulate
image matching as a discriminative classification task and show
that for a specific choice of loss function the classifier can be com-
puted in a closed-form without computationally expensive itera-
tive training. In turn, this enables efficient training of classifiers for
thousands of candidate visual elements densely sampled in each
rendered view. The quality of the trained classifier (measured by
the training error) is then used to select only the few candidate vi-
sual elements that are the most discriminative in each view (have
the lowest training error). Finally, we show how the learnt visual
elements are matched to the input painting, and relate the proposed
approach to other recent work on closed-form training of HOG-
based linear classifiers [Gharbi et al. 2012; Hariharan et al. 2012].

4.2.1 Matching as classification. The aim is to match a given
rectangular patch q (represented by a HOG [Dalal and Triggs 2005]
descriptor) in a rendered view to its corresponding patch in the
painting, as illustrated in figure 3. Instead of finding the best match
measured by the Euclidean distance between the descriptors, we
train a linear classifier with q as a single positive example (with la-
bel y

q

= +1) and a large number of negative examples x
i

for i =1
to N (with labels y

i

= �1). The matching is then performed by
finding the patch x⇤ in the painting with the highest classification
score

s(x) = w>x+ b, (1)

where w and b are the parameters of the linear classifier. Note that
w denotes the normal vector to the decision hyper-plane and b is a
scalar offset. Compared to the Euclidean distance, the classification
score (1) measures a form or similarity, i.e. a higher classification
score indicates higher similarity between x and q. In addition, the

Fig. 3. Matching as classification. Given a region and its HOG descriptor
q in a rendered view (top left) the aim is to find the corresponding region
in a painting (top right). This is achieved by training a linear HOG-based
sliding window classifier using q as a positive example and a large number
of negative data. The classifier weight vector w is visualized by separately
showing the positive (+) and negative (-) weights at different orientations
and spatial locations. The best match x in the painting is found as the max-
imum of the classification score.

learnt w weights different components of x differently. This is in
contrast to the standard Euclidean distance where all components of
x have the same weight. Note that a similar idea was used in learn-
ing per-exemplar distances [Frome et al. 2007] or per-exemplar
support vector machine (SVM) classifiers [Malisiewicz et al. 2011]
for object recognition and cross-domain image retrieval [Shrivas-
tava et al. 2011]. Here, we build on this work and apply it to image
matching using local mid-level image structures.

Parameters w and b are obtained by minimizing a cost function
of the following form

E (w, b) = L
�
1, wT q + b

�
+

1

N

NX

i=1

L
�
�1, wTx

i

+ b
�
, (2)

where the first term measures the loss L on the positive example q
and the second term measures the loss on the negative data. Note
that for simplicity we ignore in (2) the regularization term ||w||2. A
particular case of this approach is the exemplar-SVM [Malisiewicz
et al. 2011; Shrivastava et al. 2011], where the loss L(y, s(x))
between the label y and predicted score s(x) is the hinge-loss
L(y, s(x)) = max{0, 1 � ys(x)} [Bishop 2006]. For exemplar
SVM cost (2) is convex and can be minimized using iterative algo-
rithms [Fan et al. 2008; Shalev-Shwartz et al. 2011].

4.2.2 Selection of discriminative visual elements via least
squares regression. So far we have assumed that the position and
scale of the visual element q in the rendered view is given. As stor-
ing and matching all possible visual elements from all rendered
views would be computationally prohibitive, the aim here is to au-
tomatically select a subset of the visual elements that are the most
discriminative. First, we note that the optimal value of the cost (2)
characterizes the separability of a particular candidate visual el-
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Fig. 2. Example of sampled viewpoints. Camera positions are sampled
on the ground plane on a regular 100⇥100 grid. 24 camera orientations are
used for each viewpoint. Cameras not viewing any portion of the 3D model
are discarded. This procedure results in about 45,000 valid views for this
3D model.

tal camera rotations assuming no in-plane rotation of the camera.
For each horizontal rotation we sample 2-3 vertical rotations (pitch
angles) depending on the 3D model. Views where no significant
portion of the 3D model is visible are discarded. This procedure re-
sults in between 7,000 and 45,000 views depending on the size of
the 3D site. An example of the sampled camera positions is shown
in figure 2. Note that the rendered views form only an intermediate
representation and can be discarded after element detectors are ex-
tracted. Note also that as we aim to use 3D models of different type
and quality, we did not use any advanced rendering techniques, e.g.
to produce illumination effects such as shadows or specularities.

Learning discriminative visual elements from rendered views is
described next.

4.2 Finding discriminative candidate elements
The aim is to find a set of mid-level visual elements that are dis-
criminative for the given 3D site. In the following, we formulate
image matching as a discriminative classification task and show
that for a specific choice of loss function the classifier can be com-
puted in a closed-form without computationally expensive itera-
tive training. In turn, this enables efficient training of classifiers for
thousands of candidate visual elements densely sampled in each
rendered view. The quality of the trained classifier (measured by
the training error) is then used to select only the few candidate vi-
sual elements that are the most discriminative in each view (have
the lowest training error). Finally, we show how the learnt visual
elements are matched to the input painting, and relate the proposed
approach to other recent work on closed-form training of HOG-
based linear classifiers [Gharbi et al. 2012; Hariharan et al. 2012].

4.2.1 Matching as classification. The aim is to match a given
rectangular patch q (represented by a HOG [Dalal and Triggs 2005]
descriptor) in a rendered view to its corresponding patch in the
painting, as illustrated in figure 3. Instead of finding the best match
measured by the Euclidean distance between the descriptors, we
train a linear classifier with q as a single positive example (with la-
bel y

q

= +1) and a large number of negative examples x
i

for i =1
to N (with labels y

i

= �1). The matching is then performed by
finding the patch x⇤ in the painting with the highest classification
score

s(x) = w>x+ b, (1)

where w and b are the parameters of the linear classifier. Note that
w denotes the normal vector to the decision hyper-plane and b is a
scalar offset. Compared to the Euclidean distance, the classification
score (1) measures a form or similarity, i.e. a higher classification
score indicates higher similarity between x and q. In addition, the

Fig. 3. Matching as classification. Given a region and its HOG descriptor
q in a rendered view (top left) the aim is to find the corresponding region
in a painting (top right). This is achieved by training a linear HOG-based
sliding window classifier using q as a positive example and a large number
of negative data. The classifier weight vector w is visualized by separately
showing the positive (+) and negative (-) weights at different orientations
and spatial locations. The best match x in the painting is found as the max-
imum of the classification score.

learnt w weights different components of x differently. This is in
contrast to the standard Euclidean distance where all components of
x have the same weight. Note that a similar idea was used in learn-
ing per-exemplar distances [Frome et al. 2007] or per-exemplar
support vector machine (SVM) classifiers [Malisiewicz et al. 2011]
for object recognition and cross-domain image retrieval [Shrivas-
tava et al. 2011]. Here, we build on this work and apply it to image
matching using local mid-level image structures.

Parameters w and b are obtained by minimizing a cost function
of the following form

E (w, b) = L
�
1, wT q + b

�
+

1

N

NX

i=1

L
�
�1, wTx

i

+ b
�
, (2)

where the first term measures the loss L on the positive example q
and the second term measures the loss on the negative data. Note
that for simplicity we ignore in (2) the regularization term ||w||2. A
particular case of this approach is the exemplar-SVM [Malisiewicz
et al. 2011; Shrivastava et al. 2011], where the loss L(y, s(x))
between the label y and predicted score s(x) is the hinge-loss
L(y, s(x)) = max{0, 1 � ys(x)} [Bishop 2006]. For exemplar
SVM cost (2) is convex and can be minimized using iterative algo-
rithms [Fan et al. 2008; Shalev-Shwartz et al. 2011].

4.2.2 Selection of discriminative visual elements via least
squares regression. So far we have assumed that the position and
scale of the visual element q in the rendered view is given. As stor-
ing and matching all possible visual elements from all rendered
views would be computationally prohibitive, the aim here is to au-
tomatically select a subset of the visual elements that are the most
discriminative. First, we note that the optimal value of the cost (2)
characterizes the separability of a particular candidate visual el-
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Fig. 2. Example of sampled viewpoints. Camera positions are sampled
on the ground plane on a regular 100⇥100 grid. 24 camera orientations are
used for each viewpoint. Cameras not viewing any portion of the 3D model
are discarded. This procedure results in about 45,000 valid views for this
3D model.

tal camera rotations assuming no in-plane rotation of the camera.
For each horizontal rotation we sample 2-3 vertical rotations (pitch
angles) depending on the 3D model. Views where no significant
portion of the 3D model is visible are discarded. This procedure re-
sults in between 7,000 and 45,000 views depending on the size of
the 3D site. An example of the sampled camera positions is shown
in figure 2. Note that the rendered views form only an intermediate
representation and can be discarded after element detectors are ex-
tracted. Note also that as we aim to use 3D models of different type
and quality, we did not use any advanced rendering techniques, e.g.
to produce illumination effects such as shadows or specularities.

Learning discriminative visual elements from rendered views is
described next.

4.2 Finding discriminative candidate elements
The aim is to find a set of mid-level visual elements that are dis-
criminative for the given 3D site. In the following, we formulate
image matching as a discriminative classification task and show
that for a specific choice of loss function the classifier can be com-
puted in a closed-form without computationally expensive itera-
tive training. In turn, this enables efficient training of classifiers for
thousands of candidate visual elements densely sampled in each
rendered view. The quality of the trained classifier (measured by
the training error) is then used to select only the few candidate vi-
sual elements that are the most discriminative in each view (have
the lowest training error). Finally, we show how the learnt visual
elements are matched to the input painting, and relate the proposed
approach to other recent work on closed-form training of HOG-
based linear classifiers [Gharbi et al. 2012; Hariharan et al. 2012].

4.2.1 Matching as classification. The aim is to match a given
rectangular patch q (represented by a HOG [Dalal and Triggs 2005]
descriptor) in a rendered view to its corresponding patch in the
painting, as illustrated in figure 3. Instead of finding the best match
measured by the Euclidean distance between the descriptors, we
train a linear classifier with q as a single positive example (with la-
bel y

q

= +1) and a large number of negative examples x
i

for i =1
to N (with labels y

i

= �1). The matching is then performed by
finding the patch x⇤ in the painting with the highest classification
score

s(x) = w>x+ b, (1)

where w and b are the parameters of the linear classifier. Note that
w denotes the normal vector to the decision hyper-plane and b is a
scalar offset. Compared to the Euclidean distance, the classification
score (1) measures a form or similarity, i.e. a higher classification
score indicates higher similarity between x and q. In addition, the

Fig. 3. Matching as classification. Given a region and its HOG descriptor
q in a rendered view (top left) the aim is to find the corresponding region
in a painting (top right). This is achieved by training a linear HOG-based
sliding window classifier using q as a positive example and a large number
of negative data. The classifier weight vector w is visualized by separately
showing the positive (+) and negative (-) weights at different orientations
and spatial locations. The best match x in the painting is found as the max-
imum of the classification score.

learnt w weights different components of x differently. This is in
contrast to the standard Euclidean distance where all components of
x have the same weight. Note that a similar idea was used in learn-
ing per-exemplar distances [Frome et al. 2007] or per-exemplar
support vector machine (SVM) classifiers [Malisiewicz et al. 2011]
for object recognition and cross-domain image retrieval [Shrivas-
tava et al. 2011]. Here, we build on this work and apply it to image
matching using local mid-level image structures.

Parameters w and b are obtained by minimizing a cost function
of the following form

E (w, b) = L
�
1, wT q + b

�
+

1

N

NX

i=1

L
�
�1, wTx

i

+ b
�
, (2)

where the first term measures the loss L on the positive example q
and the second term measures the loss on the negative data. Note
that for simplicity we ignore in (2) the regularization term ||w||2. A
particular case of this approach is the exemplar-SVM [Malisiewicz
et al. 2011; Shrivastava et al. 2011], where the loss L(y, s(x))
between the label y and predicted score s(x) is the hinge-loss
L(y, s(x)) = max{0, 1 � ys(x)} [Bishop 2006]. For exemplar
SVM cost (2) is convex and can be minimized using iterative algo-
rithms [Fan et al. 2008; Shalev-Shwartz et al. 2011].

4.2.2 Selection of discriminative visual elements via least
squares regression. So far we have assumed that the position and
scale of the visual element q in the rendered view is given. As stor-
ing and matching all possible visual elements from all rendered
views would be computationally prohibitive, the aim here is to au-
tomatically select a subset of the visual elements that are the most
discriminative. First, we note that the optimal value of the cost (2)
characterizes the separability of a particular candidate visual el-
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Fig. 2. Example of sampled viewpoints. Camera positions are sampled
on the ground plane on a regular 100⇥100 grid. 24 camera orientations are
used for each viewpoint. Cameras not viewing any portion of the 3D model
are discarded. This procedure results in about 45,000 valid views for this
3D model.

tal camera rotations assuming no in-plane rotation of the camera.
For each horizontal rotation we sample 2-3 vertical rotations (pitch
angles) depending on the 3D model. Views where no significant
portion of the 3D model is visible are discarded. This procedure re-
sults in between 7,000 and 45,000 views depending on the size of
the 3D site. An example of the sampled camera positions is shown
in figure 2. Note that the rendered views form only an intermediate
representation and can be discarded after element detectors are ex-
tracted. Note also that as we aim to use 3D models of different type
and quality, we did not use any advanced rendering techniques, e.g.
to produce illumination effects such as shadows or specularities.

Learning discriminative visual elements from rendered views is
described next.

4.2 Finding discriminative candidate elements
The aim is to find a set of mid-level visual elements that are dis-
criminative for the given 3D site. In the following, we formulate
image matching as a discriminative classification task and show
that for a specific choice of loss function the classifier can be com-
puted in a closed-form without computationally expensive itera-
tive training. In turn, this enables efficient training of classifiers for
thousands of candidate visual elements densely sampled in each
rendered view. The quality of the trained classifier (measured by
the training error) is then used to select only the few candidate vi-
sual elements that are the most discriminative in each view (have
the lowest training error). Finally, we show how the learnt visual
elements are matched to the input painting, and relate the proposed
approach to other recent work on closed-form training of HOG-
based linear classifiers [Gharbi et al. 2012; Hariharan et al. 2012].

