Neighbourhood Consensus Networks

Introduction

Task: find pixel-level visual correspondences

Challenges: strong illumination or appearance changes, changes across time, intra-class variation, repetitive structures

Contributions:
- Trainable method for feature extraction, matching and filtering
- Based on dense CNN descriptors and a novel 4D neighbourhood consensus CNN

Review - classical pipeline:

Proposed method

Feature extraction and matching

Trainable match filtering

Neighbourhood Consensus Network

4-D conv. layers

The network is applied twice for invariance to pair order:

\[
\text{filters of the first layer span is a 4D CNN}
\]

Training loss:

The network is trained with weak supervision:

\[
\mathcal{L}^{+}(p) = \mathcal{L}^{-}(p) = \lVert p + \lambda \rVert^2
\]

Extracting correspondences:

Matches can be extracted in both directions from the output \(\mathbf{J} \):

Experimental results

Category-level matching: PF-Pascal dataset [1]

- **Task:** match similar semantic parts
- **Metric:** percentage of correctly keypoints (PCK)

Instance-level matching: InLoc dataset [5]

- **Task:** retrieve 6-dof camera poses of query images
- **Metric:** percentage of correctly localized queries

References

