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Abstract

We propose in this paper to unify two different ap-
proaches to image restoration: On the one hand, learning a
basis set (dictionary) adapted to sparse signal descriptions
has proven to be very effective in image reconstruction and
classi�cation tasks. On the other hand, explicitly exploiting
the self-similarities of natural images has led to the success-
ful non-local means approach to image restoration. We pro-
pose simultaneous sparse coding as a framework for com-
bining these two approaches in a natural manner. This is
achieved by jointly decomposing groups of similar signals
on subsets of the learned dictionary. Experimental results
in image denoising and demosaicking tasks with synthetic
and real noise show that the proposed method outperforms
the state of the art, making it possible to effectively restore
raw images from digital cameras at a reasonable speed and
memory cost.

1. Introduction

This paper addresses the problem of reconstructing and
enhancing a color image given the noisy observations gath-
ered by a digital camera sensor. Today, with advances in
sensor design, the signal is relatively clean for digital SLRs
at low sensitivities, but it remains noisy for consumer-grade
and mobile-phone cameras at high sensitivities (low-light
and/or high-speed conditions). The restoration problem is
thus still of acute and in fact growing importance (e.g.,
[3, 7, 11, 15]), and we present a novel learned image model
that outperforms the state of the art in denoising and de-
mosaicking tasks on images with real and synthetic noise.
This model should also prove of interest in deblurring and
inpainting tasks that have become the topic of much recent
research (e.g., [2, 6, 23]) with the emergence of computa-
tional photography. Working with noisy images recorded
by digital cameras is dif�cult since different devices pro-
duce different kinds of noise, and introduce different types
of artefacts and spatial correlations in the noise as a re-
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sult of internal post-processing (demosaicking, white bal-
ance, etc.). In this paper, we operate directly on the raw
sensor output, that suffers from non-homogeneous noise,
but is less spatially correlated and not corrupted by post-
processing artefacts. In turn, this requires demosaicking
the raw signal—that is, reconstructing a full color image
from the sensor's RGB (Bayer) pattern—a dif�cult prob-
lem in itself. Whereas demosaicking is usually tackled us-
ing interpolation-based methods [13, 20, 32], much of the
denoising effort has been aimed at �nding a good model
for natural images. Early work relied on various smooth-
ness assumptions—such as anisotropic �ltering [21], total
variation [25], or image decompositions on �xed bases such
as wavelets [17] for example. More recent approaches in-
clude non-local means �ltering [3], which exploits image
self-similarities, learned sparse models [11, 15], Gaussian
scale mixtures [22], �elds of experts [24], and block match-
ing with 3D �ltering (BM3D) [7].

In this paper, we view both denoising and demosaick-
ing as image reconstruction problems, and propose a novel
image model that combines two now classical techniques
into a single framework: Thenon-local meansapproach to
image restoration explicitly exploits self-similaritiesin nat-
ural images [3, 10] to average out the noise among simi-
lar patches, whereassparse codingencodes natural image
statistics by decomposing each image patch into a linear
combination of a few elements from a basis set called adic-
tionary.1 Although �xed dictionaries based on various types
of wavelets [17] have been used in this setting, sparse de-
compositions based on learned, possibly overcomplete, dic-
tionaries adapted to speci�c images have been shown to pro-
vide better results in practice [11, 15]. We propose to extend
and combine these two approaches by usingsimultaneous
sparse coding[28, 29, 31] to impose that similar patches
share the same dictionary elements in their sparse decompo-
sition. To the best of our knowledge, this is the �rst time that
the corresponding models of image self-similarities are ex-
plicitly used in a common setting with learned dictionaries
(the BM3D procedure [7] exploits both self-similarities and
sparsity for the denoising task, but it is based on classical,

1The usage of the word “basis” is slightly abusive here since the ele-
ments of the dictionaries are not (a priori) necessarily independent.



�xed orthogonal dictionaries). Experiments with images
corrupted by synthetic or real noise show that the proposed
method outperforms the state of the art in both image de-
noising and image demosaicking tasks, making it possible
to effectively restore raw images from digital cameras at a
reasonable speed and memory cost. Furthermore, although
it is demonstrated on image denoising and demosaicking
tasks in this paper, our model is generic, admits straight-
forward extensions to various image and video restoration
tasks such as inpainting, and can adapt to a large class of
data,e.g., multispectral images or MRI data.