4.2.1 Matching as classification. The aim is to match a given
rectangular patch q (represented by a HOG [Dalal and Triggs 2005]
descriptor) in a rendered view to its corresponding patch in the
painting, as illustrated in figure 3. Instead of finding the best match
measured by the Euclidean distance between the descriptors, we
train a linear classifier with q as a single positive example (with la-
bel y

q

= +1) and a large number of negative examples x
i

for i =1
to N (with labels y

i

= �1). The matching is then performed by
finding the patch x⇤ in the painting with the highest classification
score

s(x) = w>x+ b, (1)

where w and b are the parameters of the linear classifier. Note that
w denotes the normal vector to the decision hyper-plane and b is a
scalar offset. Compared to the Euclidean distance, the classification
score (1) measures a form or similarity, i.e. a higher classification
score indicates higher similarity between x and q. In addition, the

Fig. 3. Matching as classification. Given a region and its HOG descriptor
q in a rendered view (top left) the aim is to find the corresponding region
in a painting (top right). This is achieved by training a linear HOG-based
sliding window classifier using q as a positive example and a large number
of negative data. The classifier weight vector w is visualized by separately
showing the positive (+) and negative (-) weights at different orientations
and spatial locations. The best match x in the painting is found as the max-
imum of the classification score.

learnt w weights different components of x differently. This is in
contrast to the standard Euclidean distance where all components of
x have the same weight. Note that a similar idea was used in learn-
ing per-exemplar distances [Frome et al. 2007] or per-exemplar
support vector machine (SVM) classifiers [Malisiewicz et al. 2011]
for object recognition and cross-domain image retrieval [Shrivas-
tava et al. 2011]. Here, we build on this work and apply it to image
matching using local mid-level image structures.

Parameters w and b are obtained by minimizing a cost function
of the following form

E (w, b) = L
�
1, wT q + b
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+

1
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NX

i=1
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i

+ b
�
, (2)

where the first term measures the loss L on the positive example q
and the second term measures the loss on the negative data. Note
that for simplicity we ignore in (2) the regularization term ||w||2. A
particular case of this approach is the exemplar-SVM [Malisiewicz
et al. 2011; Shrivastava et al. 2011], where the loss L(y, s(x))
between the label y and predicted score s(x) is the hinge-loss
L(y, s(x)) = max{0, 1 � ys(x)} [Bishop 2006]. For exemplar
SVM cost (2) is convex and can be minimized using iterative algo-
rithms [Fan et al. 2008; Shalev-Shwartz et al. 2011].

4.2.2 Selection of discriminative visual elements via least
squares regression. So far we have assumed that the position and
scale of the visual element q in the rendered view is given. As stor-
ing and matching all possible visual elements from all rendered
views would be computationally prohibitive, the aim here is to au-
tomatically select a subset of the visual elements that are the most
discriminative. First, we note that the optimal value of the cost (2)
characterizes the separability of a particular candidate visual el-
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Fig. 2. Example of sampled viewpoints. Camera positions are sampled
on the ground plane on a regular 100⇥100 grid. 24 camera orientations are
used for each viewpoint. Cameras not viewing any portion of the 3D model
are discarded. This procedure results in about 45,000 valid views for this
3D model.

tal camera rotations assuming no in-plane rotation of the camera.
For each horizontal rotation we sample 2-3 vertical rotations (pitch
angles) depending on the 3D model. Views where no significant
portion of the 3D model is visible are discarded. This procedure re-
sults in between 7,000 and 45,000 views depending on the size of
the 3D site. An example of the sampled camera positions is shown
in figure 2. Note that the rendered views form only an intermediate
representation and can be discarded after element detectors are ex-
tracted. Note also that as we aim to use 3D models of different type
and quality, we did not use any advanced rendering techniques, e.g.
to produce illumination effects such as shadows or specularities.

Learning discriminative visual elements from rendered views is
described next.

4.2 Finding discriminative candidate elements
The aim is to find a set of mid-level visual elements that are dis-
criminative for the given 3D site. In the following, we formulate
image matching as a discriminative classification task and show
that for a specific choice of loss function the classifier can be com-
puted in a closed-form without computationally expensive itera-
tive training. In turn, this enables efficient training of classifiers for
thousands of candidate visual elements densely sampled in each
rendered view. The quality of the trained classifier (measured by
the training error) is then used to select only the few candidate vi-
sual elements that are the most discriminative in each view (have
the lowest training error). Finally, we show how the learnt visual
elements are matched to the input painting, and relate the proposed
approach to other recent work on closed-form training of HOG-
based linear classifiers [Gharbi et al. 2012; Hariharan et al. 2012].

4.2.1 Matching as classification. The aim is to match a given
rectangular patch q (represented by a HOG [Dalal and Triggs 2005]
descriptor) in a rendered view to its corresponding patch in the
painting, as illustrated in figure 3. Instead of finding the best match
measured by the Euclidean distance between the descriptors, we
train a linear classifier with q as a single positive example (with la-
bel y

q

= +1) and a large number of negative examples x
i

for i =1
to N (with labels y

i

= �1). The matching is then performed by
finding the patch x⇤ in the painting with the highest classification
score

s(x) = w>x+ b, (1)

where w and b are the parameters of the linear classifier. Note that
w denotes the normal vector to the decision hyper-plane and b is a
scalar offset. Compared to the Euclidean distance, the classification
score (1) measures a form or similarity, i.e. a higher classification
score indicates higher similarity between x and q. In addition, the

Fig. 3. Matching as classification. Given a region and its HOG descriptor
q in a rendered view (top left) the aim is to find the corresponding region
in a painting (top right). This is achieved by training a linear HOG-based
sliding window classifier using q as a positive example and a large number
of negative data. The classifier weight vector w is visualized by separately
showing the positive (+) and negative (-) weights at different orientations
and spatial locations. The best match x in the painting is found as the max-
imum of the classification score.

learnt w weights different components of x differently. This is in
contrast to the standard Euclidean distance where all components of
x have the same weight. Note that a similar idea was used in learn-
ing per-exemplar distances [Frome et al. 2007] or per-exemplar
support vector machine (SVM) classifiers [Malisiewicz et al. 2011]
for object recognition and cross-domain image retrieval [Shrivas-
tava et al. 2011]. Here, we build on this work and apply it to image
matching using local mid-level image structures.

Parameters w and b are obtained by minimizing a cost function
of the following form

E (w, b) = L
�
1, wT q + b
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where the first term measures the loss L on the positive example q
and the second term measures the loss on the negative data. Note
that for simplicity we ignore in (2) the regularization term ||w||2. A
particular case of this approach is the exemplar-SVM [Malisiewicz
et al. 2011; Shrivastava et al. 2011], where the loss L(y, s(x))
between the label y and predicted score s(x) is the hinge-loss
L(y, s(x)) = max{0, 1 � ys(x)} [Bishop 2006]. For exemplar
SVM cost (2) is convex and can be minimized using iterative algo-
rithms [Fan et al. 2008; Shalev-Shwartz et al. 2011].

4.2.2 Selection of discriminative visual elements via least
squares regression. So far we have assumed that the position and
scale of the visual element q in the rendered view is given. As stor-
ing and matching all possible visual elements from all rendered
views would be computationally prohibitive, the aim here is to au-
tomatically select a subset of the visual elements that are the most
discriminative. First, we note that the optimal value of the cost (2)
characterizes the separability of a particular candidate visual el-
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Fig. 2. Example of sampled viewpoints. Camera positions are sampled
on the ground plane on a regular 100⇥100 grid. 24 camera orientations are
used for each viewpoint. Cameras not viewing any portion of the 3D model
are discarded. This procedure results in about 45,000 valid views for this
3D model.

tal camera rotations assuming no in-plane rotation of the camera.
For each horizontal rotation we sample 2-3 vertical rotations (pitch
angles) depending on the 3D model. Views where no significant
portion of the 3D model is visible are discarded. This procedure re-
sults in between 7,000 and 45,000 views depending on the size of
the 3D site. An example of the sampled camera positions is shown
in figure 2. Note that the rendered views form only an intermediate
representation and can be discarded after element detectors are ex-
tracted. Note also that as we aim to use 3D models of different type
and quality, we did not use any advanced rendering techniques, e.g.
to produce illumination effects such as shadows or specularities.

Learning discriminative visual elements from rendered views is
described next.

4.2 Finding discriminative candidate elements
The aim is to find a set of mid-level visual elements that are dis-
criminative for the given 3D site. In the following, we formulate
image matching as a discriminative classification task and show
that for a specific choice of loss function the classifier can be com-
puted in a closed-form without computationally expensive itera-
tive training. In turn, this enables efficient training of classifiers for
thousands of candidate visual elements densely sampled in each
rendered view. The quality of the trained classifier (measured by
the training error) is then used to select only the few candidate vi-
sual elements that are the most discriminative in each view (have
the lowest training error). Finally, we show how the learnt visual
elements are matched to the input painting, and relate the proposed
approach to other recent work on closed-form training of HOG-
based linear classifiers [Gharbi et al. 2012; Hariharan et al. 2012].

4.2.1 Matching as classification. The aim is to match a given
rectangular patch q (represented by a HOG [Dalal and Triggs 2005]
descriptor) in a rendered view to its corresponding patch in the
painting, as illustrated in figure 3. Instead of finding the best match
measured by the Euclidean distance between the descriptors, we
train a linear classifier with q as a single positive example (with la-
bel y

q

= +1) and a large number of negative examples x
i

for i =1
to N (with labels y

i

= �1). The matching is then performed by
finding the patch x⇤ in the painting with the highest classification
score

s(x) = w>x+ b, (1)

where w and b are the parameters of the linear classifier. Note that
w denotes the normal vector to the decision hyper-plane and b is a
scalar offset. Compared to the Euclidean distance, the classification
score (1) measures a form or similarity, i.e. a higher classification
score indicates higher similarity between x and q. In addition, the

Fig. 3. Matching as classification. Given a region and its HOG descriptor
q in a rendered view (top left) the aim is to find the corresponding region
in a painting (top right). This is achieved by training a linear HOG-based
sliding window classifier using q as a positive example and a large number
of negative data. The classifier weight vector w is visualized by separately
showing the positive (+) and negative (-) weights at different orientations
and spatial locations. The best match x in the painting is found as the max-
imum of the classification score.

learnt w weights different components of x differently. This is in
contrast to the standard Euclidean distance where all components of
x have the same weight. Note that a similar idea was used in learn-
ing per-exemplar distances [Frome et al. 2007] or per-exemplar
support vector machine (SVM) classifiers [Malisiewicz et al. 2011]
for object recognition and cross-domain image retrieval [Shrivas-
tava et al. 2011]. Here, we build on this work and apply it to image
matching using local mid-level image structures.

Parameters w and b are obtained by minimizing a cost function
of the following form

E (w, b) = L
�
1, wT q + b

�
+

1

N

NX

i=1

L
�
�1, wTx

i

+ b
�
, (2)

where the first term measures the loss L on the positive example q
and the second term measures the loss on the negative data. Note
that for simplicity we ignore in (2) the regularization term ||w||2. A
particular case of this approach is the exemplar-SVM [Malisiewicz
et al. 2011; Shrivastava et al. 2011], where the loss L(y, s(x))
between the label y and predicted score s(x) is the hinge-loss
L(y, s(x)) = max{0, 1 � ys(x)} [Bishop 2006]. For exemplar
SVM cost (2) is convex and can be minimized using iterative algo-
rithms [Fan et al. 2008; Shalev-Shwartz et al. 2011].

4.2.2 Selection of discriminative visual elements via least
squares regression. So far we have assumed that the position and
scale of the visual element q in the rendered view is given. As stor-
ing and matching all possible visual elements from all rendered
views would be computationally prohibitive, the aim here is to au-
tomatically select a subset of the visual elements that are the most
discriminative. First, we note that the optimal value of the cost (2)
characterizes the separability of a particular candidate visual el-
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3D model.
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angles) depending on the 3D model. Views where no significant
portion of the 3D model is visible are discarded. This procedure re-
sults in between 7,000 and 45,000 views depending on the size of
the 3D site. An example of the sampled camera positions is shown
in figure 2. Note that the rendered views form only an intermediate
representation and can be discarded after element detectors are ex-
tracted. Note also that as we aim to use 3D models of different type
and quality, we did not use any advanced rendering techniques, e.g.
to produce illumination effects such as shadows or specularities.

Learning discriminative visual elements from rendered views is
described next.
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The aim is to find a set of mid-level visual elements that are dis-
criminative for the given 3D site. In the following, we formulate
image matching as a discriminative classification task and show
that for a specific choice of loss function the classifier can be com-
puted in a closed-form without computationally expensive itera-
tive training. In turn, this enables efficient training of classifiers for
thousands of candidate visual elements densely sampled in each
rendered view. The quality of the trained classifier (measured by
the training error) is then used to select only the few candidate vi-
sual elements that are the most discriminative in each view (have
the lowest training error). Finally, we show how the learnt visual
elements are matched to the input painting, and relate the proposed
approach to other recent work on closed-form training of HOG-
based linear classifiers [Gharbi et al. 2012; Hariharan et al. 2012].
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descriptor) in a rendered view to its corresponding patch in the
painting, as illustrated in figure 3. Instead of finding the best match
measured by the Euclidean distance between the descriptors, we
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where w and b are the parameters of the linear classifier. Note that
w denotes the normal vector to the decision hyper-plane and b is a
scalar offset. Compared to the Euclidean distance, the classification
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showing the positive (+) and negative (-) weights at different orientations
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learnt w weights different components of x differently. This is in
contrast to the standard Euclidean distance where all components of
x have the same weight. Note that a similar idea was used in learn-
ing per-exemplar distances [Frome et al. 2007] or per-exemplar
support vector machine (SVM) classifiers [Malisiewicz et al. 2011]
for object recognition and cross-domain image retrieval [Shrivas-
tava et al. 2011]. Here, we build on this work and apply it to image
matching using local mid-level image structures.

