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Goal Model
e Instance-level and category-level image alignment e Three stage siamese CNN architecture mimicking the classical matching pipeline

1. Feature extraction CNN: pre-trained VGG-16 model + per-column L2-normalization
2. Matching: correlation layer + per-column L2-normalization
3. Regression CNIN: small CNN, trained from scratch

» Qutput: smooth dense correspondence field
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e CNN architecture suitable for category-level image alignment d-dimensional features mnsfg.”t{ The first layer convolutional filters can \
specialize to detect local neighbourhood consensus
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 The model is trainable from synthetically warped image pairs
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Matching layer enables generalization to real image pairs

Overview

o Coarse-to-fine matching architecture
At training time:

e The same architecture can be applied with increasing geometric model complexity
1. Coarse alignment using an affine transformation
2. Refined alignment using a thin-plate spline transformation

e Inputs: - Synthetically warped image pair
- ground truth transf. 0o

e OQutput: Estimated parametric transformation? |
e The final transformation is the composition of both stages
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Insight: The loss computes
a pixel distance and can be used
with any type of differentiable
geometric transformation

Training from synthetic imagery

At evaluation time: e Training pairs: generated by a real and a synthetically warped image

e Input: Real image pair

e Output: Estimated parametric transformation 0
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e Generalization: We show that the method is relatively unaffected by the nature of the training
Images

Convolutional neural network architecture for geometric matching
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Results on the Proposal Flow dataset

e Evaluated using annotated keypoints Methods PCK (%)
DeepFlow [1] 20
GMK [2] 27
e Metric: Percentage of correct SIFT Flow [3] 38
keypoints (PCK) DSP {4] 29
Proposal Flow [5] 56
RANSAC with our features (affine) 47
Ours (affine) 49
Ours (affine + thin plate spline) 56
Ours (affine ensemble + thin plate spline) 57

Qualitative results:
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Results on the Caltech-101 dataset
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e Evaluated using annotated object ethods LT-ACC loU LOC-ERR
- DeepFlow [1] 0.74 0.40 0.34
segmentation masks MK [2 0 04 0
e Metrics: Label transfer accuracy SIFT Flow [3] 075 048 032
. . DSP [4] 0.77 047 035
(LT—ACC?, Intersection over union (loU), roposal Flow [5 078 050 0.8
Localization error (LOC-ERR) Ours (affine) 079 051  0.25

Ours (affine + thin-plate spline) 0.82 0.56

0.25

Qualitative comparison to other methods:

Image pair DeepFlow [1] GMK [2] SIFT Flow [3] DSP [4]  Proposal Flow [5] Our method
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