
Instance-level video segmentation from object tracks

Guillaume Seguin* Piotr Bojanowski* Rémi Lajugie[†] Ivan Laptev* *WILLOW Team / †SIERRA Team - Inria / École normale supérieure / CNRS - Paris, France

Partly supported by MSR-Inria and ERC grants Activia and VideoWorld

- Object segmentation in video at instance level.
- Bounding box supervision only.

Motivation

- Manual pixel-wise annotation is expensive
- Segmenting each sheep in herd is difficult
- + Object bounding boxes can be used as form of weak supervision

+ Object detectors have reached maturity

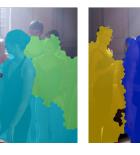
+ Video provides redundant observations

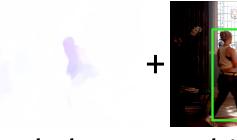
Contributions

- Weakly-supervised model for object instance segmentation in video.
- Video dataset for instance-level person segmentation.

Overview

Input: video clip and object tracks.

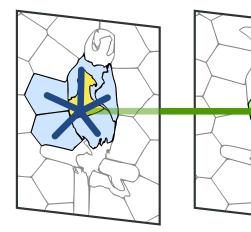

Output: pixel-wise assignment of pixels to either background or object instance labels.



Pipeline:

- Segment video into superpixels using the TSP algorithm
- Use Optical Flow and appearance cues to measure similarity of neighboring superpixels
- Solve a graph labeling problem over superpixels, which uses:
- a spatio-temporal grouping term to ensure local consistency of the solution,
- a discriminative term to separate foreground from background, learning a long-term model of the target object class jointly from all frames, and
- flexible linear constraints encoding priors derived from bounding boxes as to guide the segmentation.

Optical Flow Object tracks

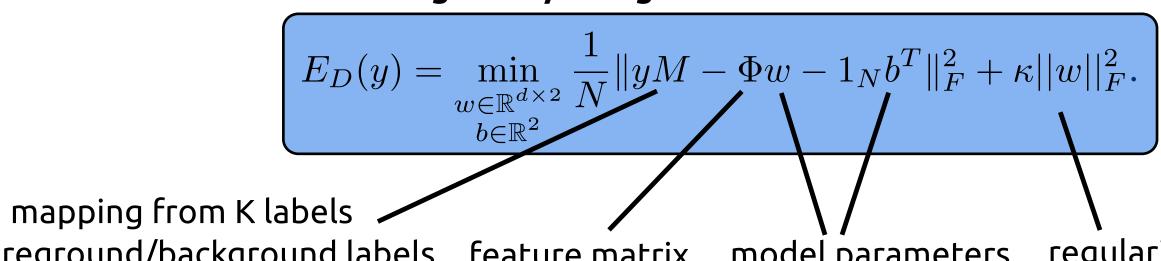

Superpixels

Video representation

N: number of superpixels.

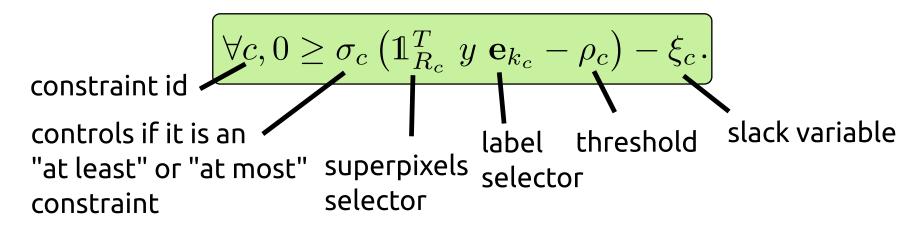
K: number of labels (objects + background). y : binary matrix in $\{0,1\}^{N imes K}$ which

assigns superpixels to labels, $y_{nk}=1$ iff superpixel n belongs to label k .



- We formulate video segmentation as a graph-labeling problem.
- Our model is a quadratic cost function with linear constraints over the segmentation space:

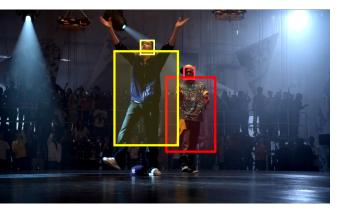
Grouping term: -Penalizer for the slack $E_G(y) = \frac{1}{N} \text{Tr}(y^T L y).$ variables of constraints


Laplacian matrix associated to the similarity matrix between adjacent superpixels

Foreground/background discriminative term:

to foreground/background labels feature matrix model parameters regularization

with y s.t.


For instance, to enforce that the solution contains at least $ho_c=100$ pixels of region R_c assigned to object instance $k_c=2$, we set $\sigma_c=-1$ and add the constraint $\mathbb{1}_R^T \ y \ \mathbf{e}_2 \geq 100-\xi_c$.

