
Learning Graphs to Match	

Minsu Cho
Karteek Alahari

Jean Ponce	

Inria Paris – WILLOW

Graph Matching in Vision
	
l  Finding matches between two IMAGES

l  Non-rigid or deformable objects
l  Feature matching by minimizing distortion

Graph Matching
	
l  Finding matches between two GRAPHS

l  yia= 1 if node i in G corresponds to node a in G’

l  yia= 0 otherwise

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

Graph Matching
	
l Maximizing the matching score S

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

Graph Matching
	
l How to measure the matching score S ?

l  Each node & each edge has its own attribute
l  Node similarity function

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

Graph Matching
	
l How to measure the matching score S ?

l  Each node & each edge has its own attribute.
l  Node similarity function
l  Edge similarity function

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

Graph Matching
	
l How to measure the matching score S ?

l  Sum of SV and SE values for the assignment y

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

l Quadratic assignment problem
l  NP-hard, thus exact solution is infeasible

l Advances in approximate algorithms
l  Relaxation and Projection

l Hyper-graph extensions

l  High-order potentials
l  Generalized formulation

l Boosting techniques
l  Online-update of GM
l  Factorization of GM

Advances in Graph Matching 	

Cho & Lee ’12

Zhu & Torre ’12	

Zass & Shashua ’08, Duchenne et al. ’10

Lee et al. ’11, Leordeanu et al. ’12	
	

Cour et al. ’07, Leordeanu et al. ’09
Zaslavskiy et al. ’09

Recent applications in Vision	

Brendel & Todorovic
ICCV 2011	

Duchenne et al.
ICCV 2011	

Smeets et al.
CVPR 2011	

Object Recognition	 Action Recognition	

Shape Matching	 Image Matching	

6 B. Yao and L. Fei-Fei

(a) walking (b) riding a bike

(c) playing guitar (d) playing trumpet

Fig. 4. The 3D representation of human body key-points allows us to rotate one image
to the same view-point of the other image, and thus achieve view-independent similarity
matching. In each subfigure, from left to right: human in profile view, its pose in frontal
view, and the other human with the same action in the frontal view.

their similarity. As described in Sec.3.1, the graph !ℐ is denoted by {fℐ! , ℎℐ
! , # =

1, ⋅ ⋅ ⋅ , $;%lℐ" , ℎ
ℐ
" , & = 1, ⋅ ⋅ ⋅ , '}. The template graph !ℳ is denoted as {fℳ! , ℎℳ

! ,
wℳ

! , # = 1, ⋅ ⋅ ⋅ , $;%lℳ" , ℎℳ
" ,wℳ

" , & = 1, ⋅ ⋅ ⋅ , '}, where wℳ
! and wℳ

" are the
feature weights for the corresponding node and edge. How to obtain the weights
will be described in Sec.4.

When matching the similarity between !ℐ and !ℳ, we deal with the 2D
appearance features (nodes) and 3D pose features (edges) separately. The sim-
ilarity between the appearance features if node # is simply the weighted his-
togram intersection between fℐ! and fℳ! , denoted as wℳ

! ⋅ (
(
fℐ! , f

ℳ
!

)
. For the

pose features, as shown in Fig.4, the 3D representation allows us to rotate the
3D key-point locations {lℐ!}#!=1 to the same view-point of {lℳ! }#!=1, and then
match the view-independent similarity score.

Let Lℐ and Lℳ be $ × 3 matrices of the 3D positions of the key-points in
ℐ and ℳ. We want to find a 3 × 3 rotation matrix R∗ that rotates Lℐ to the
same view of Lℳ, i.e.

R∗ = argmin
$
∥Lℳ −RLℐ∥2 (1)

We use a least-square method [36] to find R∗. Let UDV% a singular decom-

position of Lℳ%
Lℐ , and define S = I if det(Lℳ%

Lℐ) ≥ 0, otherwise S =
diag(1, ⋅ ⋅ ⋅ , 1,−1). Then we have R∗ = USV% . Fig.4 gives some example re-
sults of rotating an image to similar view-points of the other images.

Yao & Fei-Fei
ECCV 2012	

MSER: 1436⇥ 1796

one-shot: 18 true

progressive: 35 true (+558% score)

MSER + HarAff + HesAff: 1894⇥ 2853

one-shot: 96 true

progressive: 367 true (+282% score)

MSER + HarAff + HesAff: 2040⇥ 2173

one-shot: 100 true

progressive: 242 true (+468% score)
Figure 7. Progressive graph matching for feature correspondence. From the top row, input images, detected features, one-shot graph
matching, and progressive graph matching are shown. In the matching results, the true positive matches are shown in green lines with red
triangulations. At the bottom, the number of true positive matches and the growth rate of score are captioned.

101 and MSRC datasets. For each image pair, it provides
detected MSER features, initial matches, and manually-
labeled groundtruth feature pairs. We used the given initial
matches for constructing initial active graphs, and applied
the progressive graph matching on the dataset while em-
ploying as its graph matching module several state-of-the-
arts of graph matching methods: SM, SMAC[9], PM[24],
RRWM and IPFP[19]. In this setting, we intended to as-
sess the performance increase over the conventional graph
matching as well as the influence of the graph matching
modules in use. The number of candidate matches in the
progressive graph matching was always fixed to the same as
the number of the given initial matches. Thus, the perfor-
mance increase in this experiment is not due to the increase
in the sizes of active graphs, but to the progressive improve-

Table 1. Performance on the benchmark dataset of 30 image pairs

Graph Matching Module
One-Shot SM SMAC PM RRWM IPFP

Accuracy (%) 62.6 57.6 63.7 73.6 71.9
Progressive SM SMAC PM RRWM IPFP

Accuracy (%) 68.2 63.6 66.7 81.2 78.2
Prog. vs. One-Shot SM SMAC PM RRWM IPFP
Score Growth (%) +65.0 +38.7 +92.1 +65.7 +63.8
Inlier Growth (%) +59.6 +17.0 +85.1 +65.6 +69.7

ment in the quality of active graphs. Based on the ground
truths, we define the accuracy of matching as the number of
true positive matches over the number of all true candidates
matches contained in the current active graphs: (# of true
positives) / (# of true candidates) [17, 9, 7].

The overall results are summarized in Table 1, and some
examples are shown in Fig. 8. In this dataset, many of im-
ages have a small number of features (in some cases, even
tens of features); thus, the progressive effects were less sig-
nificant than those in the previous experiment. However,
the consistent improvement is clearly observed for all graph
matching modules; the progressive algorithms boost the ac-
curacy by 3% ⇠ 8%, the score by 39% ⇠ 92%, and the
number of inliers by 17%⇠ 85%. In general, the better al-
gorithm plugged into our progressive framework, the better
performance it obtains. For SM and RRWM, the average
increase of accuracy and score at each progressive step is
plotted in Fig. 9. Within five steps, each progressive algo-
rithm rapidly reached to almost its maximum performance.

For more information, refer to our project site: http:
//cv.snu.ac.kr/research/

˜

ProgGM/

5. Conclusion and Future Work

We introduced a progressive graph matching framework,
which effectively resolves the limitations of conventional
graph matching and achieves impressive performance in im-

MSER: 1436⇥ 1796

one-shot: 18 true

progressive: 35 true (+558% score)

MSER + HarAff + HesAff: 1894⇥ 2853

one-shot: 96 true

progressive: 367 true (+282% score)

MSER + HarAff + HesAff: 2040⇥ 2173

one-shot: 100 true

progressive: 242 true (+468% score)
Figure 7. Progressive graph matching for feature correspondence. From the top row, input images, detected features, one-shot graph
matching, and progressive graph matching are shown. In the matching results, the true positive matches are shown in green lines with red
triangulations. At the bottom, the number of true positive matches and the growth rate of score are captioned.

101 and MSRC datasets. For each image pair, it provides
detected MSER features, initial matches, and manually-
labeled groundtruth feature pairs. We used the given initial
matches for constructing initial active graphs, and applied
the progressive graph matching on the dataset while em-
ploying as its graph matching module several state-of-the-
arts of graph matching methods: SM, SMAC[9], PM[24],
RRWM and IPFP[19]. In this setting, we intended to as-
sess the performance increase over the conventional graph
matching as well as the influence of the graph matching
modules in use. The number of candidate matches in the
progressive graph matching was always fixed to the same as
the number of the given initial matches. Thus, the perfor-
mance increase in this experiment is not due to the increase
in the sizes of active graphs, but to the progressive improve-

Table 1. Performance on the benchmark dataset of 30 image pairs

Graph Matching Module
One-Shot SM SMAC PM RRWM IPFP

Accuracy (%) 62.6 57.6 63.7 73.6 71.9
Progressive SM SMAC PM RRWM IPFP

Accuracy (%) 68.2 63.6 66.7 81.2 78.2
Prog. vs. One-Shot SM SMAC PM RRWM IPFP
Score Growth (%) +65.0 +38.7 +92.1 +65.7 +63.8
Inlier Growth (%) +59.6 +17.0 +85.1 +65.6 +69.7

ment in the quality of active graphs. Based on the ground
truths, we define the accuracy of matching as the number of
true positive matches over the number of all true candidates
matches contained in the current active graphs: (# of true
positives) / (# of true candidates) [17, 9, 7].

The overall results are summarized in Table 1, and some
examples are shown in Fig. 8. In this dataset, many of im-
ages have a small number of features (in some cases, even
tens of features); thus, the progressive effects were less sig-
nificant than those in the previous experiment. However,
the consistent improvement is clearly observed for all graph
matching modules; the progressive algorithms boost the ac-
curacy by 3% ⇠ 8%, the score by 39% ⇠ 92%, and the
number of inliers by 17%⇠ 85%. In general, the better al-
gorithm plugged into our progressive framework, the better
performance it obtains. For SM and RRWM, the average
increase of accuracy and score at each progressive step is
plotted in Fig. 9. Within five steps, each progressive algo-
rithm rapidly reached to almost its maximum performance.

For more information, refer to our project site: http:
//cv.snu.ac.kr/research/

˜

ProgGM/

5. Conclusion and Future Work

We introduced a progressive graph matching framework,
which effectively resolves the limitations of conventional
graph matching and achieves impressive performance in im-

Cho & Lee
CVPR 2012	

Int J Comput Vis

Fig. 9 (Color online) Matching results on image pairs from Pascal 2007 challenge. Notice the significant differences in shape, view-point and
scale. Best viewed in color

plot). The learning method is robust to outliers, since the
matching performance during testing does not depend on the
percentage of outliers introduced during training (the per-
centage of outliers is always the same in the left and the right
images), but only on the percentage of outliers present at
testing time. Without learning (the dotted black plot), when
the default parameters chosen are all equal, the performance
is much worse and degrades faster as the percentage of out-
liers at testing time increases. This suggests that learning not
only increases the matching rate, but it also makes it more
robust to the presence of outliers.

6.2 Learning with Unlabeled Object Classes
and Correspondences

In our previous experiments every pair of training images
contained the same object/category, so a set of inliers exists
for each such pair. Next, we evaluated the algorithm on a
more difficult task: the training set is corrupted such that half
of the image pairs contain different object categories. In this
experiment we used cars and motorbikes from Pascal 2007,
a much more difficult dataset (see Fig. 9). For each class we
selected 30 pairs of images and for each pair between 30 to
60 ground truth correspondences. The features and the pair-
wise scores were of the same type as in the experiments on
faces: points and their normals selected from pieces of con-
tours. In Fig. 9 we show some representative results after
learning, with matching rates over 80%; contours are over-
laid in white. During each training experiment we randomly

picked 5 pairs containing cars, 5 containing motorbikes and
10 discordant pairs: one containing a car and the other one a
motorbike (a total of 20 pairs for each learning experiment).
For testing we used the remaining pairs of images, such that
each pair contains the same object class. The learning algo-
rithm had no knowledge of which pairs are discordant, what
classes they contain and which are the ground truth corre-
spondences. As can be seen in Fig. 5, at each gradient step
both the matching rate and the correlation of the eigenvec-
tor w.r.t. the ground truth increases (monitored only for pairs
containing the same category). The proposed model is again
verified as shown by the plots of the real and ideal vr that
are almost identical. Not only that the learning algorithm
was not significantly influenced by the presence of discor-
dant pairs but it was also able to find a single set of param-
eters that matched well both cars and motorbikes. Learning
and testing results are averaged over 30 experiments.