Parameters w and b are obtained by minimizing a cost function
of the following form
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where the first term measures the loss L on the positive example q
and the second term measures the loss on the negative data. Note
that for simplicity we ignore in (2) the regularization term ||w||2. A
particular case of this approach is the exemplar-SVM [Malisiewicz
et al. 2011; Shrivastava et al. 2011], where the loss L(y, s(x))
between the label y and predicted score s(x) is the hinge-loss
L(y, s(x)) = max{0, 1 � ys(x)} [Bishop 2006]. For exemplar
SVM cost (2) is convex and can be minimized using iterative algo-
rithms [Fan et al. 2008; Shalev-Shwartz et al. 2011].

4.2.2 Selection of discriminative visual elements via least
squares regression. So far we have assumed that the position and
scale of the visual element q in the rendered view is given. As stor-
ing and matching all possible visual elements from all rendered
views would be computationally prohibitive, the aim here is to au-
tomatically select a subset of the visual elements that are the most
discriminative. First, we note that the optimal value of the cost (2)
characterizes the separability of a particular candidate visual el-
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.
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fashion.
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ments obtained by the proposed approach are shown in figure 8.
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point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
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For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
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piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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dered views. Unstable elements are typically detected on repeated structures
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camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.
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more than 80% of the nearby views. Examples of stable and unsta-
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ments obtained by the proposed approach are shown in figure 8.
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For detection, each discriminative visual element takes as input
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quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
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native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 3. Example sampled viewpoints. Camera positions are sampled on
the ground plane on a regular 100⇥100 grid. 24 camera orientations are
used for each viewpoint. Cameras not viewing any portion of the 3D model
are discarded. This procedure results in about 45,000 valid views for the
depicted 3D model.

negative examples, similar to an exemplar support vector machine
(SVM) [Malisiewicz et al. 2011; Shrivastava et al. 2011]. Every
rendered view has thousands of potential visual elements and the
task is to identify those that are distinct and hence likely to be de-
tectable in different depictions. For example, a specific tower on the
building may be distinctive for the site, whereas a patch in the mid-
dle of a gray wall may not. We define a discriminability criteria di-
rectly related to the quality of the trained linear classifier and show
it can be evaluated efficiently in a per-pixel manner to rank millions
of candidate visual elements from all rendered views. Furthermore,
to enhance robustness of the trained detectors we discard detectors
unstable across changes in viewpoint. In summary, the algorithm
proceeds in the following three steps: (i) render a set of represen-
tative viewpoints of the 3D site; (ii) efficiently find discriminative
candidate elements in all rendered views and learn a detector for
each element; (iii) filter element detectors that are unstable across
small changes in viewpoint. The three steps are detailed next.

4.1 Rendering representative views
The aim is to extract from the 3D model a set of view-dependent
2D descriptors suitable for alignment to 2D depictions. This is
achieved by sampling representative views of the 3D model and
learning visual element detectors from the rendered appearance in
the sampled views. We sample possible views of the 3D model in
a similar manner to [Baatz et al. 2012; Irschara et al. 2009; Russell
et al. 2011]. First, we identify the ground plane and corresponding
vertical direction. The camera positions are then sampled on the
ground plane on a regular grid. For each camera position we sam-
ple 12 possible horizontal camera rotations assuming no in-plane
rotation of the camera. For each horizontal rotation we sample 2
vertical rotations (pitch angles). Views where less than 5% of the
pixels are occupied by the 3D model are discarded. This procedure
results in 7,000-45,000 views depending on the size of the 3D site.
Example sampled camera positions are shown in figure 3. Note that
the rendered views form only an intermediate representation and
can be discarded after visual element detectors are extracted. We
render views from the 3D model by adapting the publicly available
OpenGL code from [Russell et al. 2011] to work with our mod-
els. The renderer simply ray casts and samples colors from the tex-
tured models against a white background, and does not explicitly
reason about illumination effects, such as shadows or specularities
(although the textured models may implicitly include this informa-
tion).

4.2 Finding discriminative visual elements
We wish to find a set of mid-level visual elements for the given 3D
site that are discriminative. In the following, we formulate image
matching as a discriminative classification task and show that for
a specific choice of loss function the classifier can be computed in
closed-form without computationally expensive iterative training.
In turn, this enables efficient training of candidate visual element
detectors corresponding to image patches that are densely sampled
in each rendered view. The quality of the trained detector (measured
by the training error) is then used to select only the few candidate
visual elements that are the most discriminative in each view (have
the lowest training error). Finally, we show how the learnt visual
elements are matched to the input painting, and relate the proposed
approach to other recent work on closed-form training of HOG-
based linear classifiers [Gharbi et al. 2012; Hariharan et al. 2012].

4.2.1 Matching as classification. The aim is to match a given
rectangular image patch q (represented by a HOG descriptor [Dalal
and Triggs 2005]) in a rendered view to its corresponding image
patch in the painting, as illustrated in figure 4. Instead of finding
the best match measured by the Euclidean distance between the
descriptors, we train a linear classifier with q as a single positive
example (with label yq = +1) and a large number of negative ex-
amples xi for i =1 to N (with labels yi = �1). The matching
is then performed by finding the patch x⇤ in the painting with the
highest classification score

s(x) = w⌅x+ b, (1)

where w and b are the parameters of the linear classifier. Note that
w denotes the normal vector to the decision hyper-plane and b is a
scalar offset. Compared to the Euclidean distance, the classification
score (1) measures a form or similarity, i.e. a higher classification
score indicates higher similarity between x and q. In addition, the
learnt w weights the components of x differently. This is in contrast
to the standard Euclidean distance where all components of x have
the same weight. Note that a similar idea was used in learning per-
exemplar distances [Frome et al. 2007] or per-exemplar SVM clas-
sifiers [Malisiewicz et al. 2011] for object recognition and cross-
domain image retrieval [Shrivastava et al. 2011]. Here, we build on
this work and apply it to image matching using mid-level image
structures.

Parameters w and b are obtained by minimizing a cost function
of the following form

E (w, b) = L
�
1, wT q + b

⇥
+

1

N

N⇤

i=1

L
�
�1, wTxi + b

⇥
, (2)

where the first term measures the loss L on the positive example q
(also called “exemplar”) and the second term measures the loss on
the negative data. Note that for simplicity we ignore in (2) the reg-
ularization term ||w||2, but the regularizer can be easily added in a
similar manner to [Bach and Harchaoui 2008; Gharbi et al. 2012].
We found, however, that adding the regularizer did not result in a
significant change in matching performance. A particular case of
the exemplar based classifier is the exemplar-SVM [Malisiewicz
et al. 2011; Shrivastava et al. 2011], where the loss L(y, s(x))
between the label y and predicted score s(x) is the hinge-loss
L(y, s(x)) = max{0, 1 � ys(x)} [Bishop 2006]. For exemplar-
SVM cost (2) is convex and can be minimized using iterative algo-
rithms [Fan et al. 2008; Shalev-Shwartz et al. 2011].

4.2.2 Selection of discriminative visual elements via least
squares regression. So far we have assumed that the position and
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Fig. 3. Example sampled viewpoints. Camera positions are sampled on
the ground plane on a regular 100⇥100 grid. 24 camera orientations are
used for each viewpoint. Cameras not viewing any portion of the 3D model
are discarded. This procedure results in about 45,000 valid views for the
depicted 3D model.

unstable across changes in viewpoint. In summary, the algorithm
proceeds in the following three steps: (i) render a set of represen-
tative viewpoints of the 3D site; (ii) efficiently find discriminative
candidate elements in all rendered views and learn a detector for
each element; (iii) filter element detectors that are unstable across
small changes in viewpoint. The three steps are detailed next.

4.1 Rendering representative views
The aim is to extract from the 3D model a set of view-dependent
2D descriptors suitable for alignment to 2D depictions. This is
achieved by sampling representative views of the 3D model and
learning visual element detectors from the rendered appearance in
the sampled views. We sample possible views of the 3D model in
a similar manner to [Baatz et al. 2012; Irschara et al. 2009; Russell
et al. 2011]. First, we identify the ground plane and corresponding
vertical direction. The camera positions are then sampled on the
ground plane on a regular grid. For each camera position we sam-
ple 12 possible horizontal camera rotations assuming no in-plane
rotation of the camera. For each horizontal rotation we sample 2
vertical rotations (pitch angles). Views where less than 5% of the
pixels are occupied by the 3D model are discarded. This procedure
results in 7,000-45,000 views depending on the size of the 3D site.
Example sampled camera positions are shown in figure 3. Note that
the rendered views form only an intermediate representation and
can be discarded after visual element detectors are extracted. We
render views from the 3D model by adapting the publicly available
OpenGL code from [Russell et al. 2011] to work with our mod-
els. The renderer simply ray casts and samples colors from the tex-
tured models against a white background, and does not explicitly
reason about illumination effects, such as shadows or specularities
(although the textured models may implicitly include this informa-
tion).

4.2 Finding discriminative visual elements
We wish to find a set of mid-level visual elements for the given 3D
site that are discriminative. In the following, we formulate image
matching as a discriminative classification task and show that for
a specific choice of loss function the classifier can be computed in
closed-form without computationally expensive iterative training.
In turn, this enables efficient training of candidate visual element
detectors corresponding to image patches that are densely sampled
in each rendered view. The quality of the trained detector (measured
by the training error) is then used to select only the few candidate
visual elements that are the most discriminative in each view (have
the lowest training error). Finally, we show how the learnt visual
elements are matched to the input painting, and relate the proposed

approach to other recent work on closed-form training of HOG-
based linear classifiers [Gharbi et al. 2012; Hariharan et al. 2012].

4.2.1 Matching as classification. The aim is to match a given
rectangular image patch q (represented by a HOG descriptor [Dalal
and Triggs 2005]) in a rendered view to its corresponding image
patch in the painting, as illustrated in figure 4. Instead of finding
the best match measured by the Euclidean distance between the
descriptors, we train a linear classifier with q as a single positive
example (with label yq = +1) and a large number of negative ex-
amples xi for i =1 to N (with labels yi = �1). The matching
is then performed by finding the patch x⇤ in the painting with the
highest classification score

s(x) = w⌅x+ b, (1)

where w and b are the parameters of the linear classifier. Note that
w denotes the normal vector to the decision hyper-plane and b is a
scalar offset. Compared to the Euclidean distance, the classification
score (1) measures a form or similarity, i.e. a higher classification
score indicates higher similarity between x and q. In addition, the
learnt w weights the components of x differently. This is in contrast
to the standard Euclidean distance where all components of x have
the same weight. Note that a similar idea was used in learning per-
exemplar distances [Frome et al. 2007] or per-exemplar SVM clas-
sifiers [Malisiewicz et al. 2011] for object recognition and cross-
domain image retrieval [Shrivastava et al. 2011]. Here, we build on
this work and apply it to image matching using mid-level image
structures.

Parameters w and b are obtained by minimizing a cost function
of the following form

E (w, b) = L
�
1, wT q + b

⇥
+

1

N

N⇤

i=1

L
�
�1, wTxi + b

⇥
, (2)

where the first term measures the loss L on the positive example q
(also called “exemplar”) and the second term measures the loss on
the negative data. Note that for simplicity we ignore in (2) the reg-
ularization term ||w||2, but the regularizer can be easily added in a
similar manner to [Bach and Harchaoui 2008; Gharbi et al. 2012].
We found, however, that adding the regularizer did not result in a
significant change in matching performance. A particular case of
the exemplar based classifier is the exemplar-SVM [Malisiewicz
et al. 2011; Shrivastava et al. 2011], where the loss L(y, s(x))
between the label y and predicted score s(x) is the hinge-loss
L(y, s(x)) = max{0, 1 � ys(x)} [Bishop 2006]. For exemplar-
SVM cost (2) is convex and can be minimized using iterative algo-
rithms [Fan et al. 2008; Shalev-Shwartz et al. 2011].

4.2.2 Selection of discriminative visual elements via least
squares regression. So far we have assumed that the position and
scale of the visual element q in the rendered view is given. As stor-
ing and matching all possible visual elements from all rendered
views would be computationally prohibitive, the aim here is to au-
tomatically select a subset of the visual elements that are the most
discriminative. First, we note that the optimal value of the cost (2)
characterizes the separability of a particular candidate visual el-
ement q from the (fixed) negative examples {xi} and hence can
be used for measuring the degree of discriminability of q. How-
ever, when using a hinge-loss as in exemplar SVM, optimizing (2)
would be expensive to perform for thousands of candidate elements
in each rendered view. Instead, similarly to [Bach and Harchaoui
2008; Gharbi et al. 2012], we take advantage of the fact that in the
case of square loss L(y, s(x)) = (y � s(x))2 the wLS and bLS
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1. INTRODUCTION
In this work we seek to automatically align historical photographs
and non-photographic renderings, such as paintings and line draw-
ings, to a 3D model of an architectural site. Specifically, we wish to
establish a set of point correspondences between local structures on
the 3D model and their respective 2D depictions. The established
correspondences will in turn allow us to find an approximate view-
point of the 2D depiction with respect to the 3D model. We focus on
depictions that are, at least approximately, perspective renderings
of the 3D scene. We consider complex textured 3D models obtained
by recent multi-view stereo reconstruction systems [Furukawa and
Ponce 2010] as well as simplified models obtained from 3D mod-
eling tools such as Google Sketchup. Example results are shown in
figure 1.

Why is this task important? First, non-photographic depictions
are plentiful and comprise a large portion of our visual record.
We wish to reason about them, and aligning such depictions to
reference imagery (via a 3D model in this case) is an impor-
tant step towards this goal. Second, such technology would open
up a number of exciting computer graphics applications that cur-
rently require expensive manual alignment of 3D models to vari-
ous forms of 2D imagery. Examples include interactive visualiza-
tion of a 3D site across time and different rendering styles [De-
bevec et al. 1996; Levin and Debevec 1999], model-based im-
age enhancement [Kopf et al. 2008], annotation transfer for aug-
mented reality [Snavely et al. 2006], inverse procedural 3D mod-
eling [Aliaga et al. 2007; Musialski et al. 2012] or computational
re-photography [Rapp 2008; Bae et al. 2010]. Finally, reliable auto-
matic image to 3D model matching is important in domains where
reference 3D models are often available, but may contain errors
or unexpected changes (e.g. something built/destroyed) [Bosché
2010], such as urban planning, civil engineering or archaeology.

