Manipulation Planning

A Geometrical Formulation
Manipulation Planning

- Hanoï Tower Problem
Manipulation Planning

- Hanoï Tower Problem: a “pure” combinatorial problem

Finite state space
Manipulation Planning

- A disk manipulating another disk
Manipulation Planning

• A disk manipulating another disk

The state space is no more finite!
Manipulation Space

- Any solution appears a collision-free path in the composite space \((CS_{Robot} \; CS_{Object})_{Admissible}\)

- However: any path in \((CS_{Robot} \; CS_{Object})_{Admissible}\) is not necessarily a manipulation path
Manipulation Space

- Any solution appears a collision-free path in the composite space \((CS^{Robot} \quad CS^{Object})_{Admissible}\)

- What is the topological structure of the manipulation space?

- How to translate the continuous problem into a combinatorial one?
A work example
Manipulation Planning

A work example
Manipulation Planning

Allowed configurations

- Grasp
- Placement
- Not allowed
Allowed configurations

- Grasp Space GS
- Placement Space PS
- Manipulation Space $GS \cup PS$
Manipulation Planning

Allowed paths

- Transit paths
- Transfer paths
- Not allowed paths
Manipulation Planning

Allowed paths induce foliations in $GS \quad PS$

- Transit paths
- Transfer paths
- Not allowed paths
Manipulation Planning

- Manipulation space topology

\[GS \cup PS \]
\[GS \cap PS \]
Manipulation Planning

Manipulation space topology

$GS \cup PS$

$GS \cap PS$

Adjacency by transfer paths
Manipulation space topology

$GS \cup PS$

$GS \cap PS$

Adjacency by transit paths
Manipulation space graph
Theorem: When two foliations intersect, any path can be approximated by paths along both foliations.
Corollary: Paths in $GS \cap PS$ can be approximated by finite sequences of transit and transfer paths.
Corollary: A manipulation path exists iff both starting and goal configurations can be retracted on two connected nodes of the manipulation graph.
Manipulation Planning

Manipulation space graph

Proof
Manipulation Planning

Manipulation space

Transit Path

GS\capPS Path

Transit Path

GS\capPS Path

Transfer Path

Transit Path
Manipulation algorithms

- Capturing the topology of $GS \cap PS$
- Compute adjacency
Manipulation Planning

The case of finite grasps and placements

- Graph search
The case of one single object

- Capturing the topology of $GS \cap PS$: projection of the cell decomposition of the composite space

- Adjacency by retraction

B. Dacre Wright, J.P. Laumond, R. Alami

Motion planning for a robot and a movable object amidst polygonal obstacles.

J. Schwartz, M. Sharir

On the Piano Mover III

The case of one single object

A: Initial and goal configurations.
B: Coordinated motions.
C: The five stages manipulation path.
Manipulation Planning

The case of one single object
The case of one single object
Manipulation Planning

The case of one single object
The case of one single object
Manipulation Planning

The case of one single object
The general case

- Capturing the topology of $GS \cap PS$

- Compute adjacency
The general case

- Capturing the topology of $GS \cap PS$:
 \textit{Path planning for closed chain systems}

- Compute adjacency
 \textit{Inverse kinematics}
Manipulation Planning

The general case: probabilistic algorithms

T. Siméon, J.P. Laumond, J. Cortes, A. Sahbani
Manipulation planning with probabilistic roadmaps

J. Cortès, T. Siméon, J.P. Laumond
A random loop generator for planning motions of closed chains with PRM methods
Manipulation Planning
A random loop generator for planning motions of closed chains with PRM methods
J. Cortès, T. Siméon, J.P. Laumond

A random loop generator for planning motions of closed chains with PRM methods

C. Esteves, G. Arechavaleta, J. Pettré, J.P. Laumond

Animation planning for virtual mannequins cooperation

Manipulation Planning
E. Yoshida, M. Poirier, J.P. Laumond, O. Kanoun, F. Lamiraux, R. Alami, K. Yokoi

Pivoting based manipulation by a humanoid robot

E. Yoshida, M. Poirier, J.-P. Laumond, O. Kanoun, F. Lamiraux, R. Alami, K. Yokoi
Regrasp Planning for Pivoting Manipulation by a Humanoid Robot
Manipulation Planning
Manipulation Planning
Manipulation Planning