Using the testing image pairs of cars and motorbikes,
we used several graph matching algorithms (for a more ex-
tensive discussion and comparison see Sect. 6.4): spectral
matching (SM) using the row/column procedure from Zass
and Shashua (2008) during post-processing of the eigenvec-
tor, with probabilistic matching (PM) using pair-wise con-
straints from Zass and Shashua (2008), and the well-known
graduated assignment algorithm from Gold and Rangara-
jan (1996) (GA). The same parameters and pair-wise scores
were used by all algorithms, learned as described above.
When no outliers were allowed all algorithms had similar
matching rates (above 75%) with learning moderately im-

Leordeanu et al.
 IJCV 2012	

Dense Non-rigid Surface Registration Using High-Order Graph Matching

Yun Zeng
Stony Brook University
yzeng@cs.sunysb.edu

Chaohui Wang
Laboratoire MAS, Ecole Centrale Paris

chaohui.wang@ecp.fr

Yang Wang
Carnegie Mellon University

wangy@cs.cmu.edu

Xianfeng Gu, Dimitris Samaras
Computer Science Department

Stony Brook University
{gu,samaras}@cs.sunysb.edu

Nikos Paragios
Laboratoire MAS, Ecole Centrale Paris, France
Equipe GALEN, INRIA Saclay - Ile-de-France

nikos.paragios@ecp.fr

Abstract

In this paper, we propose a high-order graph matching
formulation to address non-rigid surface matching. The sin-
gleton terms capture the geometric and appearance similar-
ities (e.g., curvature and texture) while the high-order terms
model the intrinsic embedding energy. The novelty of this
paper includes: 1) casting 3D surface registration into a
graph matching problem that combines both geometric and
appearance similarities and intrinsic embedding informa-
tion, 2) the first implementation of high-order graph match-
ing algorithm that solves a non-convex optimization prob-
lem, and 3) an efficient two-stage optimization approach to
constrain the search space for dense surface registration.
Our method is validated through a series of experiments
demonstrating its accuracy and efficiency, notably in chal-
lenging cases of large and/or non-isometric deformations,
or meshes that are partially occluded.

1. Introduction
3D surface registration is an important problem in com-

puter vision with broad applications, such as 3D shape re-
trieval, face morphing, and object recognition [9]. It is par-
ticularly challenging when surfaces undergo large non-rigid
deformations. In applications such as recognition of sub-
tle facial expressions, there are localized, high-degree of
freedom deformations. To tackle this problem, several ap-
proaches have been developed to obtain dense point corre-
spondences by embedding the surfaces to a canonical do-
main which preserves the geodesics or angles [5, 6, 29, 32,
33]. Such embedding requires an initial set of feature cor-
respondences or boundary conditions. Given noisy 3D scan
data with varying scale, boundaries and resolutions, the per-
formance of the above methods might suffer as it is difficult
to find reliable feature point correspondences and consis-

(a) (b)
Figure 1. A dense matching result between two surfaces undergo-
ing a large non-rigid deformation. Our approach can establish both
the sparse (a) and dense (b) correspondences efficiently.

tent boundary conditions. To address this issue, in [34] a
priority-driven strategy was considered to search for sparse
feature correspondences based on the isometric assumption.
In [22] a Möbius voting scheme was introduced to find cor-
respondences between two sparse feature sets. However,
both methods do not scale well to solve the dense regis-
tration problem. Furthermore, since most surface deforma-
tions are not perfectly isometric, solely considering intrinsic
embedding information may introduce approximation er-
rors to the matching result. Therefore, it is important to
consider extrinsic similarity information as well to achieve
accurate surface matching.

Recently it has been shown that graph matching is a pow-
erful framework to establish feature correspondences, com-
bining both appearance similarity and geometric compati-
bility [13, 28]. Previous work has applied graph matching to
image features (e.g., [21]). Considering only single match-
ing scores, the matching problem becomes the well-known
assignment problem [1]. For the pairwise matching prob-
lem, [28] proposed to use the dual-decomposition method
which works well for a non-convex energy function. For the
high-order matching problem, recent work, including prob-
abilistic hypergraphs [31] and tensor matching [13], demon-
strate good optimization results when the energy function is
convex but the performance is unknown for non-convex en-
ergy functions.

Zheng et al.
CVPR 2010	

Zhang et al.
CVPR 2013	

Figure 8. Object detection results.
[11] E. Hsiao, A. Collet, and M. Hebert, “Making specific fea-

tures less discriminative to improve point-based 3d object
recognition”, In CVPR, 2010. 2

[12] W. Hu, “Learning 3d object templates by hierarchical quanti-
zation of geometry and appearance spaces”, In CVPR, 2012.
2

[13] B. Pepik, P. Gehler, M. Stark, and B. Schiele, “3d2pm—3d
deformable part models”, In ECCV, 2012. 2

[14] A. Aldoma, F. Tombari, L. D. Stefano, and M. Vincze, “A
global hypotheses verification method for 3d object recogni-
tion”, In ECCV, 2012. 2

[15] K. Lai, L. Bo, X. Ren, and D. Fox, “Sparse distance learn-
ing for object recognition combining rgb and depth informa-
tion”, In ICRA, 2011. 2

[16] W. Susanto, M. Rohrbach, and B. Schiele, “3d object detec-
tion with multiple kinects”, In ECCV, 2012. 2

[17] A. Collet, S. S. Srinivasay, and M. Hebert, “Structure dis-
covery in multi-modal data: a region-based approach”, In
ICRA, 2011. 2

[18] X. Ren, L. Bo, and D. Fox, “Rgb-(d) scene labeling: Features
and algorithms”, In CVPR, 2012. 2

[19] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor
segmentation and support inference from rgbd images”, In
ECCV, 2012. 2

[20] O. Duchenne, A. Joulin, and J. Ponce, “A graph-matching
kernel for object categorization”, In ICCV, 2011. 2

[21] K. I. Kim, J. Tompkin, M. Theobald, J. Kautz, and
C. Theobalt, “Match graph construction for large image
databases”, In ECCV, 2012. 2

[22] M. Cho and K. M. Lee, “Progressive graph matching: Mak-
ing a move of graphs via probabilistic voting”, In CVPR,
2012. 2

[23] F.-F. Li, R. Fergus, and P. Perona, “One-shot learning of
object categories”, In PAMI, vol. 28, no. 4, pp. 594–611,
2006. 2

[24] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Bun-
tine, “Unsupervised object discovery: A comparison”, In
IJCV, vol. 88, no. 2, pp. 284–302, 2010. 2

[25] H. Kang, M. Hebert, and T. Kanade, “Discovering object
instances from scenes of daily living”, In ICCV, 2011. 2, 3

[26] C. Li, D. Parikh, and T. Chen, “Automatic discovery of
groups of objects for scene understanding”, In CVPR, 2012.
2

[27] A. Faktor and M. Irani, “”clustering by composition” -
unsupervised discovery of image categories”, In ECCV,
2012. 2

[28] J.-Y. Zhu, J. Wu, Y. Wei, E. Chang, and Z. Tu, “Unsu-
pervised object class discovery via saliency-guided multiple
class learning”, In CVPR, 2012. 2

[29] Y. J. Lee and K. Grauman, “Shape discovery from unlabeled
image collections”, In CVPR, 2009. 3

[30] Y. J. Lee and K. Grauman, “Learning the easy things first:
Self-paced visual category discovery”, In CVPR, 2011. 3

[31] Z.Liao, A.Farhadi, Y.Wang, I.Endres, and D.Forsyth,
“Building a dictionary of image fragments”, In CVPR, 2012.
3

[32] S. Vijayanarasimhan and K. Grauman, “Large-scale live ac-
tive learning: Training object detectors with crawled data and
crowds”, In CVPR, 2011. 3

[33] C. Olsson and Y. Boykov, “Curvature-based regularization
for surface approximation”, In CVPR, 2012. 3

[34] H. Liu and S. Yan, “Efficient structure detection via random
consensus graph”, In CVPR, 2012. 3

[35] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour
detection and hierarchical image segmentation”, In PAMI,
vol. 33, no. 5, pp. 898–916, 2011. 3

[36] V. Kolmogorov, “Convergent tree-reweighted message pass-
ing for energy minimization”, In IEEE PAMI, vol. 28, no.
10, pp. 1568–1583, 2006. 4, 5, 6, 7

[37] M. Leordeanu and M. Hebert, “A spectral technique for cor-
respondence problems using pairwise constraints”, In ICCV,
2005. 5, 6, 7

[38] Z. Popović C. K. Liu, A. Hertzmann, “Learning physics-
based motion style with nonlinear inverse optimization”, In
SIGGRAPH, 2005. 6, 7

Motivation	
l How to improve matching by learning?

l  A hand-crafted matching score function performs
poor in many practical problems

l  Learn parameters of the matching score function to
better match two instances

Caetano et al. ’07
 Torresani et al. ’08

Leordeanu et al. ’12
Pachauri et al. ’12	

	

two input images	
	

Annotated dataset	 Learning
the matching
score function	

e.g. weights on
similarity functions	

l How to obtain a graph model for matching?
l  Learn the class-specific graph model from training

data, and use it to match to instances of the class
l  Related to generic graph learning

Our Approach	

Learning
a graph model	 Input image	

	

Learned model	

Lee et al. ’06
 Hofling & Tibshirani ’09

 Nowozin et al. ’10	
	

Annotated dataset	

What to Learn? : Previous Approaches
l  Shared weights on nodes & on edges

l  All nodes share the same weight βV
l  All edges share the same weight βE

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

βV�	 βE�	

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

β	

βE	βV	

Caetano et al. ’07
 Torresani et al. ’08

Leordeanu et al. ’12
Pachauri et al. ’12	

	

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

What to Learn? : Generalization
l Discriminative weights

l  Each node and edge has its own weight
l  This generalizes the previous learning approaches

1	 2	
3	

4	 5	 6	

7	
8	

β1	 β2	
β3	

β4	 β5	
β6	

β7	
β8	

β12	
β13	 β23	
β35	

β45	 β56	
β57	

β78	
β58	

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

βi�	 βij�	

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

β	

What to Learn? : Graph Model
l Model and weights

l  Goal: learn model graph G* and weights β
l  How to parameterize G* and β ?

1	 2	
3	

4	 5	 6	

7	
8	

β1	 β2	
β3	

β4	 β5	
β6	

β7	
β8	

β12	
β13	 β23	
β35	

β45	 β56	
β57	

β78	
β58	

βi�	 βij�	

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

β	

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

graph matching score function of Eq. (3): S(G,G0
,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [?] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [?] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [?] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are
different, all of them are essentially aimed at learning com-
mon weights for all the edge and node similarity functions.
The discriminative weight formulation is more general in
the sense that it can assign different parameters for individ-
ual nodes and edges. We will highlight this advantage with
appropriate evidence in the experimental section. How-
ever, like previous approaches, it does not learn a graph
model underlying the feature map �, and requires a ref-
erence graph G0 at query time, whose attributes cannot be
modified in the learning phase. We overcome this draw-
back by proposing an optimization framework to learn the
reference graph.