The task of aligning 3D models to 2D non-photographic depic-
tions is extremely challenging. As discussed in prior work [Russell
et al. 2011; Shrivastava et al. 2011], local feature matching based
on interest points (e.g. SIFT [Lowe 2004]) often fails to find corre-
spondences across paintings and photographs. First, the rendering
styles across the two domains can vary considerably. The scene ap-
pearance (colors, lighting, texture) and geometry depicted by the
artist can be very different from the rendering of the 3D model,
e.g. due to the depiction style, drawing error, or changes in the ge-
ometry of the scene. Second, we face a hard search problem. The
number of possible alignments of the painting to a large 3D model,
such as a partial reconstruction of a city, is huge. Which parts of the
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Fig. 4. Matching as classification. Given a region and its HOG descriptor
q in a rendered view (top left) the aim is to find the corresponding region
in a painting (top right). This is achieved by training a linear HOG-based
sliding window classifier using q as a single positive example and a large
number of negative data. The classifier weight vector w is visualized by
separately showing the positive (+) and negative (-) weights at different
orientations and spatial locations. The best match x in the painting is found
as the maximum of the classification score.

scale of the visual element q in the rendered view is given. As stor-
ing and matching all possible visual elements from all rendered
views would be computationally prohibitive, the aim here is to au-
tomatically select a subset of the visual elements that are the most
discriminative. First, we note that the optimal value of the cost (2)
characterizes the separability of a particular candidate visual el-
ement q from the (fixed) negative examples {xi} and hence can
be used for measuring the degree of discriminability of q. How-
ever, when using a hinge-loss as in exemplar SVM, optimizing (2)
would be expensive to perform for thousands of candidate elements
in each rendered view. Instead, similarly to [Bach and Harchaoui
2008; Gharbi et al. 2012], we take advantage of the fact that in the
case of square loss L(y, s(x)) = (y � s(x))2 the wLS and bLS

minimizing (2) and the optimal cost E⇥
LS can be obtained in closed

form as

wLS =
2

2 + ⌅⇥(q)⌅2�
�1(q � µ), (3)

bLS = �1

2
(q + µ)TwLS , (4)

E⇥
LS =

4

2 + ⌅⇥(q)⌅2 , (5)

where µ = 1
N

�N
i=1 xi denotes the mean of the negative exam-

ples, � = 1
N

�N
i=1(xi � µ)(xi � µ)⇤ their covariance and

⌅⇥(q)⌅2 = (q � µ)⇤��1(q � µ), (6)

the squared norm of q after the “whitening” transformation

⇥(q) = �� 1
2 (q � µ). (7)

We can use the value of the optimal cost (5) as a measure of
the discriminability of a specific q. If the training cost (error) for a

Fig. 5. Selection of discriminative visual elements. First row: discrim-
inability scores shown as a heat-map for three different scales. Red indi-
cates high discriminability. Blue indicates low discriminability. The dis-
criminability is inversely proportional to the training cost of a classifier
learnt from a patch at the particular image location. Second row: exam-
ple visual elements at the local maxima of the discriminability scores. The
corresponding local maxima are also indicated using “x” in the heat-maps
above.

specific candidate visual element q is small the element is discrim-
inative. If the training cost is large the candidate visual element q
is not discriminative. This observation can be translated into a sim-
ple and efficient algorithm for ranking candidate element detectors
based on their discriminability. In practice, we evaluate the squared
“whitened” norm ⌅⇥(q)⌅2 of each candidate element q, which is
inversely proportional to the training cost. If the whitened norm is
high the candidate element is discriminative, if the whitened norm
is low the candidate element is not discriminative. Given a ren-
dered view, we consider as candidates visual element detectors of
all patches that are local maxima (in scale and space) of the norm
of their whitened HOG descriptor, ⌅⇥(q)⌅2. Non-maximum sup-
pression is performed using a threshold of 0.1 on the standard ratio
of area intersection over union between two neighboring patches.
After this non-maximum suppression, all remaining patches across
all views are ranked according to the same whitened norm criteria.
Illustration of multi-scale discriminative visual element selection
for an example rendered view is shown in figure 5.

4.2.3 Relation to linear discriminant analysis (LDA). Recent
works [Gharbi et al. 2012; Hariharan et al. 2012] have shown that
linear HOG-based object detectors computed analytically using lin-
ear discriminant analysis (LDA) can reach similar object detection
accuracy as detectors learnt by expensive iterative SVM training.
The distribution of positive and negative data points is assumed to
be Gaussian, with mean vectors µp and µn, respectively. The co-
variance matrix �p = �n = � is assumed to be the same for
both positive and negative data. Under these Gaussian assumptions,
the decision hyperplane can be obtained via a ratio test in closed
form. Applying this approach to our image matching set-up, we es-
timate µn and � from a large set of HOG descriptors extracted from
patches that are sampled from a set of (“negative”) photographs in-
dependent from all sites considered in this work. µp is set to be a
specific single HOG descriptor q of the particular positive example
patch in the given rendered view. Parameters wLDA and bLDA of
the linear classifier defining the matching score (1)

sLDA(x) = wT
LDAx+ bLDA, (8)

can be obtained in closed form as

wLDA = ��1(q � µn), (9)
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specific candidate visual element q is small the element is discrim-
inative. If the training cost is large the candidate visual element q
is not discriminative. This observation can be translated into a sim-
ple and efficient algorithm for ranking candidate element detectors
based on their discriminability. In practice, we evaluate the squared
“whitened” norm ⌅⇥(q)⌅2 of each candidate element q, which is
inversely proportional to the training cost. If the whitened norm is
high the candidate element is discriminative, if the whitened norm
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pression is performed using a threshold of 0.1 on the standard ratio
of area intersection over union between two neighboring patches.
After this non-maximum suppression, all remaining patches across
all views are ranked according to the same whitened norm criteria.
Illustration of multi-scale discriminative visual element selection
for an example rendered view is shown in figure 5.

4.2.3 Relation to linear discriminant analysis (LDA). Recent
works [Gharbi et al. 2012; Hariharan et al. 2012] have shown that
linear HOG-based object detectors computed analytically using lin-
ear discriminant analysis (LDA) can reach similar object detection
accuracy as detectors learnt by expensive iterative SVM training.
The distribution of positive and negative data points is assumed to
be Gaussian, with mean vectors µp and µn, respectively. The co-
variance matrix �p = �n = � is assumed to be the same for
both positive and negative data. Under these Gaussian assumptions,
the decision hyperplane can be obtained via a ratio test in closed
form. Applying this approach to our image matching set-up, we es-
timate µn and � from a large set of HOG descriptors extracted from
patches that are sampled from a set of (“negative”) photographs in-
dependent from all sites considered in this work. µp is set to be a
specific single HOG descriptor q of the particular positive example
patch in the given rendered view. Parameters wLDA and bLDA of
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be used for measuring the degree of discriminability of q. How-
ever, when using a hinge-loss as in exemplar SVM, optimizing (2)
would be expensive to perform for thousands of candidate elements
in each rendered view. Instead, similarly to [Bach and Harchaoui
2008; Gharbi et al. 2012], we take advantage of the fact that in the
case of square loss L(y, s(x)) = (y � s(x))2 the wLS and bLS

minimizing (2) and the optimal cost E⇥
LS can be obtained in closed

form as
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Fig. 5. Selection of discriminative visual elements. First row: discrim-
inability scores shown as a heat-map for three different scales. Red indi-
cates high discriminability. Blue indicates low discriminability. The dis-
criminability is inversely proportional to the training cost of a classifier
learnt from a patch at the particular image location. Second row: exam-
ple visual elements at the local maxima of the discriminability scores. The
corresponding local maxima are also indicated using “x” in the heat-maps
above.

We can use the value of the optimal cost (5) as a measure of
the discriminability of a specific q. If the training cost (error) for a
specific candidate visual element q is small the element is discrim-
inative. If the training cost is large the candidate visual element q
is not discriminative. This observation can be translated into a sim-
ple and efficient algorithm for ranking candidate element detectors
based on their discriminability. In practice, we evaluate the squared
“whitened” norm ⌅⇥(q)⌅2 of each candidate element q, which is
inversely proportional to the training cost. If the whitened norm is
high the candidate element is discriminative, if the whitened norm
is low the candidate element is not discriminative. Given a ren-
dered view, we consider as candidates visual element detectors of
all patches that are local maxima (in scale and space) of the norm
of their whitened HOG descriptor, ⌅⇥(q)⌅2. Non-maximum sup-
pression is performed using a threshold of 0.1 on the standard ratio
of area intersection over union between two neighboring patches.
After this non-maximum suppression, all remaining patches across
all views are ranked according to the same whitened norm criteria.
Illustration of multi-scale discriminative visual element selection
for an example rendered view is shown in figure 5.

4.2.3 Relation to linear discriminant analysis (LDA). Recent
works [Gharbi et al. 2012; Hariharan et al. 2012] have shown that
linear HOG-based object detectors computed analytically using lin-
ear discriminant analysis (LDA) can reach similar object detection
accuracy as detectors learnt by expensive iterative SVM training.
The distribution of positive and negative data points is assumed to
be Gaussian, with mean vectors µp and µn, respectively. The co-
variance matrix �p = �n = � is assumed to be the same for
both positive and negative data. Under these Gaussian assumptions,
the decision hyperplane can be obtained via a ratio test in closed
form. Applying this approach to our image matching set-up, we es-
timate µn and � from a large set of HOG descriptors extracted from
patches that are sampled from a set of (“negative”) photographs in-
dependent from all sites considered in this work. µp is set to be a
specific single HOG descriptor q of the particular positive example
patch in the given rendered view. Parameters wLDA and bLDA of
the linear classifier defining the matching score (1)

sLDA(x) = wT
LDAx+ bLDA, (8)
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We can use the value of the optimal cost (5) as a measure of
the discriminability of a specific q. If the training cost (error) for a
specific candidate visual element q is small the element is discrim-
inative. If the training cost is large the candidate visual element q
is not discriminative. This observation can be translated into a sim-
ple and efficient algorithm for ranking candidate element detectors
based on their discriminability. In practice, we evaluate the squared
“whitened” norm k�(q)k2 of each candidate element q, which is
inversely proportional to the training cost. If the whitened norm is
high the candidate element is discriminative, if the whitened norm
is low the candidate element is not discriminative. Given a ren-
dered view, we consider as candidates visual element detectors of
all patches that are local maxima (in scale and space) of the norm
of their whitened HOG descriptor, k�(q)k2. Non-maximum sup-
pression is performed using a threshold of 0.1 on the standard ratio
of area intersection over union between two neighboring patches.
After this non-maximum suppression, all remaining patches across
all views are ranked according to the same whitened norm criteria.
Illustration of multi-scale discriminative visual element selection
for an example rendered view is shown in figure 4.

4.2.3 Relation to linear discriminant analysis (LDA). Recent
works [Gharbi et al. 2012; Hariharan et al. 2012] have shown that
linear HOG-based object detectors computed analytically using lin-
ear discriminant analysis (LDA) can reach similar object detection
accuracy as detectors learnt by expensive iterative SVM training.
The distribution of positive and negative data points is assumed to
be Gaussian, with mean vectors µ
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and µ
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, respectively. The co-
variance matrix ⌃
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= ⌃
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= ⌃ is assumed to be the same for both
positive and negative data. Under these Gaussian assumptions, the
decision hyperplane can be obtained in a closed form. Applying this
approach to our image matching set-up, we estimate µ
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and ⌃ from
a large set of HOG descriptors extracted from a set of (“negative”)
photographs independent from all sites considered in this work. µ
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is set to be a specific single HOG descriptor q of the particular pos-
itive example patch in the given rendered view. Parameters w
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of the linear classifier (1) are then obtained in closed
form as
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Fig. 4. Selection of discriminative visual elements. First row: the value
of discriminability shown as a heat-map for three different scales (left to
right). Red indicates high discriminability. Blue indicates low discriminabil-
ity. The discriminability is inversely proportional to the training cost of a
classifier learnt from a patch at the particular image location. Second row:
example visual elements at the local maxima of the discriminability score.
The corresponding local maxima are also indicated using “x” in the heat-
maps above.
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where C is a scalar constant independent of q. Parameters w
LDA

and b
LDA

can be also obtained, without any explicit Gaussian ap-
proximations, by minimizing the following cost function
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�↵, wTx
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+ b
�
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where L is the square loss and ↵ = 1+ k�(q)k2. Note that in con-
trast to the cost function (2), here the target labels depend on the
candidate visual element q and have values +↵ and �↵ for posi-
tive and negative data, respectively. This corresponds to increasing
the target values for visual elements q with large whitened norm
k�(q)k, i.e. those that are more discriminative. Under the Gaussian
assumptions of LDA, the squared whitened norm k�(q)k2 can be
interpreted as the Bhattacharyya distance [Kailath 1967] measur-
ing the “overlap” between the Gaussian representing the negative
data and the Gaussian representing the positive example q. Dis-
criminative visual elements q with large k�(q)k (as described in
section 4.2.2) correspond to “unusual” examples far from the dis-
tribution of the negative data. This intuition is illustrated in figure 5.

4.2.4 Discussion. Classifiers obtained by minimizing the least
squares (2) or LDA (9) cost functions can be used for matching
a candidate visual element q to a painting as described in equa-
tion (1). Note, however, that the decision hyperplanes obtained
from the least squares regression, w

LS

, and linear discriminant
analysis, w

LDA

, are collinear, i.e. they differ only by a scalar mul-
tiplicative factor, and only their offsets b

LS

and b
LDA

differ. As
a consequence, for a particular visual element q the ranking of
matches according to the matching score (1) would be identical for
the two methods. In an object detection set-up [Dalal and Triggs
2005; Hariharan et al. 2012; Gharbi et al. 2012] the two methods
would produce identical precision-recall curves. In our matching
set-up, for a given q the best match in a particular painting would
be identical for both methods. The scalar offset, b, however, be-
comes important when comparing the value of the matching score
across different visual element detectors q. In object detection, the
score of the learnt classifiers is often calibrated on a held-out set of
labeled validation examples [Malisiewicz et al. 2011].
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We can use the value of the optimal cost (5) as a measure of
the discriminability of a specific q. If the training cost (error) for a
specific candidate visual element q is small the element is discrim-
inative. If the training cost is large the candidate visual element q
is not discriminative. This observation can be translated into a sim-
ple and efficient algorithm for ranking candidate element detectors
based on their discriminability. In practice, we evaluate the squared
“whitened” norm k�(q)k2 of each candidate element q, which is
inversely proportional to the training cost. If the whitened norm is
high the candidate element is discriminative, if the whitened norm
is low the candidate element is not discriminative. Given a ren-
dered view, we consider as candidates visual element detectors of
all patches that are local maxima (in scale and space) of the norm
of their whitened HOG descriptor, k�(q)k2. Non-maximum sup-
pression is performed using a threshold of 0.1 on the standard ratio
of area intersection over union between two neighboring patches.
After this non-maximum suppression, all remaining patches across
all views are ranked according to the same whitened norm criteria.
Illustration of multi-scale discriminative visual element selection
for an example rendered view is shown in figure 4.

