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1. INTRODUCTION
Goal.

e Human action recognition in video.

Motivation.
e Human actions contain long-term temporal structure.

e Current CNNs learn spatio-temporal structure at the level of a few
video frames — failing to model actions at their full temporal extent.

Breast stroke Front crawl

Contributions.

Learning video representations using 3D CNNs with long-term temporal
convolutions (LTC).

Studying the impact of alternative inputs: Optical Flow of different
quality and RGB.

State-of-the-art results: UCF101 (92.7%), HMDB51 (67.2%)

2. NETWORK

e 3D convolutions over large number of video frames.
e Increased temporal extent by the cost of decreased spatial resolution.
e 2-channel optical flow or 3-channel RGB as input.

3x3x3 filter
T = {20,40,60,80,100} frames
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4. QUALITATIVE ANALYSIS

Input.

3. EXPERIMENTS
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Data augmentation.
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16f vs 60f networks.
Input 16f 60f | gain Pre-training 16f 60f | gain [3]
RGB clip 484 | 57.0 | +8.6 Flow clip 370 | 52.6 | +15.6
video 51.9 59.9 + 8.0 from scratch video 43.9 52.9 + 9.0 46.6
Flow clip 671 | 76.3 | +9.1 Flow clip 40.6 | 56.1 | + 155
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UCF101 (split 1).

Temporal resolution.
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UCF101 (split 1).

Classes w/ largest improvement.

Higher layer filters.

Accuracy of the JavelinThrow’ class increased
from 54.8% (16f) to 96.8% (60f), while mostly
being confused with 'FloorGymnastics” in 16f.

First layer filters.
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x and y intensities — 2D vector
t=1 (blue), t=2 (red), t=3 (green)
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HMDB51 (split 1).

Combining networks.

ITC 7102 (1001)

LTC ra g (100f)

LTCFriow+RGB

LTC pow (60f+100f)
LTCra i (60f+100f)

LTCriow+RraB+IDT

UCF101 | HMDBS51
82.6 56.7
83.8 60.5
81.8 -
81.5 -
91.0 65.6
91.8 67.7

RGB > Flow (clips)

Long temporal extent
High spatial resolution
RGB+Flow complementary

Flow > RGB (videos)
Curves less steep for video

5. RESULTS

State-of-the-art.
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60f
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UCF101 (split 1).

LTC outperforms previously published results.

Method

UCF101 | HMDBb51

Hand | [5] IDT+FV
crafted IDT+MIFES

85.9 57.2
89.1 65.1

CNN C3D (1 net)
(RGB) LTCrep
4] C3D (3 nets)

Spatial stream

73.0 40.5
82.3
82.4
85.2

(Flow) LTC Flow

CNN | [3] Temporal str.

83.7
85.2

Fusion | [2] LSTM
4] C3D+IDT

Two-stream (avg. fusion)
Two-stream (SVM fusion)

LTCriow+RGB
LTCFl0w+RGB+IDT

86.9
88.0
88.6
90.4
91.7
92.7

3 splits average.

Conclusions.
We show

1) the advantages of learning long-term temporal convolutions,

2) the importance of high-quality optical flow estimation

for learning accurate video representations.
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