3. Graph learning
To address the problem of learning graphs, we start with

the discriminative weight formulation of Eq. (7). Instead
of a reference graph used in the previous section, we con-
sider a class-specific model graph G⇤. Our aim is to infer
this graph, such that it produces the best matches with other
instances of the class. Let ˆy denote the optimal matching
between the model graph G⇤ and an input graph G, given
by:

ˆ

y(G;G⇤
,�) = argmax

y2Y(G)
S(G⇤

,G,y;�), (8)

where � is a weight vector, Y(G) defines the set of pos-
sible assignment vectors for the input graph G. Inspired
by the max-margin framework [?], we learn the model
graph G⇤ and its weights � from labeled examples D =

(hG1,y1i, . . . , hGn

,y

n

i), where y

i

2 Y(G
i

), by minimiz-
ing the following objective function:

L

D

(G⇤
,�) = r(G⇤

,�) +

C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;G⇤
,�)), (9)

In this objective function r is a regularization function, �
a loss function, and y

i

denotes the ground truth assignment

vector. The parameter C controls the relative importance of
the loss term.

A critical question to address here is how to parametrize
G⇤ and � such that the optimization of Eq. (9) is feasible.
We propose to parameterize both G⇤ and � in a vectorial
form, which then enables us to optimize the objective func-
tion in Eq. (9) efficiently, as shown below. We first separate
the graph model G⇤ from the joint feature map �(G⇤

,G,y),
so as to parameterize it separately. We assume that the sim-
ilarity functions s

V

and s

E

are dot products of two attribute
vectors:
s

V

(a

⇤
i

,a

a

) = a

⇤
i

· a
a

, s

E

(a

⇤
ij

,a

ab

) = a

⇤
ij

· a
ab

, (10)

where a⇤
i

and a

⇤
ij

correspond to the node and edge attributes
of the model graph respectively. Further, we define the at-
tribute vector ⇥(G⇤

) and the feature map (G,y) as:
⇥(G⇤

) = [· · · ;a⇤
i

; · · · ;a⇤
ij

; · · ·], (11)
 (G,y) = [· · · ;a

⇡(i); · · · ;a⇡(i)⇡(j); · · ·], (12)

where ⇥(G⇤
) describes all the attributes of G⇤ and (G,y)

represents the corresponding attributes of G, according to
the assignment y. This enables the attributes of�(G⇤

,G,y)
to be factorized into⇥(G⇤

) and (G,y), and thus to rewrite
the score function as:

S(G⇤
,G,y;�) = � · �(G⇤

,G,y)
= � · (⇥(G⇤

)� (G,y))
= (� �⇥(G⇤

)) · (G,y), (13)

where � denotes the Hadamard (element-wise) prod-
uct. Note that both terms of the attributes ⇥(G⇤

) and
their weights � are now combined into a single vector
(� �⇥(G⇤

)). Thus, when the similarity functions are dot
products, both the graph model attributes and their weights
can be jointly expressed by a single vector. By substituting
w = � �⇥(G⇤

) into Eq. (8), we obtain a linear form for
the optimal assignment:

ˆ

y(G;w) = argmax

y2Y(G)
w · (G,y). (14)

In turn, this transforms the learning objective in Eq. (9) into
a standard formulation of the structured support vector ma-
chine (SSVM):

L

D

(w) =

1

2

||w||2 + C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;w)), (15)

where all the graph model attributes and their weights, to be
learned, are represented by w. This function can be min-
imized by various optimization approaches to estimate the
parameters w [?, ?, ?]. Unlike other learning methods for
graph matching [?, ?, ?, ?], this formulation allows us to
combine graph learning, and learning a matching function
into a coherent structured output framework. A related ap-
proach has been proposed to learn homography estimation
in keypoint matching and tracking [?].

Parameterization	
l Assume the similarity function is the dot

product of two attributes:

l  Then, the attributes of the model graph can be

factored out and combined with the weights:

different, all of them are essentially aimed at learning com-
mon weights for all the edge and node similarity functions.
The discriminative weight formulation is more general in
the sense that it can assign different parameters for individ-
ual nodes and edges. We will highlight this advantage with
appropriate evidence in the experimental section. How-
ever, like previous approaches, it does not learn a graph
model underlying the feature map �, and requires a ref-
erence graph G0 at query time, whose attributes cannot be
modified in the learning phase. We overcome this draw-
back by proposing an optimization framework to learn the
reference graph.

3. Graph learning
To address the problem of learning graphs, we start with

the discriminative weight formulation of Eq. (4). Instead
of a reference graph used in the previous section, we con-
sider a class-specific model graph G⇤. Our aim is to infer
this graph, such that it produces the best matches with other
instances of the class. Let ˆy denote the optimal matching
between the model graph G⇤ and an input graph G, given
by:

ˆ

y(G;G⇤
,�) = argmax

y2Y(G)
S(G⇤

,G,y;�), (5)

where � is a weight vector, Y(G) defines the set of pos-
sible assignment vectors for the input graph G. Inspired
by the max-margin framework [31], we learn the model
graph G⇤ and its weights � from labeled examples D =

(hG1,y1i, . . . , hGn

,y

n

i), where y

i

2 Y(G
i

), by minimiz-
ing the following objective function:

L

D

(G⇤
,�) = r(G⇤

,�) +

C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;G⇤
,�)), (6)

In this objective function r is a regularization function, �
a loss function, and y

i

denotes the ground truth assignment
vector. The parameter C controls the relative importance of
the loss term.

A critical question to address here is how to parametrize
G⇤ and � such that the optimization of Eq. (6) is feasible.
We propose to parameterize both G⇤ and � in a vectorial
form, which then enables us to optimize the objective func-
tion in Eq. (6) efficiently, as shown below. We first separate
the graph model G⇤ from the joint feature map �(G⇤

,G,y),
so as to parameterize it separately. We assume that the sim-
ilarity functions s

V

and s

E

are dot products of two attribute
vectors:
s

V

(a

⇤
i

,a

a

) = a

⇤
i

· a
a

, s

E

(a

⇤
ij

,a

ab

) = a

⇤
ij

· a
ab

, (7)

where a⇤
i

and a

⇤
ij

correspond to the node and edge attributes
of the model graph respectively. Further, we define the at-
tribute vector ⇥(G⇤

) and the feature map (G,y) as:
⇥(G⇤

) = [· · · ;a⇤
i

; · · · ;a⇤
ij

; · · ·], (8)
 (G,y) = [· · · ;a

⇡(i); · · · ;a⇡(i)⇡(j); · · ·], (9)

where ⇥(G⇤
) describes all the attributes of G⇤ and (G,y)

represents the corresponding attributes of G, according to
the assignment y. This enables the attributes of�(G⇤

,G,y)
to be factorized into⇥(G⇤

) and (G,y), and thus to rewrite
the score function as:

S(G⇤
,G,y;�) = � · �(G⇤

,G,y)
= � · (⇥(G⇤

)� (G,y))
= (� �⇥(G⇤

)) · (G,y), (10)

where � denotes the Hadamard (element-wise) prod-
uct. Note that both terms of the attributes ⇥(G⇤

) and
their weights � are now combined into a single vector
(� �⇥(G⇤

)). Thus, when the similarity functions are dot
products, both the graph model attributes and their weights
can be jointly expressed by a single vector. By substituting
w = � �⇥(G⇤

) into Eq. (5), we obtain a linear form for
the optimal assignment:

ˆ

y(G;w) = argmax

y2Y(G)
w · (G,y). (11)

In turn, this transforms the learning objective in Eq. (6) into
a standard formulation of the structured support vector ma-
chine (SSVM):

L

D

(w) =

1

2

||w||2 + C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;w)), (12)

where all the graph model attributes and their weights, to be
learned, are represented by w. This function can be min-
imized by various optimization approaches to estimate the
parameters w [16, 29, 31]. Unlike other learning methods
for graph matching [5, 21, 26, 30], this formulation allows
us to combine graph learning, and learning a matching func-
tion into a coherent structured output framework. A related
approach has been proposed to learn homography estima-
tion in keypoint matching and tracking [15].

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (7), which leads to
the linearization in Eq. (10), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (??) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) = w · (G,y), (4)

==== The formulation in Eq. (??) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (??),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (??)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (??) into a vectorial form as:

�(G,G0
,y) (5)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (6)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (??) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) = w · (G,y), (4)

==== The formulation in Eq. (??) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (??),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (??)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (??) into a vectorial form as:

�(G,G0
,y) (5)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (6)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (??) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) = w · (G,y), (4)

==== The formulation in Eq. (??) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (??),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (??)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (??) into a vectorial form as:

�(G,G0
,y) (5)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (6)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

Feature map Model and weights

l  Learned in the standard SSVM framework
l  Given training data ,

 Minimize

l  Predictor:

l  Loss function:

l  Regularization:

l  Optimization by the cutting plane method

Max-Margin Learning	

different, all of them are essentially aimed at learning com-
mon weights for all the edge and node similarity functions.
The discriminative weight formulation is more general in
the sense that it can assign different parameters for individ-
ual nodes and edges. We will highlight this advantage with
appropriate evidence in the experimental section. How-
ever, like previous approaches, it does not learn a graph
model underlying the feature map �, and requires a ref-
erence graph G0 at query time, whose attributes cannot be
modified in the learning phase. We overcome this draw-
back by proposing an optimization framework to learn the
reference graph.

3. Graph learning
To address the problem of learning graphs, we start with

the discriminative weight formulation of Eq. (4). Instead
of a reference graph used in the previous section, we con-
sider a class-specific model graph G⇤. Our aim is to infer
this graph, such that it produces the best matches with other
instances of the class. Let ˆy denote the optimal matching
between the model graph G⇤ and an input graph G, given
by:

ˆ

y(G;G⇤
,�) = argmax

y2Y(G)
S(G⇤

,G,y;�), (5)

where � is a weight vector, Y(G) defines the set of pos-
sible assignment vectors for the input graph G. Inspired
by the max-margin framework [31], we learn the model
graph G⇤ and its weights � from labeled examples D =

(hG1,y1i, . . . , hGn

,y

n

i), where y

i

2 Y(G
i

), by minimiz-
ing the following objective function:

L

D

(G⇤
,�) = r(G⇤

,�) +

C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;G⇤
,�)), (6)

In this objective function r is a regularization function, �
a loss function, and y

i

denotes the ground truth assignment
vector. The parameter C controls the relative importance of
the loss term.

A critical question to address here is how to parametrize
G⇤ and � such that the optimization of Eq. (6) is feasible.
We propose to parameterize both G⇤ and � in a vectorial
form, which then enables us to optimize the objective func-
tion in Eq. (6) efficiently, as shown below. We first separate
the graph model G⇤ from the joint feature map �(G⇤

,G,y),
so as to parameterize it separately. We assume that the sim-
ilarity functions s

V

and s

E

are dot products of two attribute
vectors:
s

V

(a

⇤
i

,a

a

) = a

⇤
i

· a
a

, s

E

(a

⇤
ij

,a

ab

) = a

⇤
ij

· a
ab

, (7)

where a⇤
i

and a

⇤
ij

correspond to the node and edge attributes
of the model graph respectively. Further, we define the at-
tribute vector ⇥(G⇤

) and the feature map (G,y) as:
⇥(G⇤

) = [· · · ;a⇤
i

; · · · ;a⇤
ij

; · · ·], (8)
 (G,y) = [· · · ;a

⇡(i); · · · ;a⇡(i)⇡(j); · · ·], (9)

where ⇥(G⇤
) describes all the attributes of G⇤ and (G,y)

represents the corresponding attributes of G, according to
the assignment y. This enables the attributes of�(G⇤

,G,y)
to be factorized into⇥(G⇤

) and (G,y), and thus to rewrite
the score function as:

S(G⇤
,G,y;�) = � · �(G⇤

,G,y)
= � · (⇥(G⇤

)� (G,y))
= (� �⇥(G⇤

)) · (G,y), (10)

where � denotes the Hadamard (element-wise) prod-
uct. Note that both terms of the attributes ⇥(G⇤

) and
their weights � are now combined into a single vector
(� �⇥(G⇤

)). Thus, when the similarity functions are dot
products, both the graph model attributes and their weights
can be jointly expressed by a single vector. By substituting
w = � �⇥(G⇤

) into Eq. (5), we obtain a linear form for
the optimal assignment:

ˆ

y(G;w) = argmax

y2Y(G)
w · (G,y). (11)

In turn, this transforms the learning objective in Eq. (6) into
a standard formulation of the structured support vector ma-
chine (SSVM):

L

D

(w) =

1

2

||w||2 + C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;w)), (12)

where all the graph model attributes and their weights, to be
learned, are represented by w. This function can be min-
imized by various optimization approaches to estimate the
parameters w [16, 29, 31]. Unlike other learning methods
for graph matching [5, 21, 26, 30], this formulation allows
us to combine graph learning, and learning a matching func-
tion into a coherent structured output framework. A related
approach has been proposed to learn homography estima-
tion in keypoint matching and tracking [15].

