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Figure 1: Graph learning for matching. Our approach learns a graph model from labeled data to provide the best match to
instances of a target class. It shows significant improvement over previous approaches for matching. (Best viewed in color.)

Abstract

Many tasks in computer vision are formulated as graph
matching problems. Despite the NP-hard nature of the
problem, fast and accurate approximations have led to sig-
nificant progress in a wide range of applications. Learning
graph models from observed data, however, still remains a
challenging issue. This paper presents an effective scheme
to parameterize a graph model, and learn its structural at-
tributes for visual object matching. For this, we propose a
graph representation with histogram-based attributes, and
optimize them to increase the matching accuracy. Exper-
imental evaluations on synthetic and real image datasets
demonstrate the effectiveness of our approach, and show
significant improvement in matching accuracy over graphs
with pre-defined structures.

1. Introduction
Graphs are widely used as a general and powerful repre-

sentation in a variety of scientific fields, including computer
vision, and many problems can be formulated as attributed
graph matching. Since graph matching is mathematically
expressed as a quadratic assignment problem, which is NP-
hard, most research has long focused on developing accu-
rate and efficient approximate algorithms [8, 14, 32]. Much
progress has been achieved recently in various applica-
tions of graph matching, such as shape analysis [27], im-
age matching [12, 30], action recognition [33], and object
categorization [3, 13].
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For many tasks, however, a natural question arises: How
can we obtain a good graph model for a target object to
match? Recent studies have revealed that simple graphs
with hand-crafted structures and similarity functions, typ-
ically used in graph matching, are insufficient to capture
the inherent structure underlying the problem at hand. As
a consequence, a better optimization of the graph matching
objective does not guarantee better correspondence accu-
racy [5, 6]. Previous learning methods for graph matching
tackle this issue by learning a set of parameters in the ob-
jective function [5,21,26,30]. Although it is useful to learn
such a matching function for two graphs of a certain class,
a more apt goal would be to learn a graph model to match,
which provides an optimal matching to all instances of the
class. Such a learned graph would better model the inherent
structure in the target class, thus resulting in better perfor-
mance for matching.

In this paper, we propose to learn a graph model based
on a particular, yet rather general, graph representation with
histogram-based attributes for nodes and edges. To this
end, we present a generalized formulation for graph match-
ing, which is an extension of previous learning approaches
(Sec. 2). We show that all attributes of the graph can be
learned in a max-margin framework [31] (Sec. 3). The pro-
posed method reconstructs a graph model inherent in a tar-
get class, and provides impressive matching performance,
as demonstrated in our experiments on synthetic and real
datasets (Sec. 4). Figure 1 illustrates the effectiveness of
the learning approach presented in the rest of this paper on
an example. Here, the learned graph model finds better cor-
respondences than a graph with a learned matching function
as well as a hand-crafted graph.



The problem of learning graphical models has been ad-
dressed in other contexts. Several methods learn the pa-
rameters in clique functions defined on Markov random
fields [25, 28]. Other works learn the connectivity structure
of the Markov networks by introducing sparsity on clique
functions [11, 17]. In the context of certain graph match-
ing applications, an iterative method that alternates between
estimating parameters and punning some of the nodes and
edges has been proposed [4,19]. Our approach differs from
these methods in the sense that it learns attributes for all
nodes and edges in a max-margin framework, not limited
to global parameters in clique functions or sparse selection
of clique functions. The learned attributes, combined with
weight parameters, turn out to be critical for matching.

2. Graph matching revisited
We begin by reviewing the standard graph matching for-

mulation and elaborate on methods to learn its parameters.
In this context, we generalize the standard formulation and
also highlight related work.

2.1. Problem formulation

The objective of graph matching is to find correspon-
dences between two attributed graphs G = (V, E ,A) and
G′=(V ′, E ′,A′), where V represents a set of nodes, E a set
of edges, and A a set of attributes of the nodes and edges.
A solution of graph matching is defined as a subset of pos-
sible correspondences Y ⊂ V ×V ′, represented by a binary
assignment matrix Y ∈ {0, 1}n×n

′
, where n and n′ denote

the number of nodes in G and G′, respectively. If vi ∈ V
matches v′a∈V ′, then Yi,a=1, and Yi,a=0 otherwise. We
denote by y ∈ {0, 1}nn′

, a column-wise vectorized replica
of Y. With this notation, graph matching problems can be
expressed as finding the assignment vector y∗ that maxi-
mizes a score function S(G,G′,y) as follows:

y∗ = arg max
y

S(G,G′,y), (1a)

s.t.

