

Goal

- Fast action recognition.
- State-of-the-art performance.

Motivation

- Huge amounts of video:
 - Decades of TV channels BBC
 - 6000 years of new video each year
 - 5M years of video transfer per month in 2018
- Large-scale applications:
 - You Tube
 - Video indexing Surveillance
 - Augmented reality
- Current state-of-the-art methods for action recognition
- typically process ≈1 frame per second

Contributions

>100x speed-up of video feature extraction.

Dense trajectories [1]

- 4x real-time action recognition (CPU).
- Minor decrease in recognition accuracy.
- Publicly available implementation

http://www.di.ens.fr/willow/research/fastvideofeat

Our method

Related work

- [1] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 2013.
- [2] F. Shi, E. Petriu, and R. Laganiere. Sampling strategies for real-time action recognition. In CVPR, pages 2595–2602, 2013.
- [3] F. Perronnin and J. Sanchez. High-dimensional signature compression for large-scale image classification. In CVPR, 2012.
- [4] M. Muja and D. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In VISSAPP, pp. 331–340, 2009.

EG

Efficient feature extraction, encoding and classification for action recognition

Vadim Kantorov, Ivan Laptev INRIA – WILLOW / École Normale Supérieure, Paris, France

MPEG flow

• Estimated **motion vectors** are part of the most compressed video representations: MPEG, H-264, VP9. • MPEG motion vectors are sparse, typically defined on a 16x16 pixel grid.

• The quality of MPEG flow is comparable to motion estimation by standard Optical Flow algorithms.

Motion in the synthetic MPI Sintel Flow dataset:

Quantized ground truth flow

Quant. LK flow, err=0.334

Quantized MPEG flow, err=0.283

Quant. Farnebäck flow, err=0.286

Motion in movie frames:

Approach

- Use sparse MPEG flow vectors to compute **HOF**: Histograms of flow **MBH**: Motion boundary histograms
- Grid cells of two scales: 16x16 pixels, 5 frames 24x24 pixels, 5 frames

Descriptor aggregation

0.59 0.58 0.57 E 0.56 0.55 0.54

Local motion descriptor

O Interpolated flow vectors $(\tilde{v}_x, \tilde{v}_y)$

grid cell

 Dense descriptor sampling with 16 pixels spatial stride 5 frames temporal stride

• Feature encoding and classification schemes: **Histogram** encoding + χ^2 kernel SVM VLAD + linear SVM **Fisher Vector** [3] + linear SVM

 Descriptor assignment using approximate Nearest Neighbor search (FLANN) [4].

 Approximate FV aggregation with updates of five nearest centroids only.

Descriptor evaluation

Hollywood2
Histogram encoding

HOF

MBHx

MBHy

HOF+MBHx+MBHy HOF+MBHx+MBHy+

HOF+MBHx+MBHy+H HOF+MBHx+MBHy+F HOF+MBHx+MBHy+H

HOF+MBHX+MBHY+

Trajectory information has limited influence on results

Parameter sensitivity

Sampling stride	mAP	fps
16	58.3%	35.2
8	58.6%	24.1
4	59.2%	13.7

➡ OF stride marginally affects accuracy

Comparison to the state of the art

Hollywood 2

					UCF 50	-5			
		Feat.	Quant.	Total					
	Acc.	(fps)	(fps)	(fps)					
MF ALL FV(32)	46.7%	455.6	129.7	101.0			Feat.	Quant.	Total
MF MBH FV(32)	45.4%	683.3	268.0	192.5		Acc.	(fps)	(fps)	(fps)
MF ALL VLAD(32)	46.3%	455.6	455.6	227.8	MF FLANN(4-32)	81.6%		52.4	48.1
MBH [2]	41.1%	33.9	267.1	30.8	MF VLAD(4)	80.6%	591.8	671.4	314.6
HOG3D [2]	33.3%	49.6	290.8	42.2	MF FV(32)	82.2%		171.3	132.8
DT [1]	48.3%	3.1			DT[1]	85.6%	2.8	5.1	1.8
Code available http://www.di.ens.fr/willow/research/fastvideofeat									

École Normale Supérieure

Results

	Classifi	cation	Speed		
	(mA	AP)	(fps)		
	MF (our)	DT [1]	MF (our)	DT [1]	
	47.2%	52.9%	346.8		
	49.0%	52.0%	330.3		
	50.4%	56.1%	330.3		
	53.9%	58.9%	218.7		
HOG	56.2%	60.0%	168.4	1.2	

	mAP	
HOG (V0)	58.0%	-1
HOG (V*)	58.9%	-1
HOG [1]	60.0%	
HOG+TRAJ [1]	60.3%	

	xvid	x264
5000 kbit/s	58.9%	57.5%
1000 kbit/s	58.2%	57.4%
500 kbit/s	57.7%	57.1%
250 kbit/s	57.7%	57.0%

Stable recognition across codecs and bit-rates

Feat.	Quant.	Total			
(fps)	(fps)	(fps)			
	52.4	40.0			
168.4	167.5	84.0			
	40.9	32.9			
1.2	5.1	1.0			
1.4	5.1	1.0			