4.2.3 Relation to linear discriminant analysis (LDA). Recent
works [Gharbi et al. 2012; Hariharan et al. 2012] have shown that
linear HOG-based object detectors computed analytically using lin-
ear discriminant analysis (LDA) can reach similar object detection
accuracy as detectors learnt by expensive iterative SVM training.
The distribution of positive and negative data points is assumed to
be Gaussian, with mean vectors µ
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and µ
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, respectively. The co-
variance matrix ⌃
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= ⌃ is assumed to be the same for both
positive and negative data. Under these Gaussian assumptions, the
decision hyperplane can be obtained in a closed form. Applying this
approach to our image matching set-up, we estimate µ
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and ⌃ from
a large set of HOG descriptors extracted from a set of (“negative”)
photographs independent from all sites considered in this work. µ

p

is set to be a specific single HOG descriptor q of the particular pos-
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Fig. 4. Selection of discriminative visual elements. First row: the value
of discriminability shown as a heat-map for three different scales (left to
right). Red indicates high discriminability. Blue indicates low discriminabil-
ity. The discriminability is inversely proportional to the training cost of a
classifier learnt from a patch at the particular image location. Second row:
example visual elements at the local maxima of the discriminability score.
The corresponding local maxima are also indicated using “x” in the heat-
maps above.
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where L is the square loss and ↵ = 1+ k�(q)k2. Note that in con-
trast to the cost function (2), here the target labels depend on the
candidate visual element q and have values +↵ and �↵ for posi-
tive and negative data, respectively. This corresponds to increasing
the target values for visual elements q with large whitened norm
k�(q)k, i.e. those that are more discriminative. Under the Gaussian
assumptions of LDA, the squared whitened norm k�(q)k2 can be
interpreted as the Bhattacharyya distance [Kailath 1967] measur-
ing the “overlap” between the Gaussian representing the negative
data and the Gaussian representing the positive example q. Dis-
criminative visual elements q with large k�(q)k (as described in
section 4.2.2) correspond to “unusual” examples far from the dis-
tribution of the negative data. This intuition is illustrated in figure 5.

4.2.4 Discussion. Classifiers obtained by minimizing the least
squares (2) or LDA (9) cost functions can be used for matching
a candidate visual element q to a painting as described in equa-
tion (1). Note, however, that the decision hyperplanes obtained
from the least squares regression, w
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, and linear discriminant
analysis, w

LDA

, are collinear, i.e. they differ only by a scalar mul-
tiplicative factor, and only their offsets b
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and b
LDA

differ. As
a consequence, for a particular visual element q the ranking of
matches according to the matching score (1) would be identical for
the two methods. In an object detection set-up [Dalal and Triggs
2005; Hariharan et al. 2012; Gharbi et al. 2012] the two methods
would produce identical precision-recall curves. In our matching
set-up, for a given q the best match in a particular painting would
be identical for both methods. The scalar offset, b, however, be-
comes important when comparing the value of the matching score
across different visual element detectors q. In object detection, the
score of the learnt classifiers is often calibrated on a held-out set of
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We can use the value of the optimal cost (5) as a measure of
the discriminability of a specific q. If the training cost (error) for a
specific candidate visual element q is small the element is discrim-
inative. If the training cost is large the candidate visual element q
is not discriminative. This observation can be translated into a sim-
ple and efficient algorithm for ranking candidate element detectors
based on their discriminability. In practice, we evaluate the squared
“whitened” norm k�(q)k2 of each candidate element q, which is
inversely proportional to the training cost. If the whitened norm is
high the candidate element is discriminative, if the whitened norm
is low the candidate element is not discriminative. Given a ren-
dered view, we consider as candidates visual element detectors of
all patches that are local maxima (in scale and space) of the norm
of their whitened HOG descriptor, k�(q)k2. Non-maximum sup-
pression is performed using a threshold of 0.1 on the standard ratio
of area intersection over union between two neighboring patches.
After this non-maximum suppression, all remaining patches across
all views are ranked according to the same whitened norm criteria.
Illustration of multi-scale discriminative visual element selection
for an example rendered view is shown in figure 4.

4.2.3 Relation to linear discriminant analysis (LDA). Recent
works [Gharbi et al. 2012; Hariharan et al. 2012] have shown that
linear HOG-based object detectors computed analytically using lin-
ear discriminant analysis (LDA) can reach similar object detection
accuracy as detectors learnt by expensive iterative SVM training.
The distribution of positive and negative data points is assumed to
be Gaussian, with mean vectors µ
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= ⌃ is assumed to be the same for both
positive and negative data. Under these Gaussian assumptions, the
decision hyperplane can be obtained in a closed form. Applying this
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photographs independent from all sites considered in this work. µ
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Fig. 4. Selection of discriminative visual elements. First row: the value
of discriminability shown as a heat-map for three different scales (left to
right). Red indicates high discriminability. Blue indicates low discriminabil-
ity. The discriminability is inversely proportional to the training cost of a
classifier learnt from a patch at the particular image location. Second row:
example visual elements at the local maxima of the discriminability score.
The corresponding local maxima are also indicated using “x” in the heat-
maps above.
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where L is the square loss and ↵ = 1+ k�(q)k2. Note that in con-
trast to the cost function (2), here the target labels depend on the
candidate visual element q and have values +↵ and �↵ for posi-
tive and negative data, respectively. This corresponds to increasing
the target values for visual elements q with large whitened norm
k�(q)k, i.e. those that are more discriminative. Under the Gaussian
assumptions of LDA, the squared whitened norm k�(q)k2 can be
interpreted as the Bhattacharyya distance [Kailath 1967] measur-
ing the “overlap” between the Gaussian representing the negative
data and the Gaussian representing the positive example q. Dis-
criminative visual elements q with large k�(q)k (as described in
section 4.2.2) correspond to “unusual” examples far from the dis-
tribution of the negative data. This intuition is illustrated in figure 5.

4.2.4 Discussion. Classifiers obtained by minimizing the least
squares (2) or LDA (9) cost functions can be used for matching
a candidate visual element q to a painting as described in equa-
tion (1). Note, however, that the decision hyperplanes obtained
from the least squares regression, w
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, and linear discriminant
analysis, w

LDA

, are collinear, i.e. they differ only by a scalar mul-
tiplicative factor, and only their offsets b
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differ. As
a consequence, for a particular visual element q the ranking of
matches according to the matching score (1) would be identical for
the two methods. In an object detection set-up [Dalal and Triggs
2005; Hariharan et al. 2012; Gharbi et al. 2012] the two methods
would produce identical precision-recall curves. In our matching
set-up, for a given q the best match in a particular painting would
be identical for both methods. The scalar offset, b, however, be-
comes important when comparing the value of the matching score
across different visual element detectors q. In object detection, the
score of the learnt classifiers is often calibrated on a held-out set of
labeled validation examples [Malisiewicz et al. 2011].
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the discriminability of a specific q. If the training cost (error) for a
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is not discriminative. This observation can be translated into a sim-
ple and efficient algorithm for ranking candidate element detectors
based on their discriminability. In practice, we evaluate the squared
“whitened” norm k�(q)k2 of each candidate element q, which is
inversely proportional to the training cost. If the whitened norm is
high the candidate element is discriminative, if the whitened norm
is low the candidate element is not discriminative. Given a ren-
dered view, we consider as candidates visual element detectors of
all patches that are local maxima (in scale and space) of the norm
of their whitened HOG descriptor, k�(q)k2. Non-maximum sup-
pression is performed using a threshold of 0.1 on the standard ratio
of area intersection over union between two neighboring patches.
After this non-maximum suppression, all remaining patches across
all views are ranked according to the same whitened norm criteria.
Illustration of multi-scale discriminative visual element selection
for an example rendered view is shown in figure 4.

4.2.3 Relation to linear discriminant analysis (LDA). Recent
works [Gharbi et al. 2012; Hariharan et al. 2012] have shown that
linear HOG-based object detectors computed analytically using lin-
ear discriminant analysis (LDA) can reach similar object detection
accuracy as detectors learnt by expensive iterative SVM training.
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Fig. 4. Selection of discriminative visual elements. First row: the value
of discriminability shown as a heat-map for three different scales (left to
right). Red indicates high discriminability. Blue indicates low discriminabil-
ity. The discriminability is inversely proportional to the training cost of a
classifier learnt from a patch at the particular image location. Second row:
example visual elements at the local maxima of the discriminability score.
The corresponding local maxima are also indicated using “x” in the heat-
maps above.
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where L is the square loss and ↵ = 1+ k�(q)k2. Note that in con-
trast to the cost function (2), here the target labels depend on the
candidate visual element q and have values +↵ and �↵ for posi-
tive and negative data, respectively. This corresponds to increasing
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Fig. 4. Matching as classification. Given a region and its HOG descriptor
q in a rendered view (top left) the aim is to find the corresponding region
in a painting (top right). This is achieved by training a linear HOG-based
sliding window classifier using q as a single positive example and a large
number of negative data. The classifier weight vector w is visualized by
separately showing the positive (+) and negative (-) weights at different
orientations and spatial locations. The best match x in the painting is found
as the maximum of the classification score.

would be expensive to perform for thousands of candidate elements
in each rendered view. Instead, similarly to [Bach and Harchaoui
2008; Gharbi et al. 2012], we take advantage of the fact that in the
case of square loss L(y, s(x)) = (y � s(x))2 the wLS and bLS

minimizing (2) and the optimal cost E⇥
LS can be obtained in closed

form as

wLS =
2

2 + ⌅⇥(q)⌅2�
�1(q � µ), (3)

bLS = �1

2
(q + µ)TwLS , (4)

E⇥
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2 + ⌅⇥(q)⌅2 , (5)

where µ = 1
N

⇤N
i=1 xi denotes the mean of the negative examples,

� = 1
N

⇤N
i=1(xi � µ)(xi � µ)⇤ their covariance and

⌅⇥(q)⌅2 = (q � µ)⇤��1(q � µ), (6)

the squared norm of q after the “whitening” transformation

⇥(q) = �� 1
2 (q � µ). (7)

We can use the value of the optimal cost (5) as a measure of
the discriminability of a specific q. If the training cost (error) for a
specific candidate visual element q is small the element is discrim-
inative. If the training cost is large the candidate visual element q
is not discriminative. This observation can be translated into a sim-
ple and efficient algorithm for ranking candidate element detectors
based on their discriminability. In practice, we evaluate the squared
“whitened” norm ⌅⇥(q)⌅2 of each candidate element q, which is
inversely proportional to the training cost. If the whitened norm is
high the candidate element is discriminative, if the whitened norm

Fig. 5. Selection of discriminative visual elements. First row: discrim-
inability scores shown as a heat-map for three different scales. Red indi-
cates high discriminability. Blue indicates low discriminability. The dis-
criminability is inversely proportional to the training cost of a classifier
learnt from a patch at the particular image location. Second row: exam-
ple visual elements at the local maxima of the discriminability scores. The
corresponding local maxima are also indicated using “x” in the heat-maps
above.

is low the candidate element is not discriminative. Given a ren-
dered view, we consider as candidates visual element detectors of
all patches that are local maxima (in scale and space) of the norm
of their whitened HOG descriptor, ⌅⇥(q)⌅2. Non-maximum sup-
pression is performed using a threshold of 0.1 on the standard ratio
of area intersection over union between two neighboring patches.
After this non-maximum suppression, all remaining patches across
all views are ranked according to the same whitened norm criteria.
Illustration of multi-scale discriminative visual element selection
for an example rendered view is shown in figure 5.

4.2.3 Relation to linear discriminant analysis (LDA). Recent
works [Gharbi et al. 2012; Hariharan et al. 2012] have shown that
linear HOG-based object detectors computed analytically using lin-
ear discriminant analysis (LDA) can reach similar object detection
accuracy as detectors learnt by expensive iterative SVM training.
The distribution of positive and negative data points is assumed to
be Gaussian, with mean vectors µp and µn, respectively. The co-
variance matrix �p = �n = � is assumed to be the same for
both positive and negative data. Under these Gaussian assumptions,
the decision hyperplane can be obtained via a ratio test in closed
form. Applying this approach to our image matching set-up, we es-
timate µn and � from a large set of HOG descriptors extracted from
patches that are sampled from a set of (“negative”) photographs in-
dependent from all sites considered in this work. µp is set to be a
specific single HOG descriptor q of the particular positive example
patch in the given rendered view. Parameters wLDA and bLDA of
the linear classifier defining the matching score (1)

sLDA(x) = wT
LDAx+ bLDA, (8)

can be obtained in closed form as

wLDA = ��1(q � µn), (9)

and

bLDA =
1

2

�
µT��1µ� qT��1q

⇥
. (10)

Note that the matching score (8) can also be expressed using the
whitening transformation defined in (7) as

sLDA(x) = ⇥(q)T⇥(x)� 1

2
⌅⇥(q)⌅2, (11)
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This paper describes a technique that can reliably align arbitrary 2D de-
pictions of an architectural site, including drawings, paintings and historical
photographs, with a 3D model of the site. This is a tremendously difficult
task as the appearance and scene structure in the 2D depictions can be very
different from the appearance and geometry of the 3D model, e.g., due to the
specific rendering style, drawing error, age, lighting or change of seasons.
In addition, we face a hard search problem: the number of possible align-
ments of the painting to a large 3D model, such as a partial reconstruction
of a city, is huge. To address these issues, we develop a new compact repre-
sentation of complex 3D scenes. The 3D model of the scene is represented
by a small set of discriminative visual elements that are automatically learnt
from rendered views. Similar to object detection, the set of visual elements,
as well as the weights of individual features for each element, are learnt in a
discriminative fashion. We show that the learnt visual elements are reliably
matched in 2D depictions of the scene despite large variations in rendering
style (e.g. watercolor, sketch, historical photograph) and structural changes
(e.g. missing scene parts, large occluders) of the scene. We demonstrate an
application of the proposed approach to automatic re-photography to find
an approximate viewpoint of historical paintings and photographs with re-
spect to a 3D model of the site. The proposed alignment procedure is vali-
dated via a human user study on a new database of paintings and sketches
spanning several sites. The results demonstrate that our algorithm produces
significantly better alignments than several baseline methods.
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cessing and Computer Vision]: Image Representation—Statistical
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1. INTRODUCTION
In this work we seek to automatically align historical photographs
and non-photographic renderings, such as paintings and line draw-
ings, to a 3D model of an architectural site. Specifically, we wish to
establish a set of point correspondences between local structures on
the 3D model and their respective 2D depictions. The established
correspondences will in turn allow us to find an approximate view-
point of the 2D depiction with respect to the 3D model. We focus on
depictions that are, at least approximately, perspective renderings
of the 3D scene. We consider complex textured 3D models obtained
by recent multi-view stereo reconstruction systems [Furukawa and
Ponce 2010] as well as simplified models obtained from 3D mod-
eling tools such as Google Sketchup. Example results are shown in
figure 1.