{
y ∈ {0, 1}nn′

,∑n
i=1 yia ≤ 1,

∑n′

a=1 yia ≤ 1,
(1b)

where Eq. (1b) induces the matching constraints, thus mak-
ing y an assignment vector [6, 9, 14, 18].

The score function S(G,G′,y) measures the similarity
of graph attributes, and is typically decomposed into a first-
order similarity function sV (ai,a

′
a) for a node pair vi in

V and v′a in V ′, and a second-order similarity function
sE(aij ,a

′
ab) for an edge pair eij in E and e′ab in E ′. Simi-

larity functions are usually represented by a symmetric sim-
ilarity (or affinity) matrix A, where a non-diagonal element
Aia;jb = sE(aij ,a

′
ab) contains the edge similarity of two

correspondences (vi, v
′
a) and (vj , v

′
b), and a diagonal term

Aia;ia= sV (ai,a
′
a) represents the node similarity of a cor-

respondence (vi, v
′
a). Thus, the score function of graph

matching is defined as:

S(G,G′,y) =
∑

yia=1

sV (ai,a
′
a) +

∑
yia=1
yjb=1

sE(aij ,a
′
ab)

= yTAy. (2)

In essence, the score accumulates all the similarity values
relevant to the assignment.

The formulation in Eq. (1) is referred to as an integer
quadratic programming. More precisely, it is the quadratic
assignment problem, which is known to be NP-hard. Due
to its generality and flexibility, this formulation has been
favored in recent graph matching research. Many efficient
approximate algorithms have been proposed for the formu-
lation [6, 9, 14, 20, 30] and its extensions [7, 12].

2.2. Learning parameters

In the context of scoring functions defined in Eq. (2),
an interesting question is what can be learned to improve
graph matching. To address this, we parameterize Eq. (2)
as follows. Let π(i) = a denote an assignment of node
vi in G to node v′a in G′, i.e. yia = 1. A joint feature
map Φ(G,G′,y) is defined by aligning the relevant simi-
larity values of Eq. (2) into a vectorial form as:

Φ(G,G′,y) (3)
= [· · · ; sV (ai,a

′
π(i)); · · · ; sE(aij ,a

′
π(i)π(j)); · · · ].

By introducing weights on all elements of this feature map,
we obtain a discriminative score function:

S(G,G′,y;β) = β · Φ(G,G′,y), (4)

where β is a weight vector encoding the importance of
node and edge similarity values. In the case of uni-
form weights, i.e. β = 1, it reduces to the conventional
graph matching score function of Eq. (2): S(G,G′,y) =
S(G,G′,y;1). We refer to it as the discriminative weight
formulation for graph matching. Note that the similarity
functions sV and sE can take not only scalar-valued, but
also vector-valued functions. Despite its apparent simplic-
ity, this formulation covers a wide range of parameter learn-
ing approaches proposed for graph matching. They are
equivalent to special cases of this formulation, which re-
strict β, and assign the same vector for all sV (ai,a

′
a) and

sE(aij ,a
′
ab). Caetano et al. [5] use a 60-dimensional sim-

ilarity function sV for appearance similarity and a simple
binary similarity sE for edges. Leordeanu et al. [21] do not
use sV , and instead employ a multi-dimensional sE for sim-
ilarity of appearance, angle, and distance. The work of Tor-
resani et al. [30] can be viewed as adopting 2-dimensional
sV and sE functions for measuring appearance similarity,
geometric compatibility, and occlusion likelihood. While
the optimization methods for learning these functions are



different, all of them are essentially aimed at learning com-
mon weights for all the edge and node similarity functions.
The discriminative weight formulation is more general in
the sense that it can assign different parameters for individ-
ual nodes and edges. We will highlight this advantage with
appropriate evidence in the experimental section. How-
ever, like previous approaches, it does not learn a graph
model underlying the feature map Φ, and requires a ref-
erence graph G′ at query time, whose attributes cannot be
modified in the learning phase. We overcome this draw-
back by proposing an optimization framework to learn the
reference graph.