Instance-level segmentation can be written as the minimization of a quadratic cost under linear constraints:


$$\min_{y \in \mathcal{Y}, \ \xi \in \mathbb{R}_+^C} E(y, \xi) = \frac{1}{N} \Big(\text{Tr}(y^T L y) + \alpha \text{Tr}((y M)^T A (y M)) \Big) + \beta \|\xi\|^2.$$

Constraints

Linear constraints over y encode prior knowledge:

to the background.

instance.

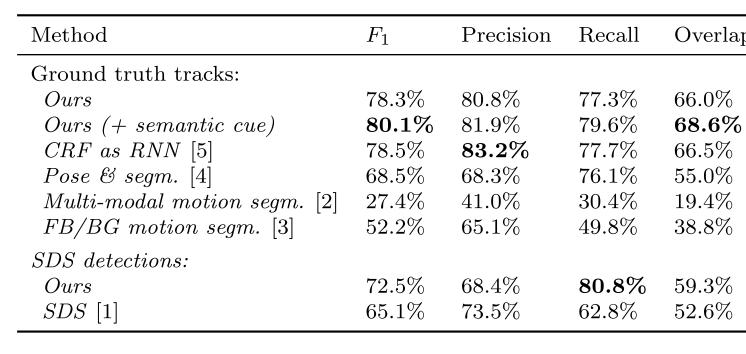
At least X_b % of pixels far from At least X_p % of pixels inside a At Pixels further than At pixels from bounding boxes should belong bounding box must belong to the a bounding box cannot belong to that instance.

Optimization

- ullet Continuous relaxation on y, minimized with the Frank-Wolfe algorithm (only requires solving linear problems over ${\mathcal Y}$).
- Rounding to the closest integer point in terms of Frobenius norm.
- ullet Non-convex refinement by adding ${
 m Tr}(y^T(1-y))\,$ to the cost and using the Frank-Wolfe algorithm again, to push the solution away from 1/K values, improving final segmentation quality.

Inria 3DMovie dataset v2

- New dataset for instance-level person segmentation in video from StreetDance 3D.
- Challenging poses and motions of people over 27 video clips, 2476 frames in total.
- Instance-level annotation of 632 people in 235 frames.


http://www.di.ens.fr/willow/research/instancelevel/

Results on multi-person segmentation

- Evaluated on the Inria 3DMovie manually dataset annotated ground truth object tracks, analyzing the influence of each component.
- Comparison with baselines: purely unsupervised video segmentation [2,3], semantic segmentation [1,5] and video GrabCut [4] methods.

Method	F_1	Precision	Recall	Overlap
Ours	78.3%	80.8%	77.3%	66.0%
No temporal smoothness Single frames	$76.4\% \\ 76.4\%$	$79.2\% \ 77.9\%$	$75.4\% \ 76.4\%$	$63.7\% \\ 63.7\%$
Grouping term only Discriminative term only	$77.6\% \\ 66.9\%$	$79.4\% \ 70.7\%$	$77.2\% \ 64.7\%$	$65.0\% \ 52.1\%$
No constraint Convex only	$12.8\% \ 75.6\%$	$10.4\% \\ 78.0\%$	$40.0\% \ 74.1\%$	$09.0\% \ 62.4\%$

Qualitative results

Results on SegTrack v1

- Our method is directly applicable to other object classes.
- Given readily-available object detectors/trackers no additional supervision is required.

Clip	No BB	BB tracks	GT BBs	[Jain '14]	[Fathi '11]
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	221	169	168	189	342
cheet ah	2196	1305	724	1170	711
girl	2733	1606	1602	2883	1206
monkeydog	2405	1021	658	333	598
parachute	305	251	278	228	251
penguin	787	848	830	443	1367
	Legend:	Best 21	nd best	3rd best	

No BB: no bounding box constraint, only simple constraints over the whole image. BB tracks: automatic visual tracking (only takes first frame GT segmentation as input).

GT BBs: ground truth tracks.

Related work

- [1] Hariharan et al., Simultaneous Detection and Segmentation, ECCV '14
- [2] Ochs, Malik and Brox, Segmentation of moving objects by long term video analysis, PAMI '14
- [3] Papazoglou and Ferrari, Fast Object Segmentation in Unconstrained Video, ICCV '13
- [4] Seguin et al., Pose Estimation and Segmentation of Multiple People in Stereoscopic Movies, PAMI '15
- [5] Zheng et al., Conditional random fields as recurrent neural networks, ICCV '15
- [7] Bojanowski et al., Finding Actors and Actions in Movies, ICCV '13
- [6] Joulin, Bach and Ponce, Discriminative Clustering for Image Co-segmentation, CVPR '10