2. Related Work

We start with a brief description of well-established ap-
proaches to image restoration that are relevant and related
to the approach proposed in the next section. Since it is dif-
�cult to design a standard model for digital camera noise,
these methods assume white Gaussian noise. Even though
this generic setting slightly differs from that of real image
denoising, it has allowed the development of effective al-
gorithms that are now widely used in digital cameras and
commercial software packages. We will use the same as-
sumption in the rest of this paper, but will demonstrate em-
pirically that our approach is effective at restoring real im-
ages corrupted by non-Gaussian, non-uniform noise.

2.1. Non­Local Means Filtering

Efros and Leung showed in [10] that the self-similarities
inherent to natural images could effectively be used in
texture synthesis tasks. Following their insight, Buades,
Coll and Morel introduced in [3] thenon-local meansap-
proach to image denoising, where the prominence of self-
similarities is used as a prior on natural images.2 Con-
cretely, let us consider a noisy image written as a column
vectory in Rn , and denote byy [i ] the i -th pixel and byy i
the patch of sizem centered on this pixel for some appropri-
ate sizem. This approach exploits the simple but very effec-
tive idea that two pixels associated with similar patchesy i
andy j should have similar valuesy [i ] andy [j ]. Usingy i as
an explanatory variable fory [i ] leads to the non-local means
formulation, where the denoised pixelx [i ] is obtained by a
weighted average (the corresponding Nadaraya-Watson es-
timator [3]):

x [i ] =
nX

j =1

K h (y i � y j )
P n

l =1 K h (y i � y l )
y [j ]; (1)

andK h is a Gaussian kernel of bandwidthh.

2This idea has in fact appeared in the literature in various guises and un-
der different equivalent interpretations,e.g., kernel density estimation [10],
Nadaraya-Watson estimators [3], mean-shift iterations [1],diffusion pro-
cesses on graphs [26], and long-range random �elds [14].

2.2. Learned Sparse Coding

An alternative is to assume that the clean signal can be
approximated by asparselinear combination of elements
from a basis set called dictionary. Under this assumption,
denoising a patchy i in Rm with a dictionaryD in Rm � k

composed ofk elements, amounts to solving the sparse de-
composition problem

min
� i 2 Rk

jj � i jjp s.t. jjy i � D � jj2
2 � "; (2)

whereD � is an estimate of the clean signal, andjj � jjp is
a sparsity-inducing regularization term. This regularizer is
associated with thè1 norm whenp = 1 , leading to the
well-known Lasso [27] and basis pursuit [5] problems, and
with the`0 pseudo normwhenp = 0 .3 Note that the dictio-
nary may beovercomplete—that is, the number of columns
of D may be greater than the number of its rows. Following
[11, 15]," can be chosen according to the (supposed known)
standard deviation� of the noise. One indeed expects the
residualy i � D � i to behave as a Gaussian vector, and thus
jjy i � D � i jj2

2=� 2 to follow a chi-squared distribution� 2
m

concentrated aroundm. The strategy proposed in [15] is
to threshold the cumulative distribution functionFm of the
� 2

m distribution and choose" as" = � 2F � 1
m (� ), whereF � 1

m
is the inverse ofFm . Selecting the value� = 0 :9 leads in
practice to acceptable values of" [15].

Various types of wavelets [17] have been used as dic-
tionaries for natural images. Building on ideas proposed
in [19] to model neuronal responses in the V1 area of the
brain, Elad and Aharon [11] have proposed instead tolearn
a dictionaryD adapted to the image at hand, and demon-
strated that learned dictionaries lead to better empiricalper-
formance than off-the-shelf ones. Since images may be very
large, ef�ciency concerns naturally lead to sparsely decom-
posing image patches rather than the full image. For an
image of sizen, a dictionary inRm � k adapted to then
overlapping patches of sizem (typically m = 8 � 8 � n)
associated with the image pixels, is learned by addressing
the following optimization problem

min
D 2C ;A

nX

i =1

jj � i jjp s.t. jjy i � D � i jj2
2 � "; (3)

whereC is the set of matrices inRm � k with unit `2-norm
columns,A = [ � 1; : : : ; � n ] is a matrix inRk � n , y i is the
i -th patch of thenoisy imagey , � i is the corresponding
code, andD � i is the estimate of the denoised patch. Note
that this procedure implicitly assumes that the patches are
independentfrom each other, which is questionable since

3The`p norm of a vectorx in Rm is de�ned, forp � 1, by jj x jj p
M
=

(
P m

i =1 jx [i ]jp )1=p . Following tradition, we denote byjj x jj 0 the number
of nonzero elements of the vectorx . This “`0 ” sparsity measure is not a
true norm.



they overlap. However, this approximation makes the cor-
responding optimization tractable. Indeed, although dictio-
nary learning is traditionally considered as extremely costly,
online procedures such as [16] make it possible to ef�-
ciently process millions of patches, allowing the use of large
photographs and/or large image databases.