3. Graph learning
To address the problem of learning graphs, we start with

the discriminative weight formulation of Eq. (4). Instead
of a reference graph used in the previous section, we con-
sider a class-specific model graph G∗. Our aim is to infer
this graph, such that it produces the best matches with other
instances of the class. Let ŷ denote the optimal matching
between the model graph G∗ and an input graph G, given
by:

ŷ(G;G∗, β) = arg max
y∈Y(G)

S(G∗,G,y;β), (5)

where β is a weight vector, Y(G) defines the set of pos-
sible assignment vectors for the input graph G. Inspired
by the max-margin framework [31], we learn the model
graph G∗ and its weights β from labeled examples D =
(〈G1,y1〉, . . . , 〈Gn,yn〉), where yi ∈ Y(Gi), by minimiz-
ing the following objective function:

LD(G∗, β) = r(G∗, β) +
C

n

n∑
i=1

∆(yi, ŷ(Gi;G∗, β)), (6)

In this objective function r is a regularization function, ∆
a loss function, and yi denotes the ground truth assignment
vector. The parameter C controls the relative importance of
the loss term.

A critical question to address here is how to parametrize
G∗ and β such that the optimization of Eq. (6) is feasible.
We propose to parameterize both G∗ and β in a vectorial
form, which then enables us to optimize the objective func-
tion in Eq. (6) efficiently, as shown below. We first separate
the graph model G∗ from the joint feature map Φ(G∗,G,y),
so as to parameterize it separately. We assume that the sim-
ilarity functions sV and sE are dot products of two attribute
vectors:
sV (a∗i ,aa) = a∗i · aa, sE(a∗ij ,aab) = a∗ij · aab, (7)

where a∗i and a∗ij correspond to the node and edge attributes
of the model graph respectively. Further, we define the at-
tribute vector Θ(G∗) and the feature map Ψ(G,y) as:

Θ(G∗) = [· · · ;a∗i ; · · · ;a∗ij ; · · · ], (8)
Ψ(G,y) = [· · · ;aπ(i); · · · ;aπ(i)π(j); · · · ], (9)

where Θ(G∗) describes all the attributes of G∗ and Ψ(G,y)
represents the corresponding attributes of G, according to
the assignment y. This enables the attributes of Φ(G∗,G,y)
to be factorized into Θ(G∗) and Ψ(G,y), and thus to rewrite
the score function as:

S(G∗,G,y;β) = β · Φ(G∗,G,y)

= β · (Θ(G∗)�Ψ(G,y))

= (β �Θ(G∗)) ·Ψ(G,y), (10)

where � denotes the Hadamard (element-wise) prod-
uct. Note that both terms of the attributes Θ(G∗) and
their weights β are now combined into a single vector
(β �Θ(G∗)). Thus, when the similarity functions are dot
products, both the graph model attributes and their weights
can be jointly expressed by a single vector. By substituting
w = β �Θ(G∗) into Eq. (5), we obtain a linear form for
the optimal assignment:

ŷ(G;w) = arg max
y∈Y(G)

w ·Ψ(G,y). (11)

In turn, this transforms the learning objective in Eq. (6) into
a standard formulation of the structured support vector ma-
chine (SSVM):

LD(w) =
1

2
||w||2 +

C

n

n∑
i=1

∆(yi, ŷ(Gi;w)), (12)

where all the graph model attributes and their weights, to be
learned, are represented by w. This function can be min-
imized by various optimization approaches to estimate the
parameters w [16, 29, 31]. Unlike other learning methods
for graph matching [5, 21, 26, 30], this formulation allows
us to combine graph learning, and learning a matching func-
tion into a coherent structured output framework. A related
approach has been proposed to learn homography estima-
tion in keypoint matching and tracking [15].

3.1. Histogram-attributed relational graph

In general, any graph representation satisfying the con-
dition of dot product similarity of Eq. (7), which leads to
the linearization in Eq. (10), can be learned with our ap-
proach. However, not all potential representations are effec-
tive in representing the data in the context of graph learning
and matching performance. In this work, we propose a new
histogram-attributed relational graph (HARG), wherein all
node and edge attributes are represented by histogram dis-
tributions. The similarity value between two attributes in
this graph is then computed as their dot product. The his-
togram attributes in this framework can be composed of a
variety of features. In this work we chose to build them
using angle and length for edge attributes, and local appear-
ance for node attributes.

