
BodyNet: Volumetric Inference of 3D Human Body Shapes
Gül Varol1, Duygu Ceylan2, Bryan Russell2, Jimei Yang2, Ersin Yumer3, Ivan Laptev1 and Cordelia Schmid1

1Inria 2Adobe Research 3Argo AI

INTRODUCTION

I Goal & Contributions
. Predicting 3D human body pose and shape

given a single RGB image as input.
. Demonstrating advantages of auxiliary

body-related tasks in an end-to-end multi-task
setting.

I Motivation
. Volumetric representation of human bodies in the

context of neural networks is not studied.
. Volumetric representation is flexible, e.g. can

capture clothing.
input output 

voxels
output 
parts

BODYNET APPROACH

I The architecture benefits from the multi-task training of:
. a volumetric 3D loss,
. a multi-view re-projection loss,
. intermediate supervision of 2D pose, 2D part segmentation, and 3D pose.
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Re-projection loss

end-to-end optimization

Re-projection loss

I We gradually increase the difficulty of the task to go from 2D to 3D:
RGB 2D pose&segm 3D pose voxels SMPL

EXTENDING TO 3D BODY PART SEGMENTATION

I Last layer weights are duplicated as
many times as the number of parts to
initialize training for part voxels.

ARCHITECTURE STUDY

I Effect of additional inputs
. 3D shape estimation on SURREAL

. 3D pose estimation (mm)
Input SURREAL Human3.6M

RGB 49.1 51.6
2D pose 55.9 57.0
Segm 48.1 58.9
2D pose + Segm 47.7 56.3
RGB + 2D pose + Segm 46.1 49.0
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RESULTS: SURREAL dataset [Varol et al. CVPR 2017]

I Effect of multi-view re-projection loss
I Effect of end-to-end training
I Comparison with alternative methods

    input image                 original view                                  other view

Lv Lv Lv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

p

    input image                     original view                           other view

Lv Lv Lv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

pLv + LFV
p + LSV

p

        Input             Shape      SMPLify++   BodyNet   Ground
                          regression                                             truth

Input
Shape regression

Fittingto inputs

BodyNet
Ground truth

Input
Shape regression

Fittingto inputs

BodyNet
Ground truth

Input BodyNet Ground 
truth

Input
Shape 

parameter 
regression

SMPLify++ BodyNet Ground 
truth

Shape 
parameter 
regression

SMPLify++

RESULTS: Unite the People dataset [Lassner et al. CVPR 2017]

I Effect of the re-projection type
2D metrics 3D metrics (mm)

Acc. (%) IOU F1 Landmarks Surface

T
1

3D ground truth (Lassner et al.) 92.17 - 0.88 0 0
Decision forests (Lassner et al.) 86.60 - 0.80 - -
HMR (Kanazawa et al.) 91.30 - 0.86 - -
SMPLify, UP-P91 (Lassner et al.) 90.99 - 0.86 - -
SMPLify on DeepCut (Bogo et al.) 91.89 - 0.88 - -
BodyNet (SMPL projections) 92.75 0.73 0.84 83.3 102.5
BodyNet (manual segmentations) 94.67 0.80 0.89

T
2

3D ground truth (Lassner et al.) 95.00 0.82 - 0 0
Indirect learning (Tan et al.) 95.00 0.83 - 190.0 -
Direct learning (Tan et al.) 91.00 0.71 - 105.0 -
BodyNet (SMPL projections) 92.97 0.75 0.86 69.6 80.1
BodyNet (manual segmentations) 95.11 0.82 0.90
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INTERMEDIATE TASKS

I All tasks improve with end-to-end training.

Segmentation 2D pose 3D pose
mean parts IOU (%) PCKh@0.5 mean joint distance (mm)

Independent single-task 59.2 82.7 46.1
Joint multi-task 69.2 90.8 40.8

I Weight balancing is important.
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CONCLUSIONS

I Volumetric representation is flexible and effective.
I Re-projection loss is critical to obtain confident body surface.
I Multi-task training of relevant tasks helps.
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Code is
available!
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