Once the dictionaryD and codes� i have been learned,
every pixel admitsm estimates (one per patch containing
it), and its value can be computed by averaging these:

x =
1
m

nX

i =1

R i D � i ; (4)

whereR i in Rn � m is the binary matrix which places patch
numberi at its proper position in the image. This approach
learns the dictionary on the set of overlapping noisy patches,
thereby adapting the dictionary to the image itself, which is
a key element in obtaining better results.

How to choose betweenp = 0 or p = 1 is not a pri-
ori clear. Solving Eq. (2) withp = 0 is NP hard, leading
to approximate solutions obtained with a greedy algorithm
such as forward selection [30] (also known as orthogonal
matching pursuit [18]). Whenp = 1 , the problem is convex
and can be solved ef�ciently with the LARS algorithm [9].
Following Elad and Aharon [11], we have observed experi-
mentally that, given a �xed dictionaryD , the reconstructed
image is in general of better quality when using the`0

pseudo norm rather than its convex`1 counterpart. How-
ever, we have also observed that dictionaries learned with
the`1 norm are usually better for denoising, even when the
�nal reconstruction is done with thè0 pseudo norm.

2.3. Block Matching 3D (BM3D)

Dabovet al. propose in [7] a patch-based procedure that
exploits image self-similarities and gives state-of-the-art re-
sults. As in [11], they estimate the codes of overlapping
patches and average the estimates. However, similar to non-
local means �ltering [3], they reconstruct patches by �nding
similar ones in the image (block matching), stacking them
together into a 3D signal block, and denoising the block
using hard or soft thresholding [8] with a 3D orthogonal
dictionary (3D �ltering ). In conjunction with a few heuris-
tics,4 this simple idea has proven to be very ef�cient and
gives better results than regular non-local means. A key
idea of our paper is to implement a similar joint decompo-
sition approach in the context of sparse coding with learned
dictionaries, as explained in the next section.

3. Proposed Formulation

We show in this section how image self-similarities can
be used to improve learned sparse models withsimultane-

4Namely, using a combination of weighted averages of overlapping
patches, Kaiser windows, and Wiener �ltering to further improve results.

Figure 1. Sparsity vs. joint sparsity: Grey squares represents non-
zeros values in vectors (left) or matrix (right).

ous sparse coding, which encourages similar patches to ad-
mit similar sparse decompositions.

3.1. Simultaneous Sparse Coding

A joint sparsity pattern—that is, a common set of
nonzero coef�cients—can be imposed to a set of vectors
� 1; : : : ; � l through agrouped-sparsity regularizeron the
matrix A = [ � 1; : : : ; � l ] in Rk � l (Figure 1). This amounts
to restricting the number of nonzero rows ofA , or replacing
the`p vector (pseudo) norm in Eq. (3) by the`p;q (pseudo)
matrix norm

jjA jjp;q
M=

kX

i =1

jj � i jjp
q; (5)

where� i denotes thei -th row ofA . In practice, one usually
chooses for the pair(p; q) the values(1; 2) or (0; 1 ), the
former leading to a convex norm, while the latter actually
counts the number of nonzero rows and is only a pseudo
norm [28].

3.2. Principle of the Formulation

Non-local means �ltering has proven very effective in
general, but it fails in some cases. In the extreme, when
a patch does not look like any other one in the image, it
is impossible to exploit self-similarities to denoise the cor-
responding pixel value. Sparse image models can handle
such situations by exploiting the redundancy between over-
lapping patches, but they suffer from another drawback:
Similar patches sometimes admit very different estimates
due to the potential instability of sparse decompositions (the
`0 pseudo norm is, after all, piecewise constant, and its`1

counterpart is only piecewise differentiable), which can re-
sult in practice in noticeable reconstruction artefacts. In this
paper, we address this problem by forcing similar patches to
admit similar decompositions. Concretely, let us de�ne for
each patchy i the setSi of similar patches as

Si
M= f j = 1 ; : : : ; n s.t. jjy i � y j jj2

2 � � g; (6)

where� is some threshold. Let us also consider for the mo-
ment a �xed dictionaryD in Rm � k . Decomposing the patch
y i with a grouped-sparsity regularizer on the setSi amounts
to solving

min
A i

jjA i jjp;q s.t.
X

j 2 Si

jj y j � D � ij jj2
2 � " i ; (7)



whereA i = [ � ij ]j 2S i 2 Rk �j Si j . We adopt the same strat-
egy as in Section 2.2 to choose" i accordingly to the size of
Si : " i = � 2F � 1

m jSi j (� ). In the `1;2-case, this optimization
problem is convex and can be solved ef�ciently [12]. In the
`0;1 case, on the other hand, it is intractable, and a greedy
approach such as simultaneous orthogonal matching pursuit
[28] must be used to obtain an approximate solution.