Why is this task important? First, non-photographic depictions
are plentiful and comprise a large portion of our visual record.
We wish to reason about them, and aligning such depictions to
reference imagery (via a 3D model in this case) is an impor-
tant step towards this goal. Second, such technology would open
up a number of exciting computer graphics applications that cur-
rently require expensive manual alignment of 3D models to vari-
ous forms of 2D imagery. Examples include interactive visualiza-
tion of a 3D site across time and different rendering styles [De-
bevec et al. 1996; Levin and Debevec 1999], model-based im-
age enhancement [Kopf et al. 2008], annotation transfer for aug-
mented reality [Snavely et al. 2006], inverse procedural 3D mod-
eling [Aliaga et al. 2007; Musialski et al. 2012] or computational
re-photography [Rapp 2008; Bae et al. 2010]. Finally, reliable auto-
matic image to 3D model matching is important in domains where
reference 3D models are often available, but may contain errors
or unexpected changes (e.g. something built/destroyed) [Bosché
2010], such as urban planning, civil engineering or archaeology.

The task of aligning 3D models to 2D non-photographic depic-
tions is extremely challenging. As discussed in prior work [Russell
et al. 2011; Shrivastava et al. 2011], local feature matching based
on interest points (e.g. SIFT [Lowe 2004]) often fails to find corre-
spondences across paintings and photographs. First, the rendering
styles across the two domains can vary considerably. The scene ap-
pearance (colors, lighting, texture) and geometry depicted by the
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1. INTRODUCTION
In this work we seek to automatically align historical photographs
and non-photographic renderings, such as paintings and line draw-
ings, to a 3D model of an architectural site. Specifically, we wish to
establish a set of point correspondences between local structures on
the 3D model and their respective 2D depictions. The established
correspondences will in turn allow us to find an approximate view-
point of the 2D depiction with respect to the 3D model. We focus on
depictions that are, at least approximately, perspective renderings
of the 3D scene. We consider complex textured 3D models obtained
by recent multi-view stereo reconstruction systems [Furukawa and
Ponce 2010] as well as simplified models obtained from 3D mod-
eling tools such as Google Sketchup. Example results are shown in
figure 1.

Why is this task important? First, non-photographic depictions
are plentiful and comprise a large portion of our visual record.
We wish to reason about them, and aligning such depictions to
reference imagery (via a 3D model in this case) is an impor-
tant step towards this goal. Second, such technology would open
up a number of exciting computer graphics applications that cur-
rently require expensive manual alignment of 3D models to vari-
ous forms of 2D imagery. Examples include interactive visualiza-
tion of a 3D site across time and different rendering styles [De-
bevec et al. 1996; Levin and Debevec 1999], model-based im-
age enhancement [Kopf et al. 2008], annotation transfer for aug-
mented reality [Snavely et al. 2006], inverse procedural 3D mod-
eling [Aliaga et al. 2007; Musialski et al. 2012] or computational
re-photography [Rapp 2008; Bae et al. 2010]. Finally, reliable auto-
matic image to 3D model matching is important in domains where
reference 3D models are often available, but may contain errors
or unexpected changes (e.g. something built/destroyed) [Bosché
2010], such as urban planning, civil engineering or archaeology.

The task of aligning 3D models to 2D non-photographic depic-
tions is extremely challenging. As discussed in prior work [Russell
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task as the appearance and scene structure in the 2D depictions can be very
different from the appearance and geometry of the 3D model, e.g., due to the
specific rendering style, drawing error, age, lighting or change of seasons.
In addition, we face a hard search problem: the number of possible align-
ments of the painting to a large 3D model, such as a partial reconstruction
of a city, is huge. To address these issues, we develop a new compact repre-
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1. INTRODUCTION
In this work we seek to automatically align historical photographs
and non-photographic renderings, such as paintings and line draw-
ings, to a 3D model of an architectural site. Specifically, we wish to
establish a set of point correspondences between local structures on
the 3D model and their respective 2D depictions. The established
correspondences will in turn allow us to find an approximate view-
point of the 2D depiction with respect to the 3D model. We focus on
depictions that are, at least approximately, perspective renderings
of the 3D scene. We consider complex textured 3D models obtained
by recent multi-view stereo reconstruction systems [Furukawa and
Ponce 2010] as well as simplified models obtained from 3D mod-
eling tools such as Google Sketchup. Example results are shown in
figure 1.

Why is this task important? First, non-photographic depictions
are plentiful and comprise a large portion of our visual record.
We wish to reason about them, and aligning such depictions to
reference imagery (via a 3D model in this case) is an impor-
tant step towards this goal. Second, such technology would open
up a number of exciting computer graphics applications that cur-
rently require expensive manual alignment of 3D models to vari-
ous forms of 2D imagery. Examples include interactive visualiza-
tion of a 3D site across time and different rendering styles [De-
bevec et al. 1996; Levin and Debevec 1999], model-based im-
age enhancement [Kopf et al. 2008], annotation transfer for aug-
mented reality [Snavely et al. 2006], inverse procedural 3D mod-
eling [Aliaga et al. 2007; Musialski et al. 2012] or computational
re-photography [Rapp 2008; Bae et al. 2010]. Finally, reliable auto-
matic image to 3D model matching is important in domains where
reference 3D models are often available, but may contain errors
or unexpected changes (e.g. something built/destroyed) [Bosché
2010], such as urban planning, civil engineering or archaeology.

The task of aligning 3D models to 2D non-photographic depic-
tions is extremely challenging. As discussed in prior work [Russell
et al. 2011; Shrivastava et al. 2011], local feature matching based
on interest points (e.g. SIFT [Lowe 2004]) often fails to find corre-
spondences across paintings and photographs. First, the rendering
styles across the two domains can vary considerably. The scene ap-
pearance (colors, lighting, texture) and geometry depicted by the
artist can be very different from the rendering of the 3D model,
e.g. due to the depiction style, drawing error, or changes in the ge-
ometry of the scene. Second, we face a hard search problem. The
number of possible alignments of the painting to a large 3D model,
such as a partial reconstruction of a city, is huge. Which parts of the
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Fig. 4. Matching as classification. Given a region and its HOG descriptor
q in a rendered view (top left) the aim is to find the corresponding region
in a painting (top right). This is achieved by training a linear HOG-based
sliding window classifier using q as a single positive example and a large
number of negative data. The classifier weight vector w is visualized by
separately showing the positive (+) and negative (-) weights at different
orientations and spatial locations. The best match x in the painting is found
as the maximum of the classification score.

would be expensive to perform for thousands of candidate elements
in each rendered view. Instead, similarly to [Bach and Harchaoui
2008; Gharbi et al. 2012], we take advantage of the fact that in the
case of square loss L(y, s(x)) = (y � s(x))2 the wLS and bLS

minimizing (2) and the optimal cost E⇥
LS can be obtained in closed

form as

wLS =
2

2 + ⌅⇥(q)⌅2�
�1(q � µ), (3)

bLS = �1

2
(q + µ)TwLS , (4)

E⇥
LS =

4

2 + ⌅⇥(q)⌅2 , (5)

where µ = 1
N

⇤N
i=1 xi denotes the mean of the negative examples,

� = 1
N

⇤N
i=1(xi � µ)(xi � µ)⇤ their covariance and

⌅⇥(q)⌅2 = (q � µ)⇤��1(q � µ), (6)

the squared norm of q after the “whitening” transformation

⇥(q) = �� 1
2 (q � µ). (7)

We can use the value of the optimal cost (5) as a measure of
the discriminability of a specific q. If the training cost (error) for a
specific candidate visual element q is small the element is discrim-
inative. If the training cost is large the candidate visual element q
is not discriminative. This observation can be translated into a sim-
ple and efficient algorithm for ranking candidate element detectors
based on their discriminability. In practice, we evaluate the squared
“whitened” norm ⌅⇥(q)⌅2 of each candidate element q, which is
inversely proportional to the training cost. If the whitened norm is
high the candidate element is discriminative, if the whitened norm

Fig. 5. Selection of discriminative visual elements. First row: discrim-
inability scores shown as a heat-map for three different scales. Red indi-
cates high discriminability. Blue indicates low discriminability. The dis-
criminability is inversely proportional to the training cost of a classifier
learnt from a patch at the particular image location. Second row: exam-
ple visual elements at the local maxima of the discriminability scores. The
corresponding local maxima are also indicated using “x” in the heat-maps
above.

is low the candidate element is not discriminative. Given a ren-
dered view, we consider as candidates visual element detectors of
all patches that are local maxima (in scale and space) of the norm
of their whitened HOG descriptor, ⌅⇥(q)⌅2. Non-maximum sup-
pression is performed using a threshold of 0.1 on the standard ratio
of area intersection over union between two neighboring patches.
After this non-maximum suppression, all remaining patches across
all views are ranked according to the same whitened norm criteria.
Illustration of multi-scale discriminative visual element selection
for an example rendered view is shown in figure 5.

4.2.3 Relation to linear discriminant analysis (LDA). Recent
works [Gharbi et al. 2012; Hariharan et al. 2012] have shown that
linear HOG-based object detectors computed analytically using lin-
ear discriminant analysis (LDA) can reach similar object detection
accuracy as detectors learnt by expensive iterative SVM training.
The distribution of positive and negative data points is assumed to
be Gaussian, with mean vectors µp and µn, respectively. The co-
variance matrix �p = �n = � is assumed to be the same for
both positive and negative data. Under these Gaussian assumptions,
the decision hyperplane can be obtained via a ratio test in closed
form. Applying this approach to our image matching set-up, we es-
timate µn and � from a large set of HOG descriptors extracted from
patches that are sampled from a set of (“negative”) photographs in-
dependent from all sites considered in this work. µp is set to be a
specific single HOG descriptor q of the particular positive example
patch in the given rendered view. Parameters wLDA and bLDA of
the linear classifier defining the matching score (1)

sLDA(x) = wT
LDAx+ bLDA, (8)

can be obtained in closed form as

wLDA = ��1(q � µn), (9)

and

bLDA =
1

2

�
µT��1µ� qT��1q

⇥
. (10)

Note that the matching score (8) can also be expressed using the
whitening transformation defined in (7) as

sLDA(x) = ⇥(q)T⇥(x)� 1

2
⌅⇥(q)⌅2, (11)



“Whitening interpretation”  

Detection: 

Φ(q1) 
Φ(q2) 

Φ(µ)	


q2 

µn 

Big || Φ(q) || = discriminative 



Calibrated discriminative matching  

The LDA score improves over the LS score, but overrates low-contrast 
matches. Thus we add a constant such that the score of a zero HOG is 0. 

Results: 

6 • M. Aubry et al.

Fig. 6. Selection of discriminative visual elements - interpretation us-
ing linear discriminant analysis. Left: The negative data distribution (cen-
tered at µ) and two example positive data distributions (q1 and q2) are mod-
eled as Gaussians with different means but the same covariance. Right:
After “whitening”, the negative data is centered at the origin with unit co-
variance. For fixed negative data, the classifier defined by q2 is clearly more
discriminative than the classifier defined by q1, as measured by the overlap
of the positive and negative data distribution. In the whitened space, this
overlap can be measured by the Euclidean distance of the (whitened) mean
of the positive data points from the origin. Note that in the original non-
whitened space (left) the means of q1 and q2 are at the same distance from
the mean of the negative data µ.

where the first term is a dot-product between whitened q and x,
and the second term is an additive normalization factor reduc-
ing the matching score for q vectors with large whitened norm.
It is interesting to note that under the Gaussian assumptions of
LDA, the squared whitened norm ⇤⇥(q)⇤2 can be interpreted as the
Bhattacharyya distance [Kailath 1967] measuring the “overlap” be-
tween the Gaussian representing the negative data and the Gaussian
representing the positive example q. Discriminative visual elements
q with large ⇤⇥(q)⇤ (as described in section 4.2.2) correspond to
“unusual” examples far from the distribution of the negative data.
This intuition is illustrated in figure 6.

4.2.4 Discussion. Classifiers obtained by minimizing the least
squares cost function (2) or satisfying the LDA ratio test can be
used for matching a candidate visual element q to a painting as
described in equation (1). Note that the decision hyperplanes ob-
tained from the least squares regression, wLS , and linear discrim-
inant analysis, wLDA, are parallel. As a consequence, for a par-
ticular visual element q the ranking of matches according to the
matching score (1) would be identical for the two methods. In other
words, in an object detection set-up [Dalal and Triggs 2005; Hari-
haran et al. 2012; Gharbi et al. 2012] the two methods would pro-
duce identical precision-recall curves. In our matching set-up, for
a given q the best match in a particular painting would be identical
for both methods. The actual value of the score, however, becomes
important when comparing matching scores across different visual
element detectors q. In object detection, the score of the learnt clas-
sifiers is typically calibrated on a held-out set of labeled validation
examples [Malisiewicz et al. 2011].

