LONG-TERM TEMPORAL CONVOLUTIONS FOR ACTION RECOGNITION

Ivan Laptev

Cordelia Schmid

INRIA

- Current CNN methods for action recognition learn representations for short intervals (1–16 frames).
- Typical actions last several seconds.
- Actions contain characteristic patterns with specific long-term temporal structure.

The advantages of long-term temporal convolutions
 The importance of high-quality optical flow estimation

for learning accurate video representations.

Approach

4

- 3D convolutions with 3x3x3 filters
- ReLU
- □ 3D max-pooling of 2x2x2
- Experiments with T = {16, 20, 40, 60, 80, 100}

- Optical flow : 2-channel input (original [x, y] values)
- □ RGB : 3-channel input
- Increased temporal extent by the cost of decreased spatial resolution.

Experiments

UCF101 (Soomro et al. 2012)

HMDB51 (Kuehne et al. 2011)

chew

drink

hit

ball

clap

eat

hug

pullup punch

stairs AN

climb

fall

jump

fencing

climb

floor

kick

Long-term Temporal Convolutions for Action Recognition

catch

dribble

hand

60-frame training from scratch
 With different input modalities

Conclusions

Even low-quality MPEG flow outperforms RGB.
 Quality of flow impacts the results significantly.

Input	Clip	Video
RGB	57.0	59.9
MPEG flow	58.5	63.8
Farneback	66.3	71.3
Brox	74.8	79.6

60-frame networks from scratch on UCF101 (split 1)

16f network has the same architecture as Tran 2015.

Input		16f	60f	gain	Pre-training		16f	60f	gain	[Simonyan 2014]
DCP	Clip	48.4	57.0	+8.6	Flow	Clip	37.0	52.6	+15.6	
RGD	Video	51.9	59.9	+8.0	from scratch	Video	43.9	52.9	+9.0	46.6
Гюл	Clip	67.1	76.3	+9.1	Flow	Clip	40.6	56.1	+15.5	
FIOW	Video	78.7	80.5	+1.8	from UCF101	Video	48.3	57.1	+8.8	49.0

UCF101 (split 1)

HMDB51 (split 1)

10

RGB NETWORK FINETUNING

RGB from scratch is difficult to learn
 We need pre-training

UCF101 (split 1) RGB from scratch

- C3D → 16f 3D convnet trained on Sports-1M (Tran 2015)
 We extend C3D to longer temporal convolutions as follows:
 - Conv5 layer output has T/16 temporal resolution.
 - Max-pool conv5 output over time to re-cycle pre-trained fc layers.
 - Finetune whole network.

VARYING TEMPORAL AND SPATIAL RESOLUTIONS

Long temporal extent High spatial resolution RGB+Flow complementary RGB > Flow (clips) RGB < Flow (videos) Curves less steep for video

Input	UCF101	HMDB51		
LTC _{Flow} (100f)	82.6	56.7		
LTC _{Flow} (60f+100f)	83.8	60.5		
LTC _{RGB} (100f)	81.8	-		
LTC _{RGB} (60f+100f)	81.5	-		
LTC _{Flow+RGB}	91.0	65.6		
LTC _{Flow+RGB} + IDT	91.8	67.7		
	split 1			

UCF101 (split 1) flow

$\left| \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right|$

COMPARISON TO THE STATE-OF-THE-ART 3 splits average

	Method	UCF101	HMDB51
[Wang 2013]	IDT+FV	85.9	57.2
[Peng 2014]	IDT+HSV	87.9	61.1
[Lan 2015]	IDT+MIFS	89.1	65.1
[Peng 2014]	IDT+SFV	-	66.8

[Karpathy 2014]	Slow fusion (scratch)	41.3	-
[Tran 2015]	C3D (scratch)	44	-
[Karpathy 2014]	Slow fusion	65.4	-
[Simonyan 2014]	Spatial stream	73.0	40.5
[Tran 2015]	C3D (1 net)	82.3 ¹	-
		81.5	49.7 ²
[Tran 2015]	C3D (3 nets)	85.2	-

2015] 2015]	C3D+IDT TDD+IDT LTC _{Flow+RGB}	90.4 91.5 91.7	- 65.9 64.8
2015] 2015]	C3D+IDT TDD+IDT	90.4 91.5	- 65.9
2015]	C3D+IDT	90.4	-
2015]	TDD	90.3	63.2
2014]	LSTM (flow+RGB)	88.6	-
2014]	Two-stream(SVM)	88.0	59.4
2014]	Two-stream(avg)	86.9	58.0
		85.2	59.0
2014]	Temporal stream	83.7 ³	54.6 ³
	2014] 2014] 2014] 2014] 2015]	2014] Temporal stream LTC _{Flow} 2014] Two-stream(avg) 2014] Two-stream(SVM) 2014] LSTM (flow+RGB) 2015] TDD	2014] Temporal stream 83.73 LTC _{Flow} 85.2 2014] Two-stream(avg) 86.9 2014] Two-stream(svM) 88.0 2014] LSTM (flow+RGB) 88.6 2015] TDD 90.3

¹Our implementation is 80.2% ²No finetuning ³Uses multi-task learning

CNN (RGB)

QUALITATIVE ANALYSIS

CLASSES WITH LARGEST IMPROVEMENT

	16f	60f
JavelinThrow	54.8	96.8

*JavelinThrow is mostly confused with FloorGymnastics in 16f.

FloorGymnastics = running + gymnastics

JavelinThrow = running + throwing javelin

Complex motion patterns in local neighborhoods

x and y intensities \rightarrow 2D vectors

t=1 blue t=2 red t=3 green

60f Flow on UCF101 (split 1)

HIGHER LAYER FILTERS

100f

Top activations of filters at conv layers.

Colors: classes, Rows: maximum responding test videos, Columns: filters.

16f

18

Questions?

project page : <u>www.di.ens.fr/willow/research/ltc/</u> contact : gul.varol@inria.fr

CREDITS

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Unsplash</u>