The histogram of log-polar bins edge attribute describes
the geometric relationship between two interest points as



illustrated in Fig. 2. As widely done in computer vi-
sion [22, 23], we assume that each interest point can be as-
signed a characteristic scale and orientation.1 Consider an
edge eij from node vi (represented by point xi in Fig. 2)
to node vj (xj in the figure). The vector from xi to xj can
be expressed in polar coordinates as (ρij , θij). We trans-
form this into a histogram-based attribute, which is invari-
ant to the characteristic scale and orientation of vi. Two his-
tograms – one for length and another for angle – are built
and concatenated to quantize the edge vectors. For length,
we use uniform bins of size nL in the log space with respect
to the position and scale of vi, making the histogram more
sensitive to the position of nearby points. The log-distance
histogram Lij is constructed on the bins by a discrete Gaus-
sian histogram centered on the bin for ρij :

Lij(k) = fL(k −m), (13)
s.t. fL(x) = N (0, σL) , ρij ∈ binρ(m),

where N (µ, σ) represents a discrete Gaussian window2 of
size σ centered on µ, and binρ(k) denotes the kth log-
distance bin from the center of vi. For angle, we use uni-
form bins of size 2π/nP . The polar-angle histogram Pij
is constructed on it in a similar way, except that a circular
Gaussian histogram centered on the bin for θij with respect
to the characteristic orientation of vi, is used:

Pij(k) = fP (k −m), (14)
s.t. fP (x) = N (0, σP ) +N (±nP , σP ) , θij ∈ binθ(m),

where additional Gaussian terms in fP (x) induce the circu-
lar bins for angle. The final histogram composed by con-
catenating the log-distance Lij , and the polar-angle Pij ,
histograms is defined as the attribute for edge eij : aij =
[Lij ;Pij ], which is asymmetric (aij 6= aji).3 In this work,
we used nL = 9, nP = 18. Our representation has several
advantages for visual matching. When used with local in-
variant features, it becomes geometrically invariant in scale
and orientation. From the viewpoint of learning, notably,
the nonparametric nature of histograms allows us to repre-
sent multi-modal distributions of distance and angle through
the learning process.

For node attributes ai, describing the local appearance
of node vi, we could adopt the histogram of gradient bins
such as SIFT [22], HOG [10], and their variants, given their
effectiveness. In our experiments, we used the SIFT de-
scriptor.

1When the interest points do not have characteristic scales and orienta-
tions, we fix them to 1 and 0 respectively.

2We used a window size σL = σP = 5 so that N (0, 5) = 1.0,
N (±1, 5) = 0.4578,N (±2, 5) = 0.0439, and 0 otherwise.

3 In the context of feature descriptors, shape-context [2] uses a his-
togram to represent the distribution of points in a two-dimensional log-
polar space. In contrast, our histogram for edge attributes consists of two
separate log-distance and polar-angle ones.

(a) length of edge eij and its histogram attribute

(b) angle of edge eij and its histogram attribute

Figure 2: Histogram of log-polar bins for edge attributes.
This attribute is a concatenation of log-distance and polar-
angle histograms. Each histogram is represented by a dis-
crete Gaussian window centered at a bin. (a) Log-distance
ρij (left) and its histogram with 9 bins (right). The log-
distance ρij of edge eij is measured relative to the scale of
vi. (b) Polar-angle θij (left) and its histogram with 18 bins
(right). The polar-angle θij of edge eij is measured from
the characteristic orientation of vi, or from the horizontal
line through vi (shown as a green line), when there is no
such orientation.

3.2. Loss functions

Another ingredient in the objective function Eq. (12) is
the loss function ∆(y, ŷ). It drives the learning process
by measuring the quality of a predicted matching ŷ against
its ground truth y. We use the normalized Hamming loss,
similar to [5], which is the fraction of mismatches between
assignment vectors y and ŷ,

∆(y, ŷ) = 1− 1

||y||2F
y · ŷ, (15)

where || · ||F is the Frobenius norm.