4.2.5 Calibrated discriminative matching. We have found that
calibration of matching scores across different visual elements is
important for the quality of the final matching results. Below we de-
scribe a procedure to calibrate matching scores without the need of
any labelled data. First, we found (section 6.4.3) that the matching
score obtained from LDA produces significantly better matching
results than matching via least squares regression. Nevertheless, we
found that the raw uncalibrated LDA score favors low-contrast im-
age regions, which have an almost zero HOG descriptor. To avoid
this problem, we further calibrate the LDA score (8) by subtracting
a term that measures the score of the visual element q matched to a

low-contrast region, represented by zero (empty) HOG vector

scalib(x) = sLDA(x)� sLDA(0) (12)
= (q � µ)T��1x. (13)

This calibrated score gives much better results on the dataset
of [Hauagge and Snavely 2012] as shown in section 6.4.3 and sig-
nificantly improves matching results on our dataset of historical
photographs and non-photographic depictions.

Finally, since we wish to obtain matches that are both (i) non-
ambiguous and (ii) have a high matching score we perform the
following two step procedure to select candidates visual element
matches for a given depiction. First, we apply all visual ele-
ment detectors on the depiction and take the top 200 detections
sorted according to the first to second nearest neighbor ratio [Lowe
2004], using the similarity score (12). This selects the most non-
ambiguous matches. Second, we sort the 200 matches directly by
score (12) and consider the top 25 matches to compute the camera
viewpoint as described in section 5.

4.2.6 Summary. Candidate visual elements {qi} are obtained
by finding local maxima of (6), which is inversely proportional to
the least squares regression training error given by (5) as described
in section 4.2.2. Visual elements are then matched to a painting
using the two step matching procedure described in section 4.2.5
that uses the calibrated LDA score (12).

4.3 Filtering elements unstable across viewpoint
Here we wish to discard elements that cannot be reliably detected
in close-by rendered views. This filtering criteria removes many
unstable elements that are, for example, ambiguous because of
repeated structures in the rendered view or cover large depth
discontinuities and hence significantly change with viewpoint.

We define close-by views based on the visual overlap of imaged
3D structures rather than, for example, the distance between camera
centers. In detail, to measure visual overlap between views V 1, V 2

we define the following score

S(V 1, V 2) =
1

|V|
�

{x1
i ,x

2
i }⇥V

e
�

(x1
i �x2

i )2

2�2
x

� 1
2�2

d

(d(x1
i )�d(x2

i ))2

1
2 (d(x1

i )+d(x2
i ))2 ,

(14)
where {x1

i , x
2
i } ⇥ V is the set of corresponding points (pixels) in

view V 1 and V 2, respectively, xj
i is the location of pixel i in view

j, d(xj
i ) is the depth (distance to the 3D model) at pixel i in view j,

and �x and �d are parameters. The first term in the exponent mea-
sures the squared image distance between the corresponding pixels.
The second term in the exponent measures the difference between
the depths at the corresponding pixel locations normalized by their
average depth. The per-pixel scores are then averaged over all cor-
responding pixels in the two views. The score is one if the two
views are identical and zero if the two views have no visual over-
lap. In our case, two views are deemed “close-by” if their visual
overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.
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(a) Good match (b) Coarse match (c) No match
Fig. 15. Alignment evaluation criteria. We asked workers on Amazon Mechanical Turk to judge the viewpoint similarity of the resulting alignment to the
input depiction. The workers were asked to categorize the viewpoint similarity into one of three categories: (a) Good match – the two images show a roughly
similar view of the building; (b) Coarse match – the view may not be similar, but the building is roughly at the same location in both images, not upside down,
and corresponding building parts can be clearly identified; (c) No match – the views are completely different, e.g. upside down, little or no visual overlap.

Fig. 17. Evaluation of visual element selection. The average percent-
age (left) and number (right) of correct matches as a function of the top n
matches. See text for details.

tional matched depictions, it opens-up the possibility of learning a
vocabulary of visual elements specific for each rendering style.

6.4.2 Visual element selection. Here we evaluate benefits of
the proposed discriminative visual element selection combined and
cross-validation. To measure the improvement in the quality of
the selected visual elements we compute the percentage of cor-
rect matches (inliers). We consider only the San Marco square 3D
model and the ground truth is obtained by visual inspection of the
resulting alignments – only correct matches from the good and ok
alignments are considered as ground truth inliers. The percentage
of inliers gives a finer indication of the quality of visual elements
than the overall percentage of correct alignments measured in the
previous section as RANSAC will often find the correct alignment
even from very few correct candidate correspondences. Results are
summarised in figure 17. Here 10K discriminative visual elements
were learnt from 45K sampled views. We compare three methods
for selecting visual elements from the set of rendered views: The
“3D overlap” (red) method selects visual elements that significantly
overlap the 3D model in rendered views, i.e. where at least 50% of
the HOG support is occupied by the 3D model. 10K visual elements
are then chosen randomly out of all visual elements that satisfy the
3D model overlap criteria. The “discriminative” (blue) method uses
the discriminative selection (section 4.2.2), but no cross-validation.
The “discr. + X-val” (green) uses the proposed discriminative vi-
sual element selection (section 4.2.2) with cross-validation (sec-
tion 4.2.5). For example, inspecting figure 17(a) reveals that within
the top 10 matches there are 27.9% of correct matches for the 3D
overlap method, 31.9% for the discriminative selection, and 35.4%
for the discriminative selection with cross-validation. This demon-
strates that visual elements selected by the proposed method are
more likely to be correctly recovered in the painting.

Table VI. Evaluation of visual element matching. We report
the mean average precision on the “desceval” task from the

benchmark dataset of [Hauagge and Snavely 2012].
Matching method mAP (“desceval”)

Local symmetry [Hauagge and Snavely 2012] 0.58
Least squares regression (Sec. 4.2.2) 0.52

LDA (Sec. 4.2.3) 0.60
Ours (Sec. 4.2.5) 0.77

6.4.3 Visual element matching. We evaluate the proposed
matching procedure on the ‘desceval’ task from the benchmark
dataset collected in [Hauagge and Snavely 2012]. The benchmark
consists of challenging imagery, such as historical photographs and
non-photographic depictions of architectural landmarks. Pairs of
images in the dataset depicting a similar viewpoint of the same
landmark have been registered by fitting a homography to manual
point correspondences. The task is to find corresponding patches
in each image pair. Since the ground truth correspondence between
points is assumed known via the homography, a precision-recall
curve can be computed for each image pair. We report the mean av-
erage precision (mAP) measured over all image pairs in the dataset.

Following [Hauagge and Snavely 2012] we perform matching
over a grid of points in the two views, with the grid having 25 pixel
spacing. In table VI we report the mAP for different visual element
matching methods for our system, along with the local symmetry
feature baseline of [Hauagge and Snavely 2012]. Our full system
using the calibrated matching score (section 4.2.5) achieves a mAP
of 0.77, which significantly outperforms both the alternative visual
element matching scores obtained by least squares regression (sec-
tion 4.2.2) and linear discriminant analysis (LDA, section 4.2.3), as
well as the local symmetry feature baseline.

6.4.4 Failure modes. We have identified three main failure
modes of our algorithm, examples of which are shown in figure 18.
The first is due to large-scale symmetries, for example when the
front and side facade of a building are very similar. This problem
is difficult to resolve with only local reasoning. For example, the
proposed cross-validation step removes repetitive structures visi-
ble in the same view but not at different locations of the site. The
second failure mode is due to locally confusing image structures,
for example, the vertical support structures on the cathedral in fig-
ure 18 (middle) are locally similar (by their HOG descriptor) to the
vertical pencil strokes on the drawing. The learnt mid-level visual
elements have a larger support than typical local invariant features
(such as SIFT) and hence are typically more distinctive. Neverthe-
less, such mismatches can occur and in some cases are geomet-
rically consistent with a certain view of the 3D model. The third
failure mode is when the viewpoint depicted in the painting is not
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(a) Top 4 stable patches (b) Top 4 unstable patches

Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features

… 
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 6. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views.

Fig. 7. Examples of selected visual elements for a 3D site. Top: Selec-
tion of top ranked 50 visual elements visible from this specific view of the
site. Each element is depicted as planar patch with an orientation of the
plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

We keep only visual elements that could be succesfully detected
in more than 80% of the nearby views. Examples of stable and
unstable visual elements are shown in figure 6.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final elements
obtained by the proposed approach are shown in figure 7.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume, to first-order, that
the paintings are perspective scene renderings and seek to recover
the following set of parameters via camera resectioning: camera
center, camera rotation, focal length, and principal point. Our align-
ment procedure consists of a coarse alignment step using the recov-
ered discriminative visual elements, followed by a fine alignment
procedure.

For detection, each trained discriminative visual element takes
as input a 2D patch from the painting and returns as output a 3D lo-
cation X on the 3D model, a plane representing the patch extent on
the 3D model centered at X, and a detector response score indicat-

Fig. 8. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the painting and
the 3D model. Shown is the recovered viewpoint and inlier visual elements
found via RANSAC. Notice that the visual elements yield inliers across the
entire visible part of the site.

(a) Historical photo. (b) Coarse alignment. (c) Fine alignment.
Fig. 9. ICP-like fine alignment. Given the coarse alignment, at each itera-
tion we find a dense set of inlier correspondences with RANSAC for HOG
features computed over a grid. We then update the viewpoint and iterate.
Notice that the fine alignment step produces a tighter, more accurate fit.

ing the quality of the appearance match. We take the top 25 scoring
detector responses in the painting and form a set of putative point
correspondences by taking the 2D/3D location of the patch center,
as well as points at the patch’s corners The patch corners provide
information about the patch scale and the planar location on the
3D model, and has been shown to work well for structure-from-
motion with planar constraints [Szeliski and Torr 1998]. We use
RANSAC to find the set of inlier correspondences to a restricted
camera model where the camera intrinsics are fixed to initial values
(i.e. we seek to recover the camera center and rotation). The recov-
ered viewpoint forms an initial coarse alignment of the painting to
the 3D model, which is depicted in Figure 8.

Given the coarse alignment, we seek to recover all of the camera
parameters by densely aligning the painting to the 3D model with
an ICP-like fine alignment procedure. At each iteration we compute
a set of dense correspondences using HOG features computed in a
grid over the entire image. Namely, for all HOG descriptors in a
given scale in the HOG pyramid, we search for the best match in a
local 5x5 window using L2 distance. We optimize over all camera
parameters and find inlier correspondences via RANSAC over the
dense set of correspondences. An updated view is rendered from
the 3D model and the entire procedure repeated at a finer scale in
the HOG pyramid. In this way, large misalignments are corrected
at the beginning of the procedure, with minor adjustments made
at the end. We also use inlier correspondences from previous ICP
iterations during RANSAC and fitting, which avoids the camera
parameters from overfitting to a particular region in the painting.
This is especially important for paintings that are not perspective
scene renderings or have drawing errors. We illustrate the output of
the fine alignment procedure in Figure 9.
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(a) Top 4 stable patches (b) Top 4 unstable patches

Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are �d = 0.3 and �x = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT
In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following
set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features

… 
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2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
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(a) Good match (b) Coarse match (c) No match
Fig. 15. Alignment evaluation criteria. We asked workers on Amazon Mechanical Turk to judge the viewpoint similarity of the resulting alignment to the
input depiction. The workers were asked to categorize the viewpoint similarity into one of three categories: (a) Good match – the two images show a roughly
similar view of the building; (b) Coarse match – the view may not be similar, but the building is roughly at the same location in both images, not upside down,
and corresponding building parts can be clearly identified; (c) No match – the views are completely different, e.g. upside down, little or no visual overlap.

Fig. 17. Evaluation of visual element selection. The average percent-
age (left) and number (right) of correct matches as a function of the top n

matches. See text for details.

tional matched depictions, it opens-up the possibility of learning a
vocabulary of visual elements specific for each rendering style.

6.4.2 Visual element selection. Here we evaluate benefits of
the proposed discriminative visual element selection combined and
cross-validation. To measure the improvement in the quality of
the selected visual elements we compute the percentage of cor-
rect matches (inliers). We consider only the San Marco square 3D
model and the ground truth is obtained by visual inspection of the
resulting alignments – only correct matches from the good and ok
alignments are considered as ground truth inliers. The percentage
of inliers gives a finer indication of the quality of visual elements
than the overall percentage of correct alignments measured in the
previous section as RANSAC will often find the correct alignment
even from very few correct candidate correspondences. Results are
summarised in figure 17. Here 10K discriminative visual elements
were learnt from 45K sampled views. We compare three methods
for selecting visual elements from the set of rendered views: The
“3D overlap” (red) method selects elements that overlap more than
50% with the 3D model in rendered views. 10K visual elements
are then chosen randomly out of all visual elements that satisfy the
3D model overlap criteria. The “discriminative” (blue) method uses
the discriminative selection (section 4.2.2), but no cross-validation.
The “discr. + X-val” (green) uses the proposed discriminative vi-
sual element selection (section 4.2.2) with cross-validation (sec-
tion 4.2.5). For example, inspecting figure 17(a) reveals that within
the top 10 matches there are 27.9% of correct matches for the 3D
overlap method, 31.9% for the discriminative selection, and 35.4%
for the discriminative selection with cross-validation. This demon-
strates that visual elements selected by the proposed method are
more likely to be correctly recovered in the painting.

6.4.3 Visual element matching. We evaluate the proposed
matching procedure on the ‘desceval’ task from the benchmark

Table VI. Evaluation of visual element matching. We report
the mean average precision on the “desceval” task from the

benchmark dataset of [Hauagge and Snavely 2012].
Matching method mAP (“desceval”)

Local symmetry [Hauagge and Snavely 2012] 0.58
Least squares regression (Sec. 4.2.2) 0.52

LDA (Sec. 4.2.3) 0.60
Ours (Sec. 4.2.5) 0.77

dataset collected in [Hauagge and Snavely 2012]. The benchmark
consists of challenging imagery, such as historical photographs and
non-photographic depictions of architectural landmarks. Pairs of
images in the dataset depicting a similar viewpoint of the same
landmark have been registered by fitting a homography to manual
point correspondences. The task is to find corresponding patches
in each image pair. Since the ground truth correspondence between
points is assumed known via the homography, a precision-recall
curve can be computed for each image pair. We report the mean av-
erage precision (mAP) measured over all image pairs in the dataset.

