

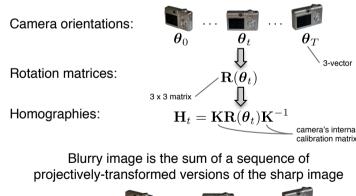
Non-uniform Deblurring for Shaken Images Jean Ponce²

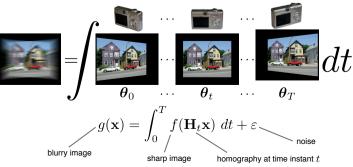
Josef Sivic¹ Andrew Zisserman^{2,3} Oliver Whyte¹ ²Ecole Normale Supérieure ³University of Oxford ¹INRIA

Goal

To model and deblur camera shake images with non-uniform blur

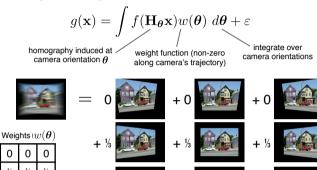
Approximately uniform blur

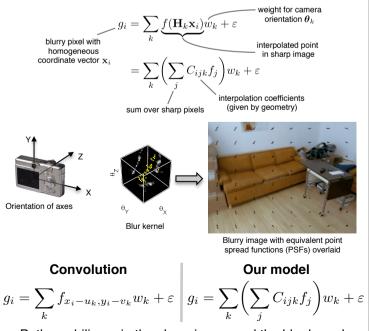

Non-uniform blur


0 0 "Blur kernel

Both blurs are possible under camera shake

Geometric model

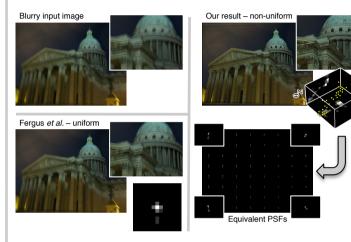

We model the blur as being caused by the 3D rotation of the camera during exposure


Time-agnostic model

Replace the temporal integral with a weighted integral over a set of camera orientations

Discrete model

Replace integral with a sum over a discrete set of camera orientations θ_k , $k \in \{1, \ldots, K\}$

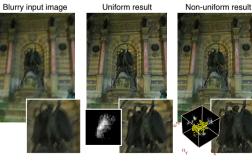


Both are bilinear in the sharp image and the blur kernel

Application I: Blind deblurring

[Fergus et al. 2006, Miskin & MacKay 2000]

- Kernel estimation: Variational approximation of posterior
- · Deblurring: Richardson-Lucy algorithm



Application II: Noisy/blurry pairs

[Yuan et al. 2007]

- · Kernel estimation: Least squares, using noisy image as estimate of sharp image
- Deblurring: Augmented Richardson-Lucy algorithm, using noisy image to suppress "ringing" artifacts

Conclusion

- · Geometrically-derived model of camera shake blur
- · Compact, global, representation of blur
- · Modification of two existing deblurring algorithms to use our model, allowing them to handle non-uniform blur