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (7), which leads to
the linearization in Eq. (10), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as

graph matching score function of Eq. (3): S(G,G0
,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [?] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [?] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [?] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are
different, all of them are essentially aimed at learning com-
mon weights for all the edge and node similarity functions.
The discriminative weight formulation is more general in
the sense that it can assign different parameters for individ-
ual nodes and edges. We will highlight this advantage with
appropriate evidence in the experimental section. How-
ever, like previous approaches, it does not learn a graph
model underlying the feature map �, and requires a ref-
erence graph G0 at query time, whose attributes cannot be
modified in the learning phase. We overcome this draw-
back by proposing an optimization framework to learn the
reference graph.

3. Graph learning
To address the problem of learning graphs, we start with

the discriminative weight formulation of Eq. (6). Instead
of a reference graph used in the previous section, we con-
sider a class-specific model graph G⇤. Our aim is to infer
this graph, such that it produces the best matches with other
instances of the class. Let ˆy denote the optimal matching
between the model graph G⇤ and an input graph G, given
by:

ˆ

y(G;G⇤
,�) = argmax

y2Y(G)
S(G⇤

,G,y;�), (8)

where � is a weight vector, Y(G) defines the set of pos-
sible assignment vectors for the input graph G. Inspired
by the max-margin framework [?], we learn the model
graph G⇤ and its weights � from labeled examples D =

(hG1,y1i, . . . , hGn

,y

n

i), where y

i

2 Y(G
i

), by minimiz-
ing the following objective function:

L

D

(G⇤
,�) = r(G⇤

,�) +

C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;G⇤
,�)), (9)

In this objective function r is a regularization function, �
a loss function, and y

i

denotes the ground truth assignment

vector. The parameter C controls the relative importance of
the loss term.

A critical question to address here is how to parametrize
G⇤ and � such that the optimization of Eq. (8) is feasible.
We propose to parameterize both G⇤ and � in a vectorial
form, which then enables us to optimize the objective func-
tion in Eq. (8) efficiently, as shown below. We first separate
the graph model G⇤ from the joint feature map �(G⇤

,G,y),
so as to parameterize it separately. We assume that the sim-
ilarity functions s

V

and s

E

are dot products of two attribute
vectors:
s

V

(a

⇤
i

,a

a

) = a

⇤
i

· a
a

, s

E

(a

⇤
ij

,a

ab

) = a

⇤
ij

· a
ab

, (10)

where a⇤
i

and a

⇤
ij

correspond to the node and edge attributes
of the model graph respectively. Further, we define the at-
tribute vector ⇥(G⇤

) and the feature map (G,y) as:
⇥(G⇤

) = [· · · ;a⇤
i

; · · · ;a⇤
ij

; · · ·], (11)
 (G,y) = [· · · ;a

⇡(i); · · · ;a⇡(i)⇡(j); · · ·], (12)

where ⇥(G⇤
) describes all the attributes of G⇤ and (G,y)

represents the corresponding attributes of G, according to
the assignment y. This enables the attributes of�(G⇤

,G,y)
to be factorized into⇥(G⇤

) and (G,y), and thus to rewrite
the score function as:

S(G⇤
,G,y;�) = � · �(G⇤

,G,y)
= � · (⇥(G⇤

)� (G,y))
= (� �⇥(G⇤

)) · (G,y), (13)

where � denotes the Hadamard (element-wise) prod-
uct. Note that both terms of the attributes ⇥(G⇤

) and
their weights � are now combined into a single vector
(� �⇥(G⇤

)). Thus, when the similarity functions are dot
products, both the graph model attributes and their weights
can be jointly expressed by a single vector. By substituting
w = � �⇥(G⇤

) into Eq. (7), we obtain a linear form for
the optimal assignment:

ˆ

y(G;w) = argmax

y2Y(G)
w · (G,y). (14)

In turn, this transforms the learning objective in Eq. (8) into
a standard formulation of the structured support vector ma-
chine (SSVM):

L

D

(w) =

1

2

||w||2 + C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;w)), (15)

where all the graph model attributes and their weights, to be
learned, are represented by w. This function can be min-
imized by various optimization approaches to estimate the
parameters w [?, ?, ?]. Unlike other learning methods for
graph matching [?, ?, ?, ?], this formulation allows us to
combine graph learning, and learning a matching function
into a coherent structured output framework. A related ap-
proach has been proposed to learn homography estimation
in keypoint matching and tracking [?].

graph matching score function of Eq. (3): S(G,G0
,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [?] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [?] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [?] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are
different, all of them are essentially aimed at learning com-
mon weights for all the edge and node similarity functions.
The discriminative weight formulation is more general in
the sense that it can assign different parameters for individ-
ual nodes and edges. We will highlight this advantage with
appropriate evidence in the experimental section. How-
ever, like previous approaches, it does not learn a graph
model underlying the feature map �, and requires a ref-
erence graph G0 at query time, whose attributes cannot be
modified in the learning phase. We overcome this draw-
back by proposing an optimization framework to learn the
reference graph.

3. Graph learning
To address the problem of learning graphs, we start with

the discriminative weight formulation of Eq. (6). Instead
of a reference graph used in the previous section, we con-
sider a class-specific model graph G⇤. Our aim is to infer
this graph, such that it produces the best matches with other
instances of the class. Let ˆy denote the optimal matching
between the model graph G⇤ and an input graph G, given
by:

ˆ

y(G;G⇤
,�) = argmax

y2Y(G)
S(G⇤

,G,y;�), (8)

where � is a weight vector, Y(G) defines the set of pos-
sible assignment vectors for the input graph G. Inspired
by the max-margin framework [?], we learn the model
graph G⇤ and its weights � from labeled examples D =

(hG1,y1i, . . . , hGn

,y

n

i), where y

i

2 Y(G
i

), by minimiz-
ing the following objective function:

L

D

(G⇤
,�) = r(G⇤

,�) +

C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;G⇤
,�)), (9)

In this objective function r is a regularization function, �
a loss function, and y

i

denotes the ground truth assignment

vector. The parameter C controls the relative importance of
the loss term.

A critical question to address here is how to parametrize
G⇤ and � such that the optimization of Eq. (8) is feasible.
We propose to parameterize both G⇤ and � in a vectorial
form, which then enables us to optimize the objective func-
tion in Eq. (8) efficiently, as shown below. We first separate
the graph model G⇤ from the joint feature map �(G⇤

,G,y),
so as to parameterize it separately. We assume that the sim-
ilarity functions s

V

and s

E

are dot products of two attribute
vectors:
s

V

(a

⇤
i

,a

a

) = a

⇤
i

· a
a

, s

E

(a

⇤
ij

,a

ab

) = a

⇤
ij

· a
ab

, (10)

where a⇤
i

and a

⇤
ij

correspond to the node and edge attributes
of the model graph respectively. Further, we define the at-
tribute vector ⇥(G⇤

) and the feature map (G,y) as:
⇥(G⇤

) = [· · · ;a⇤
i

; · · · ;a⇤
ij

; · · ·], (11)
 (G,y) = [· · · ;a

⇡(i); · · · ;a⇡(i)⇡(j); · · ·], (12)

where ⇥(G⇤
) describes all the attributes of G⇤ and (G,y)

represents the corresponding attributes of G, according to
the assignment y. This enables the attributes of�(G⇤

,G,y)
to be factorized into⇥(G⇤

) and (G,y), and thus to rewrite
the score function as:

S(G⇤
,G,y;�) = � · �(G⇤

,G,y)
= � · (⇥(G⇤

)� (G,y))
= (� �⇥(G⇤

)) · (G,y), (13)

where � denotes the Hadamard (element-wise) prod-
uct. Note that both terms of the attributes ⇥(G⇤

) and
their weights � are now combined into a single vector
(� �⇥(G⇤

)). Thus, when the similarity functions are dot
products, both the graph model attributes and their weights
can be jointly expressed by a single vector. By substituting
w = � �⇥(G⇤

) into Eq. (7), we obtain a linear form for
the optimal assignment:

ˆ

y(G;w) = argmax

y2Y(G)
w · (G,y). (14)

In turn, this transforms the learning objective in Eq. (8) into
a standard formulation of the structured support vector ma-
chine (SSVM):

L

D

(w) =

1

2

||w||2 + C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;w)), (15)

where all the graph model attributes and their weights, to be
learned, are represented by w. This function can be min-
imized by various optimization approaches to estimate the
parameters w [?, ?, ?]. Unlike other learning methods for
graph matching [?, ?, ?, ?], this formulation allows us to
combine graph learning, and learning a matching function
into a coherent structured output framework. A related ap-
proach has been proposed to learn homography estimation
in keypoint matching and tracking [?].

tiveness. In our experiments, we used the SIFT descriptor.

3.2. Loss functions
Another ingredient in the objective function Eq. (14) is

the loss function �(y,

ˆ

y). It drives the learning process
by measuring the quality of a predicted matching ˆ

y against
its ground truth y. We use the normalized Hamming loss,
similar to [?], which is the fraction of mismatches between
assignment vectors y and ˆ

y,

�(y,

ˆ

y) = 1� 1

||y||2
F

y · ˆy, (18)

where || · ||
F

is the Frobenius norm.

3.3. Optimization
Many approaches have been proposed to train

SSVMs [?, ?, ?]. This problem amounts to solving a
convex quadratic program with an exponentially large
number of constraints. Solutions for this optimization prob-
lem either: (i) reduce it to an equivalent polynomial-size
reformulation (for certain decomposable loss functions),
and use methods like SMO [?] or general-purpose solvers;
or (ii) work with the original problem by considering a
subset of constraints, and employing cutting plane [?] or
stochastic subgradient methods. For solving the problem
in Eq. (14), we use the efficient cutting plane method
proposed by Joachims et al. [?]. This method differs
from most other SVM training approaches by considering
individual data points as well as their linear combinations
as potential support vectors. This leads to a smaller set of
cutting plane models, and thus more efficient training.

