

Learning Graphs to Match

Inria Paris – WILLOW Minsu Cho Karteek Alahari Jean Ponce

Graph Matching in Vision

Finding matches between two IMAGES

- Non-rigid or deformable objects
- Feature matching by minimizing distortion

• Finding matches between two GRAPHS

- $\mathbf{y}_{ia} = 1$ if node *i* in *G* corresponds to node *a* in *G*'
- $\mathbf{y}_{ia} = 0$ otherwise

• Maximizing the matching score S

• How to measure the matching score S?

- Each node & each edge has its own attribute
- Node similarity function $\mathbf{s}_V(\mathbf{a}_i,\mathbf{a}_a')$

• How to measure the matching score S?

- Each node & each edge has its own attribute.
- Node similarity function $\mathbf{s}_V(\mathbf{a}_i,\mathbf{a}_a')$
- Edge similarity function $\mathbf{s}_E(\mathbf{a}_{ij},\mathbf{a}_{ab}')$

• How to measure the matching score S?

- Sum of \mathbf{S}_{V} and \mathbf{S}_{E} values for the assignment \mathbf{y}

Advances in Graph Matching

Quadratic assignment problem

NP-hard, thus exact solution is infeasible

Advances in approximate algorithms

 Relaxation and Projection Cour et al. '07, Leordeanu et al. '09 Zaslavskiy et al. '09

Hyper-graph extensions

- High-order potentials
- Generalized formulation

Boosting techniques

- Online-update of GM
- Factorization of GM

Zass & Shashua '08, Duchenne et al. '10

Lee et al. '11. Leordeanu et al. '12

Cho & Lee '12

Zhu & Torre '12

Recent applications in Vision

Object Recognition

Duchenne et al. ICCV 2011

Zhang et al. CVPR 2013

Action Recognition

Brendel & Todorovic ICCV 2011

Yao & Fei-Fei ECCV 2012

Shape Matching

Zheng et al. CVPR 2010

Smeets et al. CVPR 2011

Image Matching

Cho & Lee CVPR 2012

Leordeanu et al. IJCV 2012

Motivation

• How to improve matching by learning?

- A hand-crafted matching score function performs poor in many practical problems
- Learn parameters of the matching score function to better match two instances
 Caetano et al. '07

Caetano et al. '07 Torresani et al. '08 Leordeanu et al. '12 Pachauri et al. '12

Our Approach

• How to obtain a graph model for matching?

- Learn the class-specific graph model from training data, and use it to match to instances of the class
- Related to generic graph learning

Lee et al. '06 Hofling & Tibshirani '09 Nowozin et al. '10

What to Learn? : Previous Approaches

Shared weights on nodes & on edges

- All nodes share the same weight $\boldsymbol{\beta}_V$
- All edges share the same weight β_E

Caetano et al. '07 Torresani et al. '08 Leordeanu et al. '12 Pachauri et al. '12

What to Learn? : Generalization

Discriminative weights

- Each node and edge has its own weight
- This generalizes the previous learning approaches

What to Learn? : Graph Model

Model and weights

- Goal: learn model graph G^* and weights $oldsymbol{eta}$
- How to parameterize G^* and β ?

Parameterization

• Assume the similarity function is the dot product of two attributes:

 $\mathbf{s}_V(\mathbf{a}_i^*, \mathbf{a}_a) = \mathbf{a}_i^* \cdot \mathbf{a}_a, \quad \mathbf{s}_E(\mathbf{a}_{ij}^*, \mathbf{a}_{ab}) = \mathbf{a}_{ij}^* \cdot \mathbf{a}_{ab}$

• Then, the attributes of the model graph can be factored out and combined with the weights:

$$S(\mathcal{G}^*, \mathcal{G}, \mathbf{y}; \beta) = \sum_{\mathbf{y}_{ia}=1} \beta_i \mathbf{s}_V(\mathbf{a}_i^*, \mathbf{a}_a) + \sum_{\substack{\mathbf{y}_{ia}=1\\\mathbf{y}_{jb}=1}} \beta_{ij} \mathbf{s}_E(\mathbf{a}_{ij}^*, \mathbf{a}_{ab})$$
$$= \sum_{\substack{\mathbf{y}_{ia}=1\\\mathbf{y}_{ia}=1}} (\beta_i \mathbf{a}_i^*) \cdot \mathbf{a}_a + \sum_{\substack{\mathbf{y}_{ia}=1\\\mathbf{y}_{jb}=1}} (\beta_{ij} \mathbf{a}_{ij}^*) \cdot \mathbf{a}_{ab}$$
$$= (\beta \odot \Theta(\mathcal{G}^*)) \cdot \Psi(\mathcal{G}, \mathbf{y})$$
Model and weights Feature map
$$= \mathbf{w} \cdot \Psi(\mathcal{G}, \mathbf{v})$$

Max-Margin Learning

Learned in the standard SSVM framework

• Given training data $D = (\langle \mathcal{G}_1, \mathbf{y}_1 \rangle, \dots, \langle \mathcal{G}_n, \mathbf{y}_n \rangle),$

Minimize $L_D(\mathcal{G}^*,\beta) = \underline{r(\mathcal{G}^*,\beta)} + \frac{C}{n} \sum_{i=1}^n \underline{\Delta(\mathbf{y}_i, \hat{\mathbf{y}}(\mathcal{G}_i; \mathcal{G}^*,\beta))}$

- Predictor: ŷ(G; G*, β) = ŷ(G; w) = arg max w · Ψ(G, y) y∈𝒴(G)
 Loss function: Δ(y, ŷ) = 1 1/||y||_F² y · ŷ (Normalized Hamming loss) Caetano et al. '09
- Regularization: $r(\mathcal{G}^*, \beta) = \frac{1}{2} ||\mathbf{w}||^2$
- Optimization by the cutting plane method

Joachims et al. '09

Proposition

 For any graph representation where dot product between two attributes is defined as their similarity, both of the model graph attributes and their weights can be jointly learned as a single vector.