3.3. Optimization

Many approaches have been proposed to train
SSVMs [16, 29, 31]. This problem amounts to solv-
ing a convex quadratic program with an exponentially large



number of constraints. Solutions for this optimization prob-
lem either: (i) reduce it to an equivalent polynomial-size
reformulation (for certain decomposable loss functions),
and use methods like SMO [29] or general-purpose solvers;
or (ii) work with the original problem by considering a
subset of constraints, and employing cutting plane [31] or
stochastic subgradient methods. For solving the problem
in Eq. (12), we use the efficient cutting plane method
proposed by Joachims et al. [16]. This method differs
from most other SVM training approaches by considering
individual data points as well as their linear combinations
as potential support vectors. This leads to a smaller set of
cutting plane models, and thus more efficient training.

4. Experimental evaluation
In this section we conduct comparative evaluations on

synthetic and real data. We observed that our histogram-
based similarity function showed better or comparable
matching performance than other similarity measures used
in [6, 9, 21]. Hence, we chose to focus on the perfor-
mance of learning using these attributes in all our experi-
ments. A fully-connected graph is used as the initial graph
for learning. We evaluate four methods: ‘w/o learning’,
‘SW-SSVM’, ‘SW-SPEC’, ‘DW-SSVM’, and our method
‘HARG-SSVM’. For w/o learning, we use a conventional
graph matching method with uniform weighting. For SW-
SSVM, SSVM learning is applied to shared weights on
nodes and edges. Here, we learn 2 (angle and distance) pa-
rameters for edges, and 128 (SIFT) parameters for nodes.
Although the similarity functions and the optimization al-
gorithm are different, SW-SSVM is closely related to the
method of [5]. SW-SPEC is the learning method of [21]
for shared weights. DW-SSVM represents a discrimina-
tive weight learning approach based on the formulation
discussed in Sec. 2.2, which learns individual weights for
nodes and edges (2 parameters for each edge and 128 pa-
rameters for each node). HARG-SSVM is our graph learn-
ing approach proposed in Sec. 3. The SSVM objective is
optimized with the same method [16] in all the experiments.

It should be noted that the methods [5, 21] were orig-
inally proposed to learn the weights of a graph matching
function for two graphs in the same class. Our approach
(HARG-SSVM), on the other hand, learns the graph model
as well. The approaches are evaluated on three datasets,
including a synthetic dataset, the CMU House/Hotel se-
quences, and an object class dataset.

4.1. Synthetic point sets

The goal of this experiment is to evaluate and compare
the performance in a controlled setting. Here, we build on
the widely used point set matching problem protocol [9,18].
We define a source set P by n Gaussian distributions, each
of which is centered at a random point in the 2-dimensional

(a) a source set and its sample with noise and outliers

(b) a learned graph model from 100 point set samples

Figure 3: Graph learning from synthetic point sets. (a) A
source set of points is defined by 10 Gaussian distributions,
each centered at a random point (red dots in the left im-
age) and has a random variance (denoted by a black circle
around each red dot). A sample point set is obtained by
generating one point from each distribution (blue dots in
the right image) and adding 5 random outliers (shown as
green crosses). (b) We learn angle and distance attributes
from these samples. Darker lines represent edges learned as
being more important than others. Two examples of edge at-
tributes are shown on the right, where the upper histogram
represents distance and the lower histogram describes an-
gle. The learned attributes (red) not only recover the at-
tributes of the source (blue), but also adjust its weights and
variance. The first example (the edge on the top) has lower
weights and a larger variance than the second example (the
edge in the middle) because the two nodes in the former are
closer each other and have larger variances in their position.
(Best viewed in color.)

domain [0, 1]2, with a random variance in [0, 0.15]. As
shown in Fig. 3(a), an observable sample from the source set
P consists of n inlier points, which come from N (pi, σi),
and no random outliers, generated from a uniform distri-
bution in [0, 1]2. Visually, this simulates deformation and
clutter in the observations. We consider 100 sample point
sets from the source set, where each point in the sample
set has an assignment label to one of the n distributions in
P . Our task is to assign labels to new samples with graph
matching. This problem setting resembles many real-world
applications, and is equivalent to experiments in previous
works [5, 21]. Since there is no unary information in the
points, graph matching in this case relies solely on pairwise
similarity. From each point set we construct a graph with
our histogram-based attributes.