Following [Hauagge and Snavely 2012] we perform matching
over a grid of points in the two views, with the grid having 25 pixel
spacing. In Table VI we report the mAP for different visual element
matching methods for our system, along with the local symmetry
feature baseline of [Hauagge and Snavely 2012]. Our full system
using the calibrated matching score (Section 4.2.5) achieves a mAP
of 0.77, which significantly outperforms both the alternative visual
element matching scores obtained by least squares regression (Sec-
tion 4.2.2) and linear discriminant analysis (LDA, Section 4.2.3),
as well as the local symmetry feature baseline.

6.4.4 Failure modes. We have identified three main failure
modes of our algorithm, examples of which are shown in figure 18.
The first is due to large-scale symmetries, for example when the
front and side facade of a building are very similar. This problem
is difficult to resolve with only local reasoning. For example, the
proposed cross-validation step removes repetitive structures visi-
ble in the same view but not at different locations of the site. The
second failure mode is due to locally confusing image structures,
for example, the vertical support structures on the cathedral in fig-
ure 18 (middle) are locally similar (by their HOG descriptor) to the
vertical pencil strokes on the drawing. The learnt mid-level visual
elements have a larger support than typical local invariant features
(such as SIFT) and hence are typically more distinctive. Neverthe-
less, such mismatches can occur and in some cases are geomet-
rically consistent with a certain view of the 3D model. The third
failure mode is when the viewpoint depicted in the painting is not
covered in the set of sampled views. This can happen for unusual
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tional matched depictions, it opens-up the possibility of learning a
vocabulary of visual elements specific for each rendering style.

6.4.2 Visual element selection. Here we evaluate benefits of
the proposed discriminative visual element selection combined and
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rect matches (inliers). We consider only the San Marco square 3D
model and the ground truth is obtained by visual inspection of the
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alignments are considered as ground truth inliers. The percentage
of inliers gives a finer indication of the quality of visual elements
than the overall percentage of correct alignments measured in the
previous section as RANSAC will often find the correct alignment
even from very few correct candidate correspondences. Results are
summarised in figure 17. Here 10K discriminative visual elements
were learnt from 45K sampled views. We compare three methods
for selecting visual elements from the set of rendered views: The
“3D overlap” (red) method selects elements that overlap more than
50% with the 3D model in rendered views. 10K visual elements
are then chosen randomly out of all visual elements that satisfy the
3D model overlap criteria. The “discriminative” (blue) method uses
the discriminative selection (section 4.2.2), but no cross-validation.
The “discr. + X-val” (green) uses the proposed discriminative vi-
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tion 4.2.5). For example, inspecting figure 17(a) reveals that within
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overlap method, 31.9% for the discriminative selection, and 35.4%
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alignments are considered as ground truth inliers. The percentage
of inliers gives a finer indication of the quality of visual elements
than the overall percentage of correct alignments measured in the
previous section as RANSAC will often find the correct alignment
even from very few correct candidate correspondences. Results are
summarised in figure 17. Here 10K discriminative visual elements
were learnt from 45K sampled views. We compare three methods
for selecting visual elements from the set of rendered views: The
“3D overlap” (red) method selects elements that overlap more than
50% with the 3D model in rendered views. 10K visual elements
are then chosen randomly out of all visual elements that satisfy the
3D model overlap criteria. The “discriminative” (blue) method uses
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The “discr. + X-val” (green) uses the proposed discriminative vi-
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tion 4.2.5). For example, inspecting figure 17(a) reveals that within
the top 10 matches there are 27.9% of correct matches for the 3D
overlap method, 31.9% for the discriminative selection, and 35.4%
for the discriminative selection with cross-validation. This demon-
strates that visual elements selected by the proposed method are
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matching methods for our system, along with the local symmetry
feature baseline of [Hauagge and Snavely 2012]. Our full system
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6.4.4 Failure modes. We have identified three main failure
modes of our algorithm, examples of which are shown in figure 18.
The first is due to large-scale symmetries, for example when the
front and side facade of a building are very similar. This problem
is difficult to resolve with only local reasoning. For example, the
proposed cross-validation step removes repetitive structures visi-
ble in the same view but not at different locations of the site. The
second failure mode is due to locally confusing image structures,
for example, the vertical support structures on the cathedral in fig-
ure 18 (middle) are locally similar (by their HOG descriptor) to the
vertical pencil strokes on the drawing. The learnt mid-level visual
elements have a larger support than typical local invariant features
(such as SIFT) and hence are typically more distinctive. Neverthe-
less, such mismatches can occur and in some cases are geomet-
rically consistent with a certain view of the 3D model. The third
failure mode is when the viewpoint depicted in the painting is not
covered in the set of sampled views. This can happen for unusual
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Fig. 11. Alignment of historical photographs of San Marco’s Square (top) and Notre Dame of Paris (bottom) to their respective 3D models.

Table II. Viewpoint similarity user study of our
algorithm across different sites.

Good Coarse No
match match match

S. Marco Square 51% 21% 28%
S. Marco Basilica 45% 39% 15%

Trevi Fountain 55% 20% 24%
Notre Dame 65% 27% 9%

Average 55% 27% 18%

Table III. Viewpoint similarity user study of our
algorithm across different depiction styles.

Good Coarse No
match match match

Historical photographs 59% 20% 21%
Paintings 53% 30% 18%
Drawings 52% 29% 19%

Engravings 57% 26% 17%
Average 55% 27% 18%

Table IV. Viewpoint similarity user study – comparison with
baselines on the “San Marco Square” 3D site.

Good Coarse No
match match match

SIFT on rendered views 40% 26% 33%
Viewpoint retrieval [Russell et al. 2011] 1% 39% 60%
Exemplar SVM [Shrivastava et al. 2011] 34% 18% 48%

mid-level painting visual elements 33% 29% 38%
3D discrim. visual elements (ours) 51% 21% 28%

Table III shows the performance of our algorithm for different
depiction styles averaged across the 3D sites. Interestingly, the re-
sults are fairly consistent across different depiction styles.

Finally, table IV compares the performance of our algorithm
to several baseline methods for the 141 depictions of San Marco
Square – the largest 3D model in our dataset with 45K sampled
viewpoints. We compare our algorithm against the following four
baselines: (i) SIFT on rendered views, (ii) viewpoint retrieval (cor-
responding to the coarse alignment step of [Russell et al. 2011]),
(iii) exemplar SVM [Shrivastava et al. 2011], and (iv) mid-level
painting visual elements that, similar to [Singh et al. 2012], learns
mid-level visual elements directly from paintings, rather than the

3D model. The implementation details of each baseline are given
next.

For the SIFT on rendered views baseline we extract and match
SIFT descriptors computed at interest points across scale [Lowe
2004] over each input depiction and all rendered views. We use
orientation sensitive descriptors as we found them to be more reli-
able than orientation invariant descriptors in practice. We perform
geometric verification by finding inliers to an affine homography
between the input depiction and each rendered viewpoint. Then, we
take the rendered viewpoint with the most inliers and perform cam-
era resectioning with RANSAC using the SIFT putative matches
for that view. We return as output a rendering of the final resec-
tioned viewpoint. Note that the matching procedure is not standard
since it is extracting descriptors from rendered views, which nor-
malize for viewpoint changes. In other words, the SIFT matching
step does not need to be viewpoint invariant as we are matching to
a similar viewpoint from the rendered set. This baseline is similar
in spirit to matching with Viewpoint Invariant Patches (VIP) [Wu
et al. 2008], except no depth or rectification is needed for the paint-
ings. This baseline performs reasonably well, having 40% good
alignments compared with 51% for our algorithm. The good perfor-
mance is largely due to alignments of historical photographs (70%
vs. 50% for our method). However, if historical photographs are re-
moved from the dataset, the SIFT on rendered views baseline drops
to 27% good alignments, while our algorithm still achieves 52%
good alignments.

The viewpoint retrieval baseline consists of matching a global
Gist descriptor [Oliva and Torralba 2001] extracted for each input
depiction and all rendered views. The Gist descriptors are com-
pared using L2 distance and the view corresponding to the mini-
mum distance is returned. The Gist descriptor is sensitive to view-
point, with the matching procedure corresponding to the coarse
alignment step of [Russell et al. 2011]. Our method clearly out-
performs the viewpoint retrieval baseline mainly because the sam-
pled rendered views fail to cover the enormous space of all possible
viewpoints. Matching the global image-level Gist descriptor would
require much denser and wider sampling of views.

To reduce the viewpoint coverage issue, we explore as a base-
line the exemplar-SVM approach of [Shrivastava et al. 2011]. For
this a single exemplar SVM detector is trained for each input depic-
tion and is subsequently matched across all scales and 2D locations
in sliding window fashion in the rendered views. While the perfor-
mance improves over Gist matching, nonetheless the results remain
limited since the approach cannot handle partial occlusions and sig-
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NB: the performance 
of SIFT baseline drops 
if we don’t consider 
photographs, when 
our algorithm results 
remain the same. 
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(a) Good match (b) Coarse match (c) No match
Fig. 15. Alignment evaluation criteria. We asked workers on Amazon Mechanical Turk to judge the viewpoint similarity of the resulting alignment to the
input depiction. The workers were asked to categorize the viewpoint similarity into one of three categories: (a) Good match – the two images show a roughly
similar view of the building; (b) Coarse match – the view may not be similar, but the building is roughly at the same location in both images, not upside down,
and corresponding building parts can be clearly identified; (c) No match – the views are completely different, e.g. upside down, little or no visual overlap.

Fig. 17. Evaluation of visual element selection. The average percent-
age (left) and number (right) of correct matches as a function of the top n
matches. See text for details.

filters during rendering) on 147 depictions of the Notre Dame site
via a user study on Amazon Mechanical Turk. Results are sum-
marized in table V. Both styles result in a decrease of the overall
matching performance compared to the original rendering. How-
ever, when results are split by depiction (not reported in table V) the
drawing style results in a small increase of matching performance
on drawings (68% good matches vs. 62% good matches with the
original rendering). While this difference amounts to only 3 addi-
tional matched depictions, it opens-up the possibility of learning a
vocabulary of visual elements specific for each rendering style.

6.4.2 Visual element selection. Here we evaluate benefits of
the proposed discriminative visual element selection combined and
cross-validation. To measure the improvement in the quality of
the selected visual elements we compute the percentage of cor-
rect matches (inliers). We consider only the San Marco square 3D
model and the ground truth is obtained by visual inspection of the
resulting alignments – only correct matches from the good and ok
alignments are considered as ground truth inliers. The percentage
of inliers gives a finer indication of the quality of visual elements
than the overall percentage of correct alignments measured in the
previous section as RANSAC will often find the correct alignment
even from very few correct candidate correspondences. Results are
summarised in figure 17. Here 10K discriminative visual elements
were learnt from 45K sampled views. We compare three methods
for selecting visual elements from the set of rendered views: The
“3D overlap” (red) method selects visual elements that significantly
overlap the 3D model in rendered views, i.e. where at least 50% of
the HOG support is occupied by the 3D model. 10K visual elements
are then chosen randomly out of all visual elements that satisfy the
3D model overlap criteria. The “discriminative” (blue) method uses
the discriminative selection (section 4.2.2), but no cross-validation.
The “discr. + X-val” (green) uses the proposed discriminative vi-
sual element selection (section 4.2.2) with cross-validation (sec-

Table VI. Evaluation of visual element matching. We report
the mean average precision on the “desceval” task from the

benchmark dataset of [Hauagge and Snavely 2012].
Matching method mAP (“desceval”)

Local symmetry [Hauagge and Snavely 2012] 0.58
Least squares regression (Sec. 4.2.2) 0.52

LDA (Sec. 4.2.3) 0.60
Ours (Sec. 4.2.5) 0.77

tion 4.2.5). For example, inspecting figure 17(a) reveals that within
the top 10 matches there are 27.9% of correct matches for the 3D
overlap method, 31.9% for the discriminative selection, and 35.4%
for the discriminative selection with cross-validation. This demon-
strates that visual elements selected by the proposed method are
more likely to be correctly recovered in the painting.

6.4.3 Visual element matching. We evaluate the proposed
matching procedure on the ‘desceval’ task from the benchmark
dataset collected in [Hauagge and Snavely 2012]. The benchmark
consists of challenging imagery, such as historical photographs and
non-photographic depictions of architectural landmarks. Pairs of
images in the dataset depicting a similar viewpoint of the same
landmark have been registered by fitting a homography to manual
point correspondences. The task is to find corresponding patches
in each image pair. Since the ground truth correspondence between
points is assumed known via the homography, a precision-recall
curve can be computed for each image pair. We report the mean av-
erage precision (mAP) measured over all image pairs in the dataset.

Following [Hauagge and Snavely 2012] we perform matching
over a grid of points in the two views, with the grid having 25 pixel
spacing. In table VI we report the mAP for different visual element
matching methods for our system, along with the local symmetry
feature baseline of [Hauagge and Snavely 2012]. Our full system
using the calibrated matching score (section 4.2.5) achieves a mAP
of 0.77, which significantly outperforms both the alternative visual
element matching scores obtained by least squares regression (sec-
tion 4.2.2) and linear discriminant analysis (LDA, section 4.2.3), as
well as the local symmetry feature baseline.

6.4.4 Failure modes. We have identified three main failure
modes of our algorithm, examples of which are shown in figure 18.
The first is due to large-scale symmetries, for example when the
front and side facade of a building are very similar. This problem
is difficult to resolve with only local reasoning. For example, the
proposed cross-validation step removes repetitive structures visi-
ble in the same view but not at different locations of the site. The
second failure mode is due to locally confusing image structures,
for example, the vertical support structures on the cathedral in fig-
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Conclusions and open questions 

•  Automatic painting/image-to-3D model alignment 
is possible for a range of depiction styles 

•  We represent a 3D model by a compact set of 
visually distinct mid-level scene elements 
extracted from rendered views 

•  How to efficiently index paintings and historical 
photographs for visual search? 

•  How to model and cope with drawing error? 


