LONG-TERM TEMPORAL CONVOLUTIONS FOR ACTION RECOGNITION

[3]

46.6

49.0

Gül Varol, Ivan Laptev, Cordelia Schmid - INRIA, France

{gul.varol, ivan.laptev, cordelia.schmid}@inria.fr

1. INTRODUCTION

Goal.

• Human action recognition in video.

Motivation.

- Human actions contain long-term temporal structure.
- Current CNNs learn spatio-temporal structure at the level of a few video frames \rightarrow failing to model actions at their full temporal extent.

Contributions.

- Learning video representations using 3D CNNs with *long-term temporal* convolutions (LTC).
- Studying the impact of alternative inputs: Optical Flow of different quality and RGB.
- State-of-the-art results: UCF101 (92.7%), HMDB51 (67.2%)

2. NETWORK

- 3D convolutions over large number of video frames.
- Increased temporal extent by the cost of decreased spatial resolution.
- 2-channel optical flow or 3-channel RGB as input.

3. EXPERIMENTS

Input.

RGB	MPEG	Farneback	Brox

RGB	MPEG	Farneback	k Brox
57.0%	58.5%	66.3%	74.8%
59.9%	63.8%	71.3%	79.6%
59.9%	63.8%	71.3%	79.6

UCF101 (split 1).

Data augmentation.

Random clipping	Multiscale cropping	Dropout	Clip	Video
-	-	0.5	71.6	76.5
\checkmark	-	0.5	74.8	79.6
-	\checkmark	0.5	72.5	78.1
-	_	0.9	74.4	78.5
\checkmark	\checkmark	0.9	76.3	80.5

UCF101 (split 1).

16f

37.0

43.9

40.6

60f

52.6

52.9

56.1

gain

+ 9.0

+ 15.6

+ 15.5

16f vs 60f networks.

Temporal resolution.

clip accuracy

	16f	60f	gain
clip	48.4	57.0	+ 8.6
video	51.9	59.9	+ 8.0
clip	67.1	76.3	+ 9.1
video	78.7	80.5	+ 1.8
	video clip	clip 48.4 video 51.9 clip 67.1	clip 48.4 57.0 video 51.9 59.9 clip 67.1 76.3

UCF101 (split 1).

UCF101 (split 1).

video accuracy

from UCF101 video 48.3 57.1 + 8.8 HMDB51 (split 1).

Combining networks.

Flow

Flow

from scratch

Pre-training

clip

clip

video

UCF101 HMDB51 LTC_{Flow} (100f) 82.6 56.7 83.8 60.5 LTC_{Flow} (60f+100f) LTC_{RGB} (100f) 81.8 LTC_{RGB} (60f+100f) 81.5 $LTC_{Flow+RGB}$ 91.0 65.6 $LTC_{Flow+RGB}+IDT$ 67.7 91.8

- Long temporal extent 👍
- High spatial resolution •
- RGB+Flow complementary
- RGB > Flow (clips)
- Flow > RGB (videos)
- Curves less steep for video

UCF101 (split 1).

4. QUALITATIVE ANALYSIS

Classes w/ largest improvement.

Accuracy of the 'JavelinThrow' class increased from 54.8% (16f) to 96.8% (60f), while mostly being confused with 'FloorGymnastics' in 16f.

First layer filters.

	- 100 (10 m) (10		211	1 XX	11
马有			0 0, 0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0-0 0-		

x and y intensities \rightarrow 2D vector t=1 (blue), t=2 (red), t=3 (green)

Higher layer filters.

5. RESULTS

State-of-the-art.

LTC outperforms previously published results.

		Method	UCF101	HMDB51
Hand	[5]	IDT+FV	85.9	57.2
crafted	[1]	IDT+MIFS	89.1	65.1
	[3]	Spatial stream	73.0	40.5
CNN	[4]	C3D (1 net)	82.3	_
(RGB)		LTC_{RGB}	82.4	_
	[4]	C3D (3 nets)	85.2	_
CNN	[3]	Temporal str.	83.7	54.6
(Flow)		LTC_{Flow}	85.2	59.0
	[3]	Two-stream (avg. fusion)	86.9	58.0
	[3]	Two-stream (SVM fusion)	88.0	59.4
Fusion	[2]	LSTM	88.6	_
	[4]	C3D+IDT	90.4	_
		$LTC_{Flow+RGB}$	91.7	64.8
		$LTC_{Flow+RGB}+IDT$	92.7	67.2

3 splits average.

Conclusions.

We show

1) the advantages of learning long-term temporal convolutions,

2) the importance of high-quality optical flow estimation

for learning accurate video representations.

REFERENCES

- [1] Lan et al. Beyond gaussian pyramid: Multi-skip feature stacking for action recognition. In CVPR, 2015.
- [2] Ng et al. Beyond short snippets: Deep networks for video classification. In CVPR, 2015.
- [3] Simonyan et al. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.
- [4] Tran et al. Learning spatiotemporal features with 3D convolutional networks. In *ICCV*, 2015.
- [5] Wang et al. Action recognition with improved trajectories. In ICCV, 2013.

PROJECT PAGE

www.di.ens.fr/willow/research/ltc

- > code in Torch
- > pre-trained CNN models
- > paper, slides, poster
- > supplementary video