Table 1: Performance on synthetic point sets. Several learning approaches (shown in each row) are evaluated with the state-
of-the-art graph matching algorithms (in columns). See text for details of the learning methods. ‘Sample’ or ‘Source’ refer
to the type of reference graphs used for learning and matching. Given that in real problems it is unlikely to get observations
without deformations and noise, the result with ‘Source’ corresponds to the upper bound for the methods we compare to. In
contrast, our graph learning approach (HARG-SSVM) does not require such a reference graph, and consistently outperforms
all the other learning approaches, including those with the source reference graphs. The error is measured by the average
distance from true matching points.

SM [18] GAGM [14] IPFP [20] RRWM [6]
Reference Methods accuracy (%) error accuracy (%) error accuracy (%) error accuracy (%) error

Sample

w/o learning 60.4 0.079 62.4 0.070 61.4 0.067 62.2 0.072
SW-SSVM 59.7 0.073 53.9 0.114 61.2 0.070 67.5 0.057
SW-SPEC 62.2 0.068 58.8 0.103 64.3 0.054 66.2 0.063
DW-SSVM 66.2 0.054 70.4 0.050 69.0 0.053 75.6 0.040

Source

w/o learning 70.0 0.044 76.1 0.034 75.9 0.033 75.4 0.037
SW-SSVM 70.9 0.042 68.1 0.061 70.8 0.043 79.0 0.030
SW-SPEC 71.8 0.040 68.6 0.053 69.1 0.049 76.0 0.037
DW-SSVM 73.9 0.035 77.7 0.030 77.0 0.030 78.6 0.032

HARG-SSVM 79.7 0.026 79.5 0.027 79.7 0.029 81.7 0.025

For our method (HARG-SSVM), we directly learn the
model and use it to match with a test set. For all the other
methods, since they do not learn a model, we take a refer-
ence point set, and use it to match with the test set. Here,
two types of references are used: ‘Sample’ or ‘Source’. For
‘Sample’, we randomly select one of the training sample
point sets, and for ‘Source’, the points from the source set
are directly used. In other words, ‘source’ corresponds to an
ideal reference graph without deformations and noise, i.e.,
a graph formed by red dots on the left image of Fig. 3(a).

We performed learning with 10 inliers (n = 10), 5 out-
liers (no = 5), and maximum variance of 0.15. A compar-
ison of matching performance on 1000 test samples from
10 source sets is shown in Table 1. We also use differ-
ent graph matching algorithms to account for dependency
on the matching algorithm used. Note that our method
HARG-SSVM consistently outperforms all the other meth-
ods, when a sample set is used as the reference graph. Fur-
thermore, HARG-SSVM provides better results even when
other methods use the source set as the reference graph.
This is because our graph model additionally captures both
the variation and the importance in edge attributes as shown
in Fig. 3(b). The two methods, SW-SSVM and SW-SPEC,
do not show a notable improvement compared to w/o learn-
ing because of the limitations of using shared weights.
Given the fact that in realistic situations we cannot directly
access the source of information, and can only sample from
the source, this synthetic experiment suggests that our learn-
ing approach leads to improvement in such problems.

4.2. House/Hotel dataset

The CMU House/Hotel sequence is one of the most pop-
ular benchmark datasets for graph matching. We used the
image sequences (House: 111 images and Hotel: 101 im-

ages) and the feature points from [5, 21]. In one of their
experiments, they used 5 training images for learning, and
tested on all the remaining pairs. Here, we learn a graph
model using only 3 training images (#0, #50, #100) from
the 5 images they used, and match it to all the other test
images. Unlike [5, 21], we only rely on the edge attributes
without any appearance descriptor. As shown in Table 2,
learned HARG achieves perfect results without any mis-
match, outperforming all the other methods. Figure 5 shows
the learned graphs and some example results of matching
to other frames. For images of identical objects, such as
these House/Hotel sequences, only a few number of images
are sufficient for our method to learn the model graph. In
Table 2, we also compared with other learning approaches
(SW-SSVM, DW-SSVM) using a reference graph (#0).
In this case, DW-SSVM also provides near-perfect results,
which suggests that learning individual parameters of edges
is important for matching.