4. Experimental evaluation
In this section we conduct comparative evaluations on

synthetic and real data. We observed that our histogram-
based similarity function showed better or comparable
matching performance than other similarity measures used
in [?, ?, ?]. Hence, we chose to focus on the perfor-
mance of learning using these attributes in all our experi-
ments. A fully-connected graph is used as the initial graph
for learning. We evaluate four methods: ‘w/o learning’,
‘SW-SSVM’, ‘SW-SPEC’, ‘DW-SSVM’, and our method
‘HARG-SSVM’. For w/o learning, we use a conventional
graph matching method with uniform weighting. For SW-
SSVM, SSVM learning is applied to shared weights on
nodes and edges. Here, we learn 2 (angle and distance) pa-
rameters for edges, and 128 (SIFT) parameters for nodes.
Although the similarity functions and the optimization al-
gorithm are different, SW-SSVM is closely related to the
method of [?]. SW-SPEC is the learning method of [?]
for shared weights. DW-SSVM represents a discrimina-
tive weight learning approach based on the formulation
discussed in Sec. 2.2, which learns individual weights for

nodes and edges (2 parameters for each edge and 128 pa-
rameters for each node). HARG-SSVM is our graph learn-
ing approach proposed in Sec. 3. The SSVM objective is
optimized with the same method [?] in all the experiments.

It should be noted that the methods [?,?] were originally
proposed to learn the weights of a graph matching function
for two graphs in the same class. Our approach (HARG-
SSVM), on the other hand, learns the graph model as well.
The approaches are evaluated on three datasets, including a
synthetic dataset, the CMU House/Hotel sequences, and an
object class dataset.

4.1. Synthetic point sets

The goal of this experiment is to evaluate and compare
the performance in a controlled setting. Here, we build on
the widely used point set matching problem protocol [?, ?].
We define a source set P by n Gaussian distributions, each
of which is centered at a random point in the 2-dimensional
domain [0, 1]

2, with a random variance in [0, 0.15]. As
shown in Fig. 3(a), an observable sample from the source set
P consists of n inlier points, which come from N (p

i

,�

i

),
and n

o

random outliers, generated from a uniform distri-
bution in [0, 1]

2. Visually, this simulates deformation and
clutter in the observations. We consider 100 sample point
sets from the source set, where each point in the sample
set has an assignment label to one of the n distributions in
P . Our task is to assign labels to new samples with graph
matching. This problem setting resembles many real-world
applications, and is equivalent to experiments in previous
works [?, ?]. Since there is no unary information in the
points, graph matching in this case relies solely on pairwise
similarity. From each point set we construct a graph with
our histogram-based attributes.

For our method (HARG-SSVM), we directly learn the
model and use it to match with a test set. For all the other
methods, since they do not learn a model, we take a refer-
ence point set, and use it to match with the test set. Here,
two types of references are used: ‘Sample’ or ‘Source’. For
‘Sample’, we randomly select one of the training sample
point sets, and for ‘Source’, the points from the source set
are directly used. In other words, ‘source’ corresponds to an
ideal reference graph without deformations and noise, i.e.,
a graph formed by red dots on the left image of Fig. 3(a).

We performed learning with 10 inliers (n = 10), 5 out-
liers (n

o

= 5), and maximum variance of 0.15. A compar-
ison of matching performance on 1000 test samples from
10 source sets is shown in Table 1. We also use differ-
ent graph matching algorithms to account for dependency
on the matching algorithm used. Note that our method
HARG-SSVM consistently outperforms all the other meth-
ods, when a sample set is used as the reference graph. Fur-
thermore, HARG-SSVM provides better results even when
other methods use the source set as the reference graph.

graph matching score function of Eq. (3): S(G,G0
,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [?] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [?] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [?] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are
different, all of them are essentially aimed at learning com-
mon weights for all the edge and node similarity functions.
The discriminative weight formulation is more general in
the sense that it can assign different parameters for individ-
ual nodes and edges. We will highlight this advantage with
appropriate evidence in the experimental section. How-
ever, like previous approaches, it does not learn a graph
model underlying the feature map �, and requires a ref-
erence graph G0 at query time, whose attributes cannot be
modified in the learning phase. We overcome this draw-
back by proposing an optimization framework to learn the
reference graph.

3. Graph learning
To address the problem of learning graphs, we start with

the discriminative weight formulation of Eq. (6). Instead
of a reference graph used in the previous section, we con-
sider a class-specific model graph G⇤. Our aim is to infer
this graph, such that it produces the best matches with other
instances of the class. Let ˆy denote the optimal matching
between the model graph G⇤ and an input graph G, given
by:

ˆ

y(G;G⇤
,�) = argmax

y2Y(G)
S(G⇤

,G,y;�), (8)

where � is a weight vector, Y(G) defines the set of pos-
sible assignment vectors for the input graph G. Inspired
by the max-margin framework [?], we learn the model
graph G⇤ and its weights � from labeled examples D =

(hG1,y1i, . . . , hGn

,y

n

i), where y

i

2 Y(G
i

), by minimiz-
ing the following objective function:

L

D

(G⇤
,�) = r(G⇤

,�) +

C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;G⇤
,�)), (9)

In this objective function r is a regularization function, �
a loss function, and y

i

denotes the ground truth assignment

vector. The parameter C controls the relative importance of
the loss term.

A critical question to address here is how to parametrize
G⇤ and � such that the optimization of Eq. (8) is feasible.
We propose to parameterize both G⇤ and � in a vectorial
form, which then enables us to optimize the objective func-
tion in Eq. (8) efficiently, as shown below. We first separate
the graph model G⇤ from the joint feature map �(G⇤

,G,y),
so as to parameterize it separately. We assume that the sim-
ilarity functions s

V

and s

E

are dot products of two attribute
vectors:
s

V

(a

⇤
i

,a

a

) = a

⇤
i

· a
a

, s

E

(a

⇤
ij

,a

ab

) = a

⇤
ij

· a
ab

, (10)

where a⇤
i

and a

⇤
ij

correspond to the node and edge attributes
of the model graph respectively. Further, we define the at-
tribute vector ⇥(G⇤

) and the feature map (G,y) as:
⇥(G⇤

) = [· · · ;a⇤
i

; · · · ;a⇤
ij

; · · ·], (11)
 (G,y) = [· · · ;a

⇡(i); · · · ;a⇡(i)⇡(j); · · ·], (12)

where ⇥(G⇤
) describes all the attributes of G⇤ and (G,y)

represents the corresponding attributes of G, according to
the assignment y. This enables the attributes of�(G⇤

,G,y)
to be factorized into⇥(G⇤

) and (G,y), and thus to rewrite
the score function as:

S(G⇤
,G,y;�) = � · �(G⇤

,G,y)
= � · (⇥(G⇤

)� (G,y))
= (� �⇥(G⇤

)) · (G,y), (13)

where � denotes the Hadamard (element-wise) prod-
uct. Note that both terms of the attributes ⇥(G⇤

) and
their weights � are now combined into a single vector
(� �⇥(G⇤

)). Thus, when the similarity functions are dot
products, both the graph model attributes and their weights
can be jointly expressed by a single vector. By substituting
w = � �⇥(G⇤

) into Eq. (7), we obtain a linear form for
the optimal assignment:

ˆ

y(G;w) = argmax

y2Y(G)
w · (G,y). (14)

In turn, this transforms the learning objective in Eq. (8) into
a standard formulation of the structured support vector ma-
chine (SSVM):

L

D

(w) =

1

2

||w||2 + C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;w)), (15)

where all the graph model attributes and their weights, to be
learned, are represented by w. This function can be min-
imized by various optimization approaches to estimate the
parameters w [?, ?, ?]. Unlike other learning methods for
graph matching [?, ?, ?, ?], this formulation allows us to
combine graph learning, and learning a matching function
into a coherent structured output framework. A related ap-
proach has been proposed to learn homography estimation
in keypoint matching and tracking [?].

graph matching score function of Eq. (3): S(G,G0
,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [?] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [?] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [?] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are
different, all of them are essentially aimed at learning com-
mon weights for all the edge and node similarity functions.
The discriminative weight formulation is more general in
the sense that it can assign different parameters for individ-
ual nodes and edges. We will highlight this advantage with
appropriate evidence in the experimental section. How-
ever, like previous approaches, it does not learn a graph
model underlying the feature map �, and requires a ref-
erence graph G0 at query time, whose attributes cannot be
modified in the learning phase. We overcome this draw-
back by proposing an optimization framework to learn the
reference graph.

3. Graph learning
To address the problem of learning graphs, we start with

the discriminative weight formulation of Eq. (6). Instead
of a reference graph used in the previous section, we con-
sider a class-specific model graph G⇤. Our aim is to infer
this graph, such that it produces the best matches with other
instances of the class. Let ˆy denote the optimal matching
between the model graph G⇤ and an input graph G, given
by:

ˆ

y(G;G⇤
,�) = argmax

y2Y(G)
S(G⇤

,G,y;�), (8)

where � is a weight vector, Y(G) defines the set of pos-
sible assignment vectors for the input graph G. Inspired
by the max-margin framework [?], we learn the model
graph G⇤ and its weights � from labeled examples D =

(hG1,y1i, . . . , hGn

,y

n

i), where y

i

2 Y(G
i

), by minimiz-
ing the following objective function:

L

D

(G⇤
,�) = r(G⇤

,�) +

C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;G⇤
,�)), (9)

In this objective function r is a regularization function, �
a loss function, and y

i

denotes the ground truth assignment

vector. The parameter C controls the relative importance of
the loss term.

A critical question to address here is how to parametrize
G⇤ and � such that the optimization of Eq. (8) is feasible.
We propose to parameterize both G⇤ and � in a vectorial
form, which then enables us to optimize the objective func-
tion in Eq. (8) efficiently, as shown below. We first separate
the graph model G⇤ from the joint feature map �(G⇤

,G,y),
so as to parameterize it separately. We assume that the sim-
ilarity functions s

V

and s

E

are dot products of two attribute
vectors:
s

V

(a

⇤
i

,a

a

) = a

⇤
i

· a
a

, s

E

(a

⇤
ij

,a

ab

) = a

⇤
ij

· a
ab

, (10)

where a⇤
i

and a

⇤
ij

correspond to the node and edge attributes
of the model graph respectively. Further, we define the at-
tribute vector ⇥(G⇤

) and the feature map (G,y) as:
⇥(G⇤

) = [· · · ;a⇤
i

; · · · ;a⇤
ij

; · · ·], (11)
 (G,y) = [· · · ;a

⇡(i); · · · ;a⇡(i)⇡(j); · · ·], (12)

where ⇥(G⇤
) describes all the attributes of G⇤ and (G,y)

represents the corresponding attributes of G, according to
the assignment y. This enables the attributes of�(G⇤

,G,y)
to be factorized into⇥(G⇤

) and (G,y), and thus to rewrite
the score function as:

S(G⇤
,G,y;�) = � · �(G⇤

,G,y)
= � · (⇥(G⇤

)� (G,y))
= (� �⇥(G⇤

)) · (G,y), (13)

where � denotes the Hadamard (element-wise) prod-
uct. Note that both terms of the attributes ⇥(G⇤

) and
their weights � are now combined into a single vector
(� �⇥(G⇤

)). Thus, when the similarity functions are dot
products, both the graph model attributes and their weights
can be jointly expressed by a single vector. By substituting
w = � �⇥(G⇤

) into Eq. (7), we obtain a linear form for
the optimal assignment:

ˆ

y(G;w) = argmax

y2Y(G)
w · (G,y). (14)

In turn, this transforms the learning objective in Eq. (8) into
a standard formulation of the structured support vector ma-
chine (SSVM):

L

D

(w) =

1

2

||w||2 + C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;w)), (15)

where all the graph model attributes and their weights, to be
learned, are represented by w. This function can be min-
imized by various optimization approaches to estimate the
parameters w [?, ?, ?]. Unlike other learning methods for
graph matching [?, ?, ?, ?], this formulation allows us to
combine graph learning, and learning a matching function
into a coherent structured output framework. A related ap-
proach has been proposed to learn homography estimation
in keypoint matching and tracking [?].

