

Introduction

Task: find pixel-level visual correspondences

Challenges: strong illumination or appearance changes

matching

repetitive structure

Neighbourhood Consensus Networks

Ignacio Rocco^{1,2} Mircea Cimpoi³

Relja Arandjelović⁴

²INRIA

¹DI ENS, PSL Research University

Extracting correspondences:

Matches can be extracted in both directions from the output c:

Training loss:

The network is trained with weak supervision:

$\mathcal{L}(I^A, I^B) = -y\left(\bar{s}^A + \bar{s}^B\right)$	mean score of matches $A{ ightarrow}B$
	mean score of matches $B\!\rightarrow\!A$

- positive pairs (y = 1): maximize match score
- negative pairs (y = -1): minimize match score

Akihiko Torii⁵

³CIIRC, CTU in Prague

⁴DeepMind

⁵Tokyo Institute of Technology

Tomas Pajdla³

Proposed method

Instance-level matching: InLoc dataset [5]

Proc. CVPR, 2018.

Josef Sivic^{1,2,3}

Experimental results

Category-level matching: PF-Pascal dataset [1]

- Task: match similar semantic parts - Metric: percentage of correct keypoints (PCK)

Method	PCK
HOG+PF-LOM [1]	62.5
SCNet-AG+ [2]	72.2
CNNGeo [3]	71.9
WeakAlign [4]	75.8
NC-Net	78.9

Ground-truth

1] B. Ham. M. Cho. C. Schmid. and J. Ponce. Proposal flow: Semantic correspondences from object proposals. IEEE PAMI, 2017. K. Han, R. S. Rezende, B. Ham, K.-Y. K. Wong, M. Cho, C. Schmid, and J. Ponce. SCNet: Learning Semantic Correspondence. In Proc. ICCV, 2017. I. Rocco, R. Arandielović, and J. Sivic. Convolutional neural network architecture for geometric matching. In Proc. CVPR, 2017. I. Rocco, R. Arandielović, and J. Sivic. End-to-end weakly-supervised semantic alignment. In Proc. CVPR, 2018. 5] H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic, T. Pajdla, and A. Torii. InLoc: Indoor visual localization with dense matching and view synthesis. In