4.3. Object class datasets

We tested our method on learning graphs of visual ob-
ject classes. This experiment is different from the previ-
ous ones for two reasons: First, the image contains not
only background clutter but also significant intra-category,
and view-point changes. Second, contrary to many related
works [5,21,26,30], we use a local feature detector without
any additional manual pruning on cluttered images. In this
case, a significant number of outliers exists, and thus graph
matching becomes challenging.

We use the scale-invariant Hessian detector [24] to de-
tect local regions as nodes. We then describe the edge and
node attributes, as detailed in Sec. 3.1. Given a test im-
age, we select kNN features (k = 50) for each node of the
model graph based on dot product similarity, and construct



Table 2: Matching performance comparison on the CMU
House/Hotel sequences. The frame #0 was used as a ref-
erence graph in w/o learning, SW-SSVM, and DW-SSVM.
The numbers in parentheses denote the number of training
images used for each method. In the last three rows, we also
report the published results for [5, 21] on 5 and 106 train-
ing images. Note that while we learn a graph model and
match it to all the other images, they learned the parameters
for matching, and applied them to match all possible pairs
among all the other images.

House Hotel
Method Acc.(%) Err.(px) Acc.(%) Err.(px)

w/o learning 99.6 0.06 78.7 11.32
SW-SSVM (3) 99.6 0.06 94.6 3.02
DW-SSVM (3) 99.8 0.01 100.0 0.00

HARG-SSVM (3) 100.0 0.000 100.0 0.00
SW-SPEC [21] (5) 99.8 n/a 94.8 n/a
SW-SSVM [5] (5) < 84 n/a < 87 n/a

SW-SSVM [5] (106) < 96 n/a < 90 n/a

a fully-connected graph. The error measure is defined as
the distance between a detected point and its ground truth,
normalized by the maximum distance between ground truth
points in the image, i.e. an estimate of the size of the target
object. Since we use a feature detector, it is virtually impos-
sible to make an exact correspondence for each point, due
to localization errors. Hence, we define a margin for error
te, and consider a correspondence to be correct if its error
is less than te. We set te = 0.15 in this experiment.

We constructed an object class dataset with images from
Caltech-256 (Face, Duck, and Wine bottle) and PASCAL
VOC2007 (Motorbike and Car) datasets. The images of
these classes are selected such that each class contains at
least 40 images with different instances.4 Some of these
were then reflected laterally to ensure that each object has a
consistent orientation. We manually selected 10 distinctive
points on the target object, and identified them in each im-
age. In order to ease the labelling process, we used the fol-
lowing scheme. We first take an image, identify 10 points,
and set the image as a reference for the class. Then, we
apply graph matching to find correspondence from the ref-
erence to the other images, and refine them by fixing incor-
rect matches. This scheme allows us to build the ground
truth data more easily than other methods for the same pur-
pose [5, 21].

We split the image set for each object class into two
random partitions (20 images for training and the rest for
testing), and report accuracy and error of matching, aver-
aged over the 20 random splits. Table 3 summarizes the re-
sults and Figure 4 shows the learned model graphs and their
matching results. Our approach (HARG-SSVM) shows sig-

4The dataset consists of 109 Face, 50 Duck, 66 Wine bottle, 40 Motor-
bike, and 40 Car images, and is available from our project website [1].

(a) a learned House graph and its matching examples

(b) a learned Hotel graph and its matching examples

Figure 5: Results on the CMU House/Hotel sequence. For
each sequence, a graph model is learned using 3 images, and
tested on all the other images (108 for House, 98 for Ho-
tel). From left to right, the learned graph and two matching
examples are shown. In the graph models, darker lines de-
note edges with higher weights. For comparison with other
methods, see Table 2. (Best viewed in color.)

nificantly better results than other approaches. It suggests
that the detailed attributes learned by our approach enable
more accurate matching to other instances in the same class.
This experiment demonstrates that our approach success-
fully handles the practical challenges in matching by con-
structing a robust graph model. For more results, refer to
our project website [1].

5. Conclusion
We presented a novel graph learning approach with a

histogram-based representation and an SSVM framework.
In synthetic and real data experiments, we demonstrated
that the proposed method effectively learns an inherent
model graph from a training set, and provides good gener-
alization to unseen instances for matching. In future work,
we plan to explore sparse graph representation for better ef-
ficiency.
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