(Normalized Hamming loss)	

Joachims et al. ’09

Caetano et al. ’09

Graph Representation	

l Proposition
l  For any graph representation where dot product

between two attributes is defined as their similarity,
both of the model graph attributes and their
weights can be jointly learned as a single vector.

l Our proposal for visual matching problems
l  Histogram-Attributed Relational Graph (HARG)

l  Node attribute: histograms of gradient bins
 (SIFT in this work)
l  Edge attribute: histograms of log-polar bins
 (as follows)

Lowe ’04
Dalal & Triggs ’05

Graph Representation	

l  Edge attribute
l  histograms of log-polar bins

l  Concatenation of length and angle histograms
3.1. Histogram-attributed relational graph

In general, any graph representation satisfying the con-
dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

Graph Representation	

l  Edge attribute
l  histograms of log-polar bins

l  Concatenation of length and angle histograms

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

Graph Representation	

l  Edge attribute
l  histograms of log-polar bins

l  Concatenation of length and angle histograms

l  Non-parametric length and angle distribution
l  Robust to variation, and effective in learning

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

3.1. Histogram-attributed relational graph
In general, any graph representation satisfying the con-

dition of dot product similarity of Eq. (10), which leads to
the linearization in Eq. (13), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as
illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge e

ij

from node v

i

(represented by point x
i

in Fig. 2)
to node v

j

(x
j

in the figure). The vector from x

i

to x

j

can
be expressed in polar coordinates as (⇢

ij

, ✓

ij

). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of v

i

. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size n

L

in the log space with respect
to the position and scale of v

i

, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram L

ij

is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ⇢

ij

:

L

ij

(k) = f

L

(k �m), (16)
s.t. f

L

(x) = N (0,�

L

) , ⇢

ij

2 bin
⇢

(m),

where N (µ,�) represents a discrete Gaussian window2 of
size � centered on µ, and bin

⇢

(k) denotes the kth log-
distance bin from the center of v

i

. For angle, we use uni-
form bins of size 2⇡/n

P

. The polar-angle histogram P

ij

is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for ✓

ij

with respect
to the characteristic orientation of v

i

, is used:

P

ij

(k) = f

P

(k �m), (17)
s.t. f

P

(x) = N (0,�

P

) +N (±n

P

,�

P

) , ✓

ij

2 bin
✓

(m),

where additional Gaussian terms in f

P

(x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance L

ij

, and the polar-angle P

ij

,

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size �L = �P = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578, N (±2, 5) = 0.0439, and 0 otherwise.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
⇢

ij

(left) and its histogram with 9 bins (right). The log-
distance ⇢

ij

of edge e

ij

is measured relative to the scale of
v

i

. (b) Polar-angle ✓

ij

(left) and its histogram with 18 bins
(right). The polar-angle ✓

ij

of edge e

ij

is measured from
the characteristic orientation of v

i

, or from the horizontal
line through v

i

(shown as a green line), when there is no
such orientation.

histograms is defined as the attribute for edge e

ij

: a

ij

=

[L

ij

;P

ij

], which is asymmetric (a
ij

6= a

ji

).3 In this work,
we used n

L

= 9, n
P

= 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes a

i

, describing the local appearance
of node v

i

, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

Max-Margin Learning	
l  Example of a learned graph model

l  Face images with 10 point annotations

…

Max-Margin Learning	
l  Example of a learned face model

l  Larger weights on darker edges & bigger nodes
l  Examples of learned edge attributes

l  Blue histograms: attributes from a training image
l  Red histograms: attributes from the learned model

Experimental Evaluation
l On synthetic and real image datasets

l  Synthetic point sets
l  CMU House/Hotel
l  Object classes (5 classes from Caltech-256 & PASCAL VOC 2007)

l Graph construction and matching
l  Fully-connected graph as an initial graph
l  Graph matching module: RRWM Cho et al. ’10

Experiments: CMU House/Hotel

l  Image sequence with varying viewpoints
l  111 images for House, 101 images for Hotel
l  30 annotated points for each frame

Table 2: Matching performance comparison on the CMU
House/Hotel sequences. The frame #0 was used as a ref-
erence graph in w/o learning, SW-SSVM, and DW-SSVM.
The numbers in parentheses denote the number of training
images used for each method. In the last three rows, we also
report the published results for [5, 21] on 5 and 106 train-
ing images. Note that while we learn a graph model and
match it to all the other images, they learned the parameters
for matching, and applied them to match all possible pairs
among all the other images.

House Hotel
Method Acc.(%) Err.(px) Acc.(%) Err.(px)

w/o learning 99.6 0.06 78.7 11.32
SW-SSVM (3) 99.6 0.06 94.6 3.02
DW-SSVM (3) 99.8 0.01 100.0 0.00

HARG-SSVM (3) 100.0 0.000 100.0 0.00
SW-SPEC [21] (5) 99.8 n/a 94.8 n/a
SW-SSVM [5] (5) < 84 n/a < 87 n/a

SW-SSVM [5] (106) < 96 n/a < 90 n/a

a fully-connected graph. The error measure is defined as
the distance between a detected point and its ground truth,
normalized by the maximum distance between ground truth
points in the image, i.e. an estimate of the size of the target
object. Since we use a feature detector, it is virtually impos-
sible to make an exact correspondence for each point, due
to localization errors. Hence, we define a margin for error
t

e

, and consider a correspondence to be correct if its error
is less than t

e

. We set t
e

= 0.15 in this experiment.
We constructed an object class dataset with images from

Caltech-256 (Face, Duck, and Wine bottle) and PASCAL
VOC2007 (Motorbike and Car) datasets. The images of
these classes are selected such that each class contains at
least 40 images with different instances.4 Some of these
were then reflected laterally to ensure that each object has a
consistent orientation. We manually selected 10 distinctive
points on the target object, and identified them in each im-
age. In order to ease the labelling process, we used the fol-
lowing scheme. We first take an image, identify 10 points,
and set the image as a reference for the class. Then, we
apply graph matching to find correspondence from the ref-
erence to the other images, and refine them by fixing incor-
rect matches. This scheme allows us to build the ground
truth data more easily than other methods for the same pur-
pose [5, 21].

We split the image set for each object class into two
random partitions (20 images for training and the rest for
testing), and report accuracy and error of matching, aver-
aged over the 20 random splits. Table 3 summarizes the re-
sults and Figure 4 shows the learned model graphs and their
matching results. Our approach (HARG-SSVM) shows sig-

4The dataset consists of 109 Face, 50 Duck, 66 Wine bottle, 40 Motor-
bike, and 40 Car images, and is available from our project website [1].

(a) a learned House graph and its matching examples

(b) a learned Hotel graph and its matching examples

Figure 5: Results on the CMU House/Hotel sequence. For
each sequence, a graph model is learned using 3 images, and
tested on all the other images (108 for House, 98 for Ho-
tel). From left to right, the learned graph and two matching
examples are shown. In the graph models, darker lines de-
note edges with higher weights. For comparison with other
methods, see Table 2. (Best viewed in color.)

nificantly better results than other approaches. It suggests
that the detailed attributes learned by our approach enable
more accurate matching to other instances in the same class.
This experiment demonstrates that our approach success-
fully handles the practical challenges in matching by con-
structing a robust graph model. For more results, refer to
our project website [1].

5. Conclusion
We presented a novel graph learning approach with a

histogram-based representation and an SSVM framework.
In synthetic and real data experiments, we demonstrated
that the proposed method effectively learns an inherent
model graph from a training set, and provides good gener-
alization to unseen instances for matching. In future work,
we plan to explore sparse graph representation for better ef-
ficiency.

Acknowledgments. The authors would like to thank
Olivier Duchenne and Francis Bach for helpful discussions,
and Marius Leordeanu for providing his code and data.
This research was supported in part by the ERC advanced
grant VideoWorld, Institut Universitaire de France, and the
Quaero programme funded by the OSEO.

References
[1] http://www.di.ens.fr/willow/research/graphlearning/.
[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object

recognition using shape contexts. TPAMI, 2002.
[3] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object

recognition using low distortion correspondences. In CVPR, 2005.
[4] W. Brendel and S. Todorovic. Learning spatiotemporal graphs of

human activities. In ICCV, pages 778–785, 2011.

Table 1: Performance on synthetic point sets. Several learning approaches (shown in each row) are evaluated with the state-
of-the-art graph matching algorithms (in columns). See text for details of the learning methods. ‘Sample’ or ‘Source’ refer
to the type of reference graphs used for learning and matching. Given that in real problems it is unlikely to get observations
without deformations and noise, the result with ‘Source’ corresponds to the upper bound for the methods we compare to. In
contrast, our graph learning approach (HARG-SSVM) does not require such a reference graph, and consistently outperforms
all the other learning approaches, including those with the source reference graphs. The error is measured by the average
distance from true matching points.

SM [?] GAGM [?] IPFP [?] RRWM [?]
Reference Methods accuracy (%) error accuracy (%) error accuracy (%) error accuracy (%) error

Sample

w/o learning 60.4 0.079 62.4 0.070 61.4 0.067 62.2 0.072
SW-SSVM 59.7 0.073 53.9 0.114 61.2 0.070 67.5 0.057
SW-SPEC 62.2 0.068 58.8 0.103 64.3 0.054 66.2 0.063
DW-SSVM 66.2 0.054 70.4 0.050 69.0 0.053 75.6 0.040

Source

w/o learning 70.0 0.044 76.1 0.034 75.9 0.033 75.4 0.037
SW-SSVM 70.9 0.042 68.1 0.061 70.8 0.043 79.0 0.030
SW-SPEC 71.8 0.040 68.6 0.053 69.1 0.049 76.0 0.037
DW-SSVM 73.9 0.035 77.7 0.030 77.0 0.030 78.6 0.032

HARG-SSVM 79.7 0.026 79.5 0.027 79.7 0.029 81.7 0.025

This is because our graph model additionally captures both
the variation and the importance in edge attributes as shown
in Fig. 3(b). The two methods, SW-SSVM and SW-SPEC,
do not show a notable improvement compared to w/o learn-
ing because of the limitations of using shared weights.
Given the fact that in realistic situations we cannot directly
access the source of information, and can only sample from
the source, this synthetic experiment suggests that our learn-
ing approach leads to improvement in such problems.

4.2. House/Hotel dataset

The CMU House/Hotel sequence is one of the most pop-
ular benchmark datasets for graph matching. We used the
image sequences (House: 111 images and Hotel: 101 im-
ages) and the feature points from [?, ?]. In one of their
experiments, they used 5 training images for learning, and
tested on all the remaining pairs. Here, we learn a graph
model using only 3 training images (#0, #50, #100) from
the 5 images they used, and match it to all the other test
images. Unlike [?, ?], we only rely on the edge attributes
without any appearance descriptor. As shown in Table 2,
learned HARG achieves perfect results without any mis-
match, outperforming all the other methods. Figure 5 shows
the learned graphs and some example results of matching
to other frames. For images of identical objects, such as
these House/Hotel sequences, only a few number of images
are sufficient for our method to learn the model graph. In
Table 2, we also compared with other learning approaches
(SW-SSVM, DW-SSVM) using a reference graph (#0).
In this case, DW-SSVM also provides near-perfect results,
which suggests that learning individual parameters of edges
is important for matching.

Table 2: Matching performance comparison on the CMU
House/Hotel sequences. The frame #0 was used as a ref-
erence graph in w/o learning, SW-SSVM, and DW-SSVM.
The numbers in parentheses denote the number of training
images used for each method. In the last three rows, we also
report the published results for [?, ?] on 5 and 106 train-
ing images. Note that while we learn a graph model and
match it to all the other images, they learned the parameters
for matching, and applied them to match all possible pairs
among all the other images.