Our proposal for visual matching problems

- Histogram-Attributed Relational Graph (HARG)
 - Node attribute: histograms of gradient bins (SIFT in this work)

Lowe '04 Dalal & Triggs '05

Edge attribute: histograms of log-polar bins

(as follows)

Edge attribute

- histograms of log-polar bins
 - Concatenation of length and angle histograms

length of edge e_{ij} and its histogram attribute

Edge attribute

- histograms of log-polar bins
 - Concatenation of length and angle histograms

length of edge e_{ij} and its histogram attribute

Edge attribute

- histograms of log-polar bins
 - Concatenation of length and angle histograms

length of edge e_{ij} and its histogram attribute

angle of edge e_{ij} and its histogram attribute

- Non-parametric length and angle distribution
- Robust to variation, and effective in learning

Max-Margin Learning

Example of a learned graph model

• Face images with 10 point annotations

Max-Margin Learning

Example of a learned face model

- Larger weights on darker edges & bigger nodes
- Examples of learned edge attributes
 - Blue histograms: attributes from a training image
 - Red histograms: attributes from the learned model

Experimental Evaluation

On synthetic and real image datasets

- Synthetic point sets
- CMU House/Hotel
- Object classes (5 classes from Caltech-256 & PASCAL VOC 2007)

Graph construction and matching

- Fully-connected graph as an initial graph
- Graph matching module: RRWM Cho et al. '10

Experiments: CMU House/Hotel

Image sequence with varying viewpoints

- 111 images for House, 101 images for Hotel
- 30 annotated points for each frame Caetano et al., 2007

Method	Training size	Accuracy (%)	Accuracy (%)	
Caetano <i>et al.</i> '09	5	84	87	
Caetano <i>et al.</i> '09	106	96	90	
Leordeanu et al.'12	5	99.8	94.8	
HARG-SSVM (ours)	3	100.0	100.0	

Annotated object class dataset

- 5 object classes constructed using images from Caltech-256 and PASCAL VOC datasets (Face:109, Duck: 50, Wine bottle: 66, Motorbike: 40, Car: 40)
- 10 distinctive points annotated for each image

Quantitative evaluation

- 20 images for training and the rest for testing
- Endpoint error for each match w.r.t object size
 - True match if the error < 0.15
- Average performance over the 20 random splits

Duck

- Node color: feature identity
- Bigger nodes: larger weights
- Darker edges: larger weights

Input image

- Node color: matching feature
- Bigger nodes: higher similarity
- Red edges: connecting true ones

Duck

Learned model

- Node color: feature identity
- Bigger nodes: larger weights
- Darker edges: larger weights

Input image

- Node color: matching feature
- Bigger nodes: higher similarity
- Red edges: connecting true ones

Duck

• Black nodes: false matches

Car

• Black nodes: false matches

Comparison

• w/o learning: uniform weights without learning

- w/o learning: uniform weights without learning
- SW-SSVM: shared weights, learned in SSVM Caetano et al., 2007

- w/o learning: uniform weights without learning
- SW-SSVM: shared weights, learned in SSVM Caetano et al., 2007
- SW-SPEC: shared weights, learned by Leordeanu et al., 2012

- w/o learning: uniform weights without learning
- SW-SSVM: shared weights, learned in SSVM Caetano et al., 2007
- SW-SPEC: shared weights, learned by Leordeanu et al., 2012
- **DW-SSVM**: individual weights, learned in SSVM

- w/o learning: uniform weights without learning
- SW-SSVM: shared weights, learned in SSVM Caetano et al., 2007
- SW-SPEC: shared weights, learned by Leordeanu et al., 2012
- DW-SSVM: individual weights, learned in SSVM
- **HARG-SSVM**: the proposed method

Quantitative comparison

• The average performance on 20 random splits

	Face		Motorbike		Car		Duck		Wine bottle	
Method	Acc. (%)	error	Acc. (%)	error	Acc. (%)	error	Acc. (%)	error	Acc. (%)	error
w/o learning	66.6	0.205	44.1	0.226	34.1	0.301	39.0	0.228	70.5	0.129
SW-SSVM	75.3	0.142	48.6	0.211	40.3	0.259	42.2	0.216	73.3	0.122
SW-SPEC	78.7	0.133	47.2	0.212	42.1	0.253	44.2	0.211	72.4	0.124
DW-SSVM	84.3	0.102	54.2	0.189	50.8	0.244	52.1	0.186	75.5	0.120
HARG-SSVM	93.9	0.070	71.4	0.134	71.9	0.158	72.2	0.126	86.1	0.090

- w/o learning: uniform weights without learning
- SW-SSVM: shared weights, learned in SSVM Caetano et al., 2007
- SW-SPEC: shared weights, learned by Leordeanu et al., 2012
- DW-SSVM: individual weights learned in SSVM
- **HARG-SSVM**: the proposed method

Summary

Effective learning of class-specific models

• Useful for a variety of practical matching problems

 Annotated datasets & code soon available: <u>http://www.di.ens.fr/willow/research/graphlearning/</u>

> This research was supported in part by the ERC advanced grant VideoWorld, Institut Universitaire de France, and the Quaero programme funded by the OSEO.