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VGraph Matching in Vision

® Finding matches between two IMAGES

e Non-rigid or deformable objects
e Feature matching by minimizing distortion



VGraph Matching

Finding matches between two GRAPHS
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VGraph Matching

Maximizing the maiching score §



VGraph Matching

How to measure the matching score S ?

e Each node & each edge has its own aftribute
e Node similarity function sv(az-,a;)



VGraph Matching

How to measure the matching score S ?
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e Each node & each edge has its own aftribute.
e Node similarity function sv(ai,a;)
e Edge similarity function Sg (a@’j, a;b)



VGraph Matching

How to measure the matching score S ?
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yiv=1

Sum of S,, and S;, values for the assignment y



"Advances in Graph Matching

Quadratic assignment problem
e NP-hard, thus exact solution is infeasible

Advances in approximate algorithms

e Relaxation and Projection  Couretal. 07, Leordeanu et al.

Zaslavskiy et al.

Hyper-graph extensions

o High—order pOTeﬂﬂcﬂs Zass & Shashua '08, Duchenne et al.
() Generqlized fOI’I’T]UlCIﬂOﬂ Lee et al.'11, Leordeanu et al.

Boosting techniques

'09
'09

'10

12

e Online-update of GM Cho & Lee '12
e Factorization of GM Znu & Torre '12



VRecent applications in Vision

Object Recognition Action Recognition

SeeaX]
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Duchenne et al. Zhang et al. Brendel & Todorovic Yao & Fei-Fei

ICCV 2011 CVPR 2013 ICCV 2011 ECCV 2012
Shape Maiching

Zheng et al. Smeets et al. Cho & Lee Leordeanu et al.
CVPR 2010 CVPR 2011 CVPR 2012 IJCV 2012



VMofivaﬁon

® How to improve maiching by learning?

e A hand-crafted matching score function performs
POOr in many practical problems

e Learn parameters of the matching score function to
better match two instances Caetano et al. '07

Torresani et al. '08
Leordeanu et al. '12
Pachauriet al. '12

[ Learning \

the matching
score function

two input images

e.g. weights on
similarity functions
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VOur Approach

How to obtain a graph model for matching?

e Learn the class-specific graph model from fraining
data, and use it to match to instances of the class

e Related to generic graph learning Lee et al. '06
Hofling & Tibshirani '09
Nowozin et al. '10

[ Learning \

a graph model

Learned model Inputimage




7
What to Learn? : previous Approaches

Shared weights on nodes & on edges

G G’
By B

S(G,G',yiB)= D _Besv(ai,a,)+ ZBE' se(aij, ay)

yia:l yiazl
Yip=1
e All nodes share the same weight B, Caetano et al.

Torresani et al.

o All edges share the same weight B, Leordeanu et al.

Pachauri et al.
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4
What to Learn? : Generalization

Discriminative weights

e Each node and edge has its own weight
e This generalizes the previous learning approaches



e
What to Learn? . Graph Model
Model and weights

7 aab)

e Goal: learn model graph G* and weights g
e How to parameterize G* and g ?



7 . ae
Parameterization

Assume the similarity function is the dot
product of two attributes:

SV(a;'k7 aa) — a;'k " dg, SE(a;'kja aab) — a;} " Agd

e Then, the aftributes of the model graph can be
factored out and combined with the weighfs:

S(g*7gay;5) — Z /BZSV a aa + Z 5ijSE(afj7aab)

Yi a=1 Yiazl
yip=1
= Z (Biay) - aq + Z (Bijag;) - aab
Yz'a:]- yia:]-

yir=1

= (BO0O(¢")) - ¥(4,y)

Model and weights Feature map

= W qj(QﬁY)




VMax-Margin Learning

Learned in the standard SSVM framework
o Giventrainingdata D = ((G1,y1),....(Gn.yu))

Minimize

C n
Lp(G",8)=1(G"8) +— > Alyi,3(G::6", 8))
=1

Predictor:  y(G;G%,5) = y(G;w) = argmaxw - U(G,y)
| yeY(9)

Hsz y-y (Normalized Hamming loss)
1 Caetano et al. '09

Regularization: »(G*, ) = §HWHQ

Loss function: A(y,y) =1 —

o Opftfimization by the cutting plane method

Joachims et al. '09



VGraph Representation

Proposition

e For any graph representation where dot product
between two atiributes is defined as their similarity,
both of the model graph attributes and their
weights can be jointly learned as a single vector.