House Hotel
Method Training size Accuracy (%) Accuracy (%)

Caetano et al.’09 5 84 87
Caetano et al.’09 106 96 90

Leordeanu et al.’12 5 99.8 94.8
HARG-SSVM (ours) 3 100.0 100.0

4.3. Object class datasets

We tested our method on learning graphs of visual ob-
ject classes. This experiment is different from the previ-
ous ones for two reasons: First, the image contains not
only background clutter but also significant intra-category,
and view-point changes. Second, contrary to many related
works [?, ?, ?, ?], we use a local feature detector without
any additional manual pruning on cluttered images. In this
case, a significant number of outliers exists, and thus graph
matching becomes challenging.

We use the scale-invariant Hessian detector [?] to detect
local regions as nodes. We then describe the edge and node
attributes, as detailed in Sec. 3.1. Given a test image, we
select kNN features (k = 50) for each node of the model
graph based on dot product similarity, and construct a fully-
connected graph. The error measure is defined as the dis-

Caetano et al., 2007

Learned model Matching results Hotel sequence

Experiments: Object Classes	

 	

l Annotated object class dataset
l  5 object classes constructed using images from

Caltech-256 and PASCAL VOC datasets
 (Face:109, Duck: 50, Wine bottle: 66, Motorbike: 40, Car: 40)

l  10 distinctive points annotated for each image

l Quantitative evaluation
l  20 images for training and the rest for testing
l  Endpoint error for each match w.r.t object size

l  True match if the error < 0.15

l  Average performance over the 20 random splits

Experiments: Object Classes	

 	

l Duck

� Node color: feature identity

� Bigger nodes: larger weights
� Darker edges: larger weights

� Node color: matching feature

� Bigger nodes: higher similarity
� Red edges: connecting true ones

Learned model Input image

Experiments: Object Classes	

 	

l Duck

� Node color: feature identity

� Bigger nodes: larger weights
� Darker edges: larger weights

� Node color: matching feature

� Bigger nodes: higher similarity
� Red edges: connecting true ones

Learned model Input image

Experiments: Object Classes	

 	

l Duck

l  Black nodes: false matches

l Car

l  Black nodes: false matches

Experiments: Object Classes	

l Comparison
l  w/o learning: uniform weights without learning

Experiments: Object Classes	

Graph Matching
�
!  How to measure the matching score S ?

!  Sum of SV and SE values for the assignment y

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

l Comparison
l  w/o learning: uniform weights without learning
l  SW-SSVM: shared weights, learned in SSVM

Experiments: Object Classes	

Caetano et al., 2007

What to Learn? : Previous Approaches
!  Shared weights on nodes & on edges

!  All nodes share the same weight βV
!  All edges share the same weight βE

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

βV"� βE"�

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

β�

βE�βV�

Caetano et al. ’07
 Torresani et al. ’08

Leordeanu et al. ’12
Pachauri et al. ’12�

�

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

l Comparison
l  w/o learning: uniform weights without learning
l  SW-SSVM: shared weights, learned in SSVM
l  SW-SPEC: shared weights, learned by

Experiments: Object Classes	

Caetano et al., 2007

Leordeanu et al., 2012	

What to Learn? : Previous Approaches
!  Shared weights on nodes & on edges

!  All nodes share the same weight βV
!  All edges share the same weight βE

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

βV"� βE"�

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

β�

βE�βV�

Caetano et al. ’07
 Torresani et al. ’08

Leordeanu et al. ’12
Pachauri et al. ’12�

�

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

l Comparison
l  w/o learning: uniform weights without learning
l  SW-SSVM: shared weights, learned in SSVM
l  SW-SPEC: shared weights, learned by
l  DW-SSVM: individual weights, learned in SSVM

Experiments: Object Classes	

Caetano et al., 2007

Leordeanu et al., 2012	

What to Learn? : Generalization
!  Discriminative weights

!  Each node and edge has its own weight
!  This generalizes the previous learning approaches

1� 2�
3�

4� 5� 6�

7�
8�

β1� β2�
β3�

β4� β5�
β6�

β7�
β8�

β12�
β13� β23�
β35�

β45� β56�
β57�

β78�
β58�

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

βi"� βij"�

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

β�

l Comparison
l  w/o learning: uniform weights without learning
l  SW-SSVM: shared weights, learned in SSVM
l  SW-SPEC: shared weights, learned by
l  DW-SSVM: individual weights, learned in SSVM
l  HARG-SSVM: the proposed method

Experiments: Object Classes	

Caetano et al., 2007

Leordeanu et al., 2012	

What to Learn? : Graph Model
!  Model and weights

!  Goal: learn model graph G* and weights β
!  How to parameterize G* and β ?

1� 2�
3�

4� 5� 6�

7�
8�

β1� β2�
β3�

β4� β5�
β6�

β7�
β8�

β12�
β13� β23�
β35�

β45� β56�
β57�

β78�
β58�

βi"� βij"�

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (2),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

�(G,G0
,y) (3)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (4)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G0

,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [5] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [21] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are

β�

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [?, ?]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [?, ?]. In the context of certain graph matching
applications, an iterative method that alternates between es-
timating parameters and punning some of the nodes and
edges has been proposed [?, ?]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation
The objective of graph matching is to find correspon-

dences between two attributed graphs G = (V, E ,A) and
G0

=(V 0
, E 0

,A0
), where V represents a set of nodes, E a set

of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⇢ V ⇥V 0, represented by a binary
assignment matrix Y 2 {0, 1}n⇥n

0
, where n and n

0 denote
the number of nodes in G and G0, respectively. If v

i

2 V
matches v0

a

2V 0, then Y

i,a

=1, and Y

i,a

=0 otherwise. We
denote by y 2 {0, 1}nn0

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y

⇤ that maxi-
mizes a score function S(G,G0

,y) as follows:

y

⇤
= argmax

y
S(G,G0

,y), (1a)

s.t.

⇢
y 2 {0, 1}nn0

,

P
n

i=1 yia

 1,

P
n

0

a=1 yia

 1,

(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [?, ?, ?, ?].

The score function S(G,G0
,y) measures the similarity

of graph attributes, and is typically decomposed into a first-
order similarity function s

V

(a

i

,a

0
a

) for a node pair v

i

in
V and v

0
a

in V 0, and a second-order similarity function
s

E

(a

ij

,a

0
ab

) for an edge pair e
ij

in E and e

0
ab

in E 0. Simi-
larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
A

ia;jb = s

E

(a

ij

,a

0
ab

) contains the edge similarity of two
correspondences (v

i

, v

0
a

) and (v

j

, v

0
b

), and a diagonal term
A

ia;ia= s

V

(a

i

,a

0
a

) represents the node similarity of a cor-
respondence (v

i

, v

0
a

). Thus, the score function of graph

matching is defined as:

S(G,G0
,y) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment. ===

S(G,G0
,y,) =

X

yia=1

s

V

(a

i

,a

0
a

) +

X

yia=1
yjb=1

s

E

(a

ij

,a

0
ab

)

= y

T

Ay. (3)

S(G⇤
,G,y;�) =

X

yia=1

�

i

s

V

(a

⇤
i

,a

a

) +

X

yia=1
yjb=1

�

ij

s

E

(a

⇤
ij

,a

ab

)

=

X

yia=1

�

i

(a

⇤
i

· a
a

) +

X

yia=1
yjb=1

�

ij

(a

⇤
ij

· a
ab

)

=

X

yia=1

(�

i

a

⇤
i

) · a
a

+

X

yia=1
yjb=1

(�

ij

a

⇤
ij

) · a
ab

= (� �⇥(G⇤
)) · (G,y) (4)

= w · (G,y), (5)

==== The formulation in Eq. (1) is referred to as an
integer quadratic programming. More precisely, it is the
quadratic assignment problem, which is known to be NP-
hard. Due to its generality and flexibility, this formulation
has been favored in recent graph matching research. Many
efficient approximate algorithms have been proposed for the
formulation [?, ?, ?, ?, ?] and its extensions [?, ?].

2.2. Learning parameters
In the context of scoring functions defined in Eq. (3),

an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (3)
as follows. Let ⇡(i) = a denote an assignment of node
v

i

in G to node v

0
a

in G0, i.e. y
ia

= 1. A joint feature
map �(G,G0

,y) is defined by aligning the relevant simi-
larity values of Eq. (3) into a vectorial form as:

�(G,G0
,y) (6)

= [· · · ; s
V

(a

i

,a

0
⇡(i)); · · · ; sE(aij ,a0⇡(i)⇡(j)); · · ·].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G0
,y;�) = � · �(G,G0

,y), (7)

where � is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. � = 1, it reduces to the conventional

graph matching score function of Eq. (3): S(G,G0
,y) =

S(G,G0
,y;1). We refer to it as the discriminative weight

formulation for graph matching. Note that the similarity
functions s

V

and s

E

can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict �, and assign the same vector for all s

V

(a

i

,a

0
a

) and
s

E

(a

ij

,a

0
ab

). Caetano et al. [?] use a 60-dimensional sim-
ilarity function s

V

for appearance similarity and a simple
binary similarity s

E

for edges. Leordeanu et al. [?] do not
use s

V

, and instead employ a multi-dimensional s
E

for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [?] can be viewed as adopting 2-dimensional
s

V

and s

E

functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are
different, all of them are essentially aimed at learning com-
mon weights for all the edge and node similarity functions.
The discriminative weight formulation is more general in
the sense that it can assign different parameters for individ-
ual nodes and edges. We will highlight this advantage with
appropriate evidence in the experimental section. How-
ever, like previous approaches, it does not learn a graph
model underlying the feature map �, and requires a ref-
erence graph G0 at query time, whose attributes cannot be
modified in the learning phase. We overcome this draw-
back by proposing an optimization framework to learn the
reference graph.

3. Graph learning
To address the problem of learning graphs, we start with

the discriminative weight formulation of Eq. (7). Instead
of a reference graph used in the previous section, we con-
sider a class-specific model graph G⇤. Our aim is to infer
this graph, such that it produces the best matches with other
instances of the class. Let ˆy denote the optimal matching
between the model graph G⇤ and an input graph G, given
by:

ˆ

y(G;G⇤
,�) = argmax

y2Y(G)
S(G⇤

,G,y;�), (8)

where � is a weight vector, Y(G) defines the set of pos-
sible assignment vectors for the input graph G. Inspired
by the max-margin framework [?], we learn the model
graph G⇤ and its weights � from labeled examples D =

(hG1,y1i, . . . , hGn

,y

n

i), where y

i

2 Y(G
i

), by minimiz-
ing the following objective function:

L

D

(G⇤
,�) = r(G⇤

,�) +

C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;G⇤
,�)), (9)

In this objective function r is a regularization function, �
a loss function, and y

i

denotes the ground truth assignment

vector. The parameter C controls the relative importance of
the loss term.

