
At training time:
∙ Inputs: - Synthetically warped image pair
           - ground truth transf.
∙ Output: Estimated parametric transformation

Convolutional neural network architecture for geometric matching
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∙ Instance-level and category-level image alignment

       ‣ Output: smooth dense correspondence field

Results on the Proposal Flow dataset
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Results on the Caltech-101 dataset

DeepFlow [1]
GMK [2]
SIFT Flow [3]
DSP [4]
Proposal Flow [5]
Ours (affine)
Ours (affine + thin-plate spline)
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0.78      0.50      0.25
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0.82     0.56      0.25
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∙ Substantial appearance differences
∙ Presence of background clutter
∙ Lack of large annotated real image pair dataset

∙ CNN architecture suitable for category-level image alignment
∙ The model is trainable from synthetically warped image pairs
∙ Matching layer enables generalization to real image pairs

At evaluation time:
∙ Input: Real image pair

∙ Output: Estimated parametric transformation

∙ Three stage siamese CNN architecture mimicking the classical matching pipeline
       1. Feature extraction CNN: pre-trained VGG-16 model + per-column L2-normalization
       2. Matching: correlation layer + per-column L2-normalization
       3. Regression CNN: small CNN, trained from scratch

1. Feature extraction

conv1 BN1 ReLU1 conv2 BN2 ReLU2 FC

7×7×225×128 5×5×128×64 5×5×64×P

3. Regression

correlation
layer

L2
norm.

2. Matching

Output: w×h dense 
d-dimensional features

Output: L2 normalized
            pairwise correlation tensor
            (pairwise matching scores)

 Output: Estimated parameters of
             geometric transformation

Coarse-to-fine matching architecture
∙ The same architecture can be applied with increasing geometric model complexity 
       1. Coarse alignment using an affine transformation
       2. Refined alignment using a thin-plate spline transformation
∙ The final transformation is the composition of both stages

*Now at DeepMind

Training from synthetic imagery
∙ Training pairs: generated by a real and a synthetically warped image
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Insight:
L2 normalization
penalizes ambiguous
matches

Insight: The first layer convolutional filters can 
specialize to detect local neighbourhood consensus

Averaged peaks from conv1 filters

∙ Evaluated using annotated keypoints

∙ Metric: Percentage of correct
   keypoints (PCK)

Qualitative results:
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∙ Evaluated using annotated object 
   segmentation masks
∙ Metrics: Label transfer accuracy 
   (LT-ACC), Intersection over union (IoU),
   Localization error (LOC-ERR)

Qualitative comparison to other methods:
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Insight:  The loss computes 
a pixel distance and can be used
with any type of differentiable
geometric transformation
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