Our proposal for visual matching problems

e Histogram-Attributed Relational Graph (HARG)
Node aftribute: histograms of grodloen’r bins Lowe '04
(SIFT in this work) Dalal & Triggs '05
Edge attribute: histograms of log-polar bins
(as follows)



VGraph Representation

Edge attribute

e histograms of log-polar bins
Concatenation of length and angle histograms
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VGraph Representation

Edge attribute

e histograms of log-polar bins
Concatenation of length and angle histograms
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VGraph Representation

Edge attribute

e histograms of log-polar bins
Concatenation of length and angle histograms
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angle of edge e;; and its histogram attribute

e Non-parametric length and angle distribution
e Robust to variation, and effective in learning




VMax-Margin Learning

® Example of a learned graph model
e Face images with 10 point annotations




VMax-Margin

Learning

Example of a learned face model
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7 : :
Experimental Evaluation

On synthetic and real image datasets

e CMU House/Hotel
e Object classes (5 classes from Caltech-256 & PASCAL VOC 2007)

Graph consiruction and matching
e Fully-connected graph as an initial graph
e Graph matching module: RRWM cho et al. 10



4 .
Experiments: CMU House/Hotel

Image sequence with varying viewpoints
e 111 images for House, 101 images for Hotel

e 30 annotated points for each frame Caetano et al., 2007

Matching results

House Hotel
Method Training size || Accuracy (%) | Accuracy (%)
Caetano et al.”09 5 84 87
Caetano et al.’09 106 96 90
Leordeanu et al.’12 5 99.8 94.8
HARG-SSVM (ours) 3 100.0 100.0




4 .
Experiments: Object Classes

Annotated object class dataset

e 5 object classes constructed using Images from

Caltech-256 and PASCAL VOC datasets
(Face:109, Duck: 50, Wine bottle: 66, Motorbike: 40, Car: 40)

e 10 distinctive points annotated for each image

Quantitative evaluation
e 20 images for training and the rest for testing

e Endpoint error for each match w.r.t object size
True match if the error < 0.15

e Average performance over the 20 random splits



4 .
Experiments: Object Classes

® Duck

Learned model Input image

» Node color: feature identity  * Node color: matching feature
* Bigger nodes: larger weights  © Bigger nodes: higher similarity
» Darker edges: larger weights ¢ Red edges: connecting tfrue ones



4 .
Experiments: Object Classes

® Duck

Learned model Input image

» Node color: feature identity  * Node color: matching feature
* Bigger nodes: larger weights  © Bigger nodes: higher similarity
» Darker edges: larger weights ¢ Red edges: connecting tfrue ones



4 .
Experiments: Object Classes

e Black nodes: false matches



4 .
Experiments: Object Classes

o Car

e Black nodes: false matches



4 .
Experiments: Object Classes

Comparison
e w/o0 learning: uniform weights without learning




4 .
Experiments: Object Classes

e Comparison

e SW-SSVM: shared weights, learned in SSVM Caetano et al., 2007




4 .
Experiments: Object Classes

e Comparison

e SW-SPEC: shared weights, learned by Leordeanu et al., 2012




4 .
Experiments: Object Classes

Comparison

e DW-SSVM: individual weights, learned in SSYM




4 .
Experiments: Object Classes

e Comparison
o
o
o

e HARG-SSVM: the proposed method
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Quantitative comparison
e The average performance on 20 random splits

4 .
Experiments: Object Classes

Face

Motorbike

Car

Duck

Wine bottle

Method

| Acc. (%) | error | Acc. (%) | error | Acc. (%) | error | Acc. (%) | error | Acc. (%) | error |

w/o learning 66.6 0.205 44.1 0.226 34.1 0.301 39.0 0.228 70.5 0.129
SW-SSVM 75.3 0.142 48.6 0.211 40.3 0.259 422 0.216 73.3 0.122
SW-SPEC 78.7 0.133 47.2 0.212 42.1 0.253 44.2 0.211 72.4 0.124
DW-SSVM 84.3 0.102 54.2 0.189 50.8 0.244 52.1 0.186 75.5 0.120

ARG SSVM | 939 | 0070 | 714 ] 0434 | 719 | 08 | 722 | 0.2 | 861 ] 0090

e W/0 learning: uniform weights without learning

o SW-SSVM: shared weights, learned in SSVM Caetano et al., 2007
e SW-SPEC: shared weights, learned by Leordeanu et al., 2012

e DW-SSVM: individual weights learned in SSYM

e HARG-SSVM: the proposed method
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Summary

o Effective learning of class-specific models
e Useful for a variety of practical matching problems
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e Annotated datasets & code soon available:
http://www.di.ens.fr/willow/research/graphlearning/
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