A critical question to address here is how to parametrize
G⇤ and � such that the optimization of Eq. (9) is feasible.
We propose to parameterize both G⇤ and � in a vectorial
form, which then enables us to optimize the objective func-
tion in Eq. (9) efficiently, as shown below. We first separate
the graph model G⇤ from the joint feature map �(G⇤

,G,y),
so as to parameterize it separately. We assume that the sim-
ilarity functions s

V

and s

E

are dot products of two attribute
vectors:
s

V

(a

⇤
i

,a

a

) = a

⇤
i

· a
a

, s

E

(a

⇤
ij

,a

ab

) = a

⇤
ij

· a
ab

, (10)

where a⇤
i

and a

⇤
ij

correspond to the node and edge attributes
of the model graph respectively. Further, we define the at-
tribute vector ⇥(G⇤

) and the feature map (G,y) as:
⇥(G⇤

) = [· · · ;a⇤
i

; · · · ;a⇤
ij

; · · ·], (11)
 (G,y) = [· · · ;a

⇡(i); · · · ;a⇡(i)⇡(j); · · ·], (12)

where ⇥(G⇤
) describes all the attributes of G⇤ and (G,y)

represents the corresponding attributes of G, according to
the assignment y. This enables the attributes of�(G⇤

,G,y)
to be factorized into⇥(G⇤

) and (G,y), and thus to rewrite
the score function as:

S(G⇤
,G,y;�) = � · �(G⇤

,G,y)
= � · (⇥(G⇤

)� (G,y))
= (� �⇥(G⇤

)) · (G,y), (13)

where � denotes the Hadamard (element-wise) prod-
uct. Note that both terms of the attributes ⇥(G⇤

) and
their weights � are now combined into a single vector
(� �⇥(G⇤

)). Thus, when the similarity functions are dot
products, both the graph model attributes and their weights
can be jointly expressed by a single vector. By substituting
w = � �⇥(G⇤

) into Eq. (8), we obtain a linear form for
the optimal assignment:

ˆ

y(G;w) = argmax

y2Y(G)
w · (G,y). (14)

In turn, this transforms the learning objective in Eq. (9) into
a standard formulation of the structured support vector ma-
chine (SSVM):

L

D

(w) =

1

2

||w||2 + C

n

nX

i=1

�(y

i

,

ˆ

y(G
i

;w)), (15)

where all the graph model attributes and their weights, to be
learned, are represented by w. This function can be min-
imized by various optimization approaches to estimate the
parameters w [?, ?, ?]. Unlike other learning methods for
graph matching [?, ?, ?, ?], this formulation allows us to
combine graph learning, and learning a matching function
into a coherent structured output framework. A related ap-
proach has been proposed to learn homography estimation
in keypoint matching and tracking [?].

Experiments: Object Classes	

 	

l Quantitative comparison
l  The average performance on 20 random splits

l  w/o learning: uniform weights without learning
l  SW-SSVM: shared weights, learned in SSVM
l  SW-SPEC: shared weights, learned by
l  DW-SSVM: individual weights learned in SSVM
l  HARG-SSVM: the proposed method

Table 3: Matching performance on 5 object classes from Caltech-256 and PASCAL VOC2007 datasets. For each class, the
average performance on 20 random splits of the data is reported. Our method (HARG-SSVM) shows the best matching
results on all the 5 classes. For more details, see text and our project website [1].

Face Motorbike Car Duck Wine bottle
Method Acc. (%) error Acc. (%) error Acc. (%) error Acc. (%) error Acc. (%) error

w/o learning 66.6 0.205 44.1 0.226 34.1 0.301 39.0 0.228 70.5 0.129
SW-SSVM 75.3 0.142 48.6 0.211 40.3 0.259 42.2 0.216 73.3 0.122
SW-SPEC 78.7 0.133 47.2 0.212 42.1 0.253 44.2 0.211 72.4 0.124
DW-SSVM 84.3 0.102 54.2 0.189 50.8 0.244 52.1 0.186 75.5 0.120

HARG-SSVM 93.9 0.070 71.4 0.134 71.9 0.158 72.2 0.126 86.1 0.090

Figure 4: Learned graph models and their matching results. For each class, the learned graph model, its learned appearance in
node attributes, and matching results are shown. In the graph model, bigger circles represent stronger nodes, and darker lines
denote stronger edges. In the second and the fifth columns, to better visualize node attributes, we show the edge responses
based on the learned SIFT attributes. For each model, some matching examples with high scores are shown. The results show
that the learned graph model enables robust matching in spite of deformation and appearance changes. (Best viewed in pdf.)

[5] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola.
Learning graph matching. TPAMI, 2009.

[6] M. Cho, J. Lee, and K. M. Lee. Reweighted random walks for graph
matching. In ECCV, 2010.

[7] M. Cho and K. M. Lee. Progressive graph matching: Making a move
of graphs via probabilistic voting. In CVPR, 2012.

[8] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph
matching in pattern recognition. IJPRAI, 2004.

[9] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. In NIPS,
2007.

[10] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005.

[11] J. Davis and P. Domingos. Bottom-up learning of Markov network
structure. In ICML, 2010.

[12] O. Duchenne, F. Bach, I. Kweon, and J. Ponce. A tensor-based algo-
rithm for high-order graph matching. In CVPR, 2009.

[13] O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for
object categorization. In ICCV, 2011.

[14] S. Gold and A. Rangarajan. A graduated assignment algorithm for
graph matching. Trans. PAMI, 1996.

[15] S. Hare, A. Saffari, and P. H. S. Torr. Efficient Online Structured Out-
put Learning for Keypoint-Based Object Tracking. In CVPR, 2012.

[16] T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training of struc-
tural svms. Machine Learning, 2009.

[17] S.-I. Lee, V. Ganapahthi, and D. Koller. Efficient Structure Learning
of Markov Networks using L1-Regularization. In NIPS, 2006.

[18] M. Leordeanu and M. Hebert. A spectral technique for correspon-
dence problems using pairwise constraints. In ICCV, 2005.

[19] M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local appear-
ance: Category recognition from pairwise interactions of simple fea-
tures. In CVPR, 2007.

[20] M. Leordeanu, M. Hebert, and R. Sukthankar. An integer projected
fixed point method for graph matching and map inference. In NIPS,
2009.

[21] M. Leordeanu, R. Sukthankar, and M. Hebert. Unsupervised learning
for graph matching. IJCV, 2012.

[22] D. G. Lowe. Distinctive image features from scale-invariant key-
points. IJCV, 2004.

[23] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline
stereo from maximally stable extremal regions. In BMVC, 2002.

[24] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest
point detectors. IJCV, 2004.

[25] S. Nowozin, P. Gehler, and C. Lampert. On parameter learning in
CRF-based approaches to object class image segmentation. ECCV,
2010.

[26] D. Pachauri, M. Collins, V. SIngh, R. Kondor, and V. S. Deepti
Pachauri, Maxwell Collins, Risi Kondor. Incorporating domain
knowledge in matching problems via harmonic analysis. In ICML,
2012.

[27] A. Sharma, R. Horaud, J. Cech, , and E. Boyer. Topologically-robust
3d shape matching based on diffusion geometry and seed growing.
In CVPR, 2011.

[28] M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph
cuts. In ECCV, 2008.

[29] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks.
In NIPS, 2003.

[30] L. Torresani, V. Kolmogorov, and C. Rother. Feature correspondence
via graph matching: Models and global optimization. In ECCV,
2008.

[31] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large
margin methods for structured and interdependent output variables.
JMLR, 2005.

[32] S. Umeyama. An eigen decomposition approach to weighted graph
matching problems. Trans. PAMI, 1988.

[33] B. Yao and L. Fei-Fei. Action recognition with exemplar based 2.5d
graph matching. In ECCV, 2012.

Leordeanu et al., 2012	

Caetano et al., 2007

l  Effective learning of class-specific models
l  Useful for a variety of practical matching problems

l  Annotated datasets & code soon available:
http://www.di.ens.fr/willow/research/graphlearning/

Summary	

Table 3: Matching performance on 5 object classes from Caltech-256 and PASCAL VOC2007 datasets. For each class, the
average performance on 20 random splits of the data is reported. Our method (HARG-SSVM) shows the best matching
results on all the 5 classes. For more details, see text and our project website [1].

Face Motorbike Car Duck Wine bottle
Method Acc. (%) error Acc. (%) error Acc. (%) error Acc. (%) error Acc. (%) error

w/o learning 66.6 0.205 44.1 0.226 34.1 0.301 39.0 0.228 70.5 0.129
SW-SSVM 75.3 0.142 48.6 0.211 40.3 0.259 42.2 0.216 73.3 0.122
SW-SPEC 78.7 0.133 47.2 0.212 42.1 0.253 44.2 0.211 72.4 0.124
DW-SSVM 84.3 0.102 54.2 0.189 50.8 0.244 52.1 0.186 75.5 0.120

HARG-SSVM 93.9 0.070 71.4 0.134 71.9 0.158 72.2 0.126 86.1 0.090

Figure 4: Learned graph models and their matching results. For each class, the learned graph model, its learned appearance in
node attributes, and matching results are shown. In the graph model, bigger circles represent stronger nodes, and darker lines
denote stronger edges. In the second and the fifth columns, to better visualize node attributes, we show the edge responses
based on the learned SIFT attributes. For each model, some matching examples with high scores are shown. The results show
that the learned graph model enables robust matching in spite of deformation and appearance changes. (Best viewed in pdf.)

[5] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola.
Learning graph matching. TPAMI, 2009.

[6] M. Cho, J. Lee, and K. M. Lee. Reweighted random walks for graph
matching. In ECCV, 2010.

[7] M. Cho and K. M. Lee. Progressive graph matching: Making a move
of graphs via probabilistic voting. In CVPR, 2012.

[8] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph
matching in pattern recognition. IJPRAI, 2004.

[9] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. In NIPS,
2007.

[10] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005.

[11] J. Davis and P. Domingos. Bottom-up learning of Markov network
structure. In ICML, 2010.

[12] O. Duchenne, F. Bach, I. Kweon, and J. Ponce. A tensor-based algo-
rithm for high-order graph matching. In CVPR, 2009.

[13] O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for
object categorization. In ICCV, 2011.

[14] S. Gold and A. Rangarajan. A graduated assignment algorithm for
graph matching. Trans. PAMI, 1996.

[15] S. Hare, A. Saffari, and P. H. S. Torr. Efficient Online Structured Out-
put Learning for Keypoint-Based Object Tracking. In CVPR, 2012.

[16] T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training of struc-
tural svms. Machine Learning, 2009.

[17] S.-I. Lee, V. Ganapahthi, and D. Koller. Efficient Structure Learning
of Markov Networks using L1-Regularization. In NIPS, 2006.

[18] M. Leordeanu and M. Hebert. A spectral technique for correspon-
dence problems using pairwise constraints. In ICCV, 2005.

[19] M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local appear-
ance: Category recognition from pairwise interactions of simple fea-
tures. In CVPR, 2007.

[20] M. Leordeanu, M. Hebert, and R. Sukthankar. An integer projected
fixed point method for graph matching and map inference. In NIPS,
2009.

[21] M. Leordeanu, R. Sukthankar, and M. Hebert. Unsupervised learning
for graph matching. IJCV, 2012.

[22] D. G. Lowe. Distinctive image features from scale-invariant key-
points. IJCV, 2004.

[23] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline
stereo from maximally stable extremal regions. In BMVC, 2002.

[24] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest
point detectors. IJCV, 2004.

[25] S. Nowozin, P. Gehler, and C. Lampert. On parameter learning in
CRF-based approaches to object class image segmentation. ECCV,
2010.

[26] D. Pachauri, M. Collins, V. SIngh, R. Kondor, and V. S. Deepti
Pachauri, Maxwell Collins, Risi Kondor. Incorporating domain
knowledge in matching problems via harmonic analysis. In ICML,
2012.

[27] A. Sharma, R. Horaud, J. Cech, , and E. Boyer. Topologically-robust
3d shape matching based on diffusion geometry and seed growing.
In CVPR, 2011.

[28] M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph
cuts. In ECCV, 2008.

[29] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks.
In NIPS, 2003.

[30] L. Torresani, V. Kolmogorov, and C. Rother. Feature correspondence
via graph matching: Models and global optimization. In ECCV,
2008.

[31] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large
margin methods for structured and interdependent output variables.
JMLR, 2005.

[32] S. Umeyama. An eigen decomposition approach to weighted graph
matching problems. Trans. PAMI, 1988.

[33] B. Yao and L. Fei-Fei. Action recognition with exemplar based 2.5d
graph matching. In ECCV, 2012.

v This research was supported in part by
the ERC advanced grant VideoWorld,
Institut Universitaire de France, and the
Quaero programme funded by the OSEO.