In the framework of learned sparse coding, adaptingD
to the image(s) of interest naturally leads to the following
optimization problem

min
(A i )n

i =1 ;D 2C

nX

i =1

jjA i jjp;q

jSi jp
s.t. 8i

X

j 2 Si

jj y j � D � ij jj2
2 � " i

(8)
whereD is in Rm � k with unit `2-norm columns. The nor-
malization byjSi jp is used to ensure equal weights for all
groups (as before, we only consider the cases where(p; q)
is (1; 2) or (0; 1 )). As noted in the previous section, in
classical learned sparse coding, we prefer the`1 norm for
learning the dictionary and thè0 pseudo norm for the �nal
reconstruction. We adopt here a similar choice: We use the
convex`1;2 norm for learning the dictionary, which can be
done ef�ciently using a simple modi�cation of [16], and we
use thè 0;1 pseudo-norm for the �nal reconstruction. As
in [11], this formulation allows all the image patches to be
processed as if they wereindependentof each other. To re-
construct the �nal image, we average the estimates of each
pixel,

x = diag(
nX

i =1

X

j 2 Si

R j 1m ) � 1
nX

i =1

X

j 2 Si

R j D � ij ; (9)

whereR j is de�ned as in Eq. (4) and1m is a vector of size
m �lled with ones. The term on the left is a scaling diago-
nal matrix, counting the number of estimates for each pixel.
Note that whenSi = f ig, our formulation is equivalent to
regular learned sparse coding.

At �rst sight, the proposed technique may seem partic-
ularly costly, since decomposing a single patch requires
solving a large-scale optimization problem (7). Similar
concerns hold for the original formulations of non-local
means [3] and BM3D [7]. As in these cases, slight changes
to our approach are suf�cient to make it ef�cient.

3.3. Practical Formulation and Implementation

The computational cost of the optimization problem (8)
is dominated by the computation of the vectors� ij . In the
worst case scenario,n2 of these vectors have to be com-
puted. We show in the rest of this section how to modify
our original formulation in order to make this number lin-
ear inn and allow ef�cient optimization.
Semi-local grouping. When buildingSi , one can restrict
the search for patches similar toy i to a window of size

w � w. This semi-local approach is also used in [7], and
it reduces the worst-case number of vectors� ij to nw2. In
practice, we never usew greater than64 in this paper.
Clustering. It is also possible to cluster pixels into disjoint
groupsCk such that all pixelsi in Ck share the same setSi .
The optimization problems (7) associated with all pixels in
the same cluster are identical, further reducing the overall
computational cost: In fact, onlyn vectors� ij are com-
puted in this case since each pixel belongs to exactly one
cluster. This is a key ingredient to the ef�ciency of our im-
plementation. Other strategies are also possible, allowing a
few clusters to overlap for instance.
Initialization of D . One important asset of sparse repre-
sentations is that they can bene�t from dictionaries learned
of�ine on a database of natural images, which can be used
as a good initial dictionaries for the denoising procedure
[11]. Using the online procedure of [16], our initial dic-
tionaries are learned on2 � 107 patches of natural images
taken randomly from the10 000 images of the PASCAL
VOC'07 database. As shown in the next section, using this
online procedure and such a large training sample has led to
a signi�cant performance improvement compared to meth-
ods such as [15] that use batch learning methods such as
K-SVD [11] and are unusable with such large-scale data.
Improved matching. Following [7], we have noticed that
better groups of similar patches can be found by using a
�rst round of denoising on the patches (using, for example,
the classical sparse coding approach of Eq. (3) presented
in the previous section) before grouping them. In turn, as
shown by our experiments, our simultaneous sparse coding
approach greatly improves on this initial denoising step.
Patch normalization. To improve the numerical stability
of sparse coding, the mean intensity (or RGB color) value
of a patch is often subtracted from all its pixel values before
decomposing it, then added back to the estimated values
[11]. We have adopted this approach in our implementation,
and our experiments have shown that it improves the visual
quality of the results.
Reducing the memory cost.At �rst sight, Eq. (8) requires
storing a large number of codes� ij . Even though these
are sparse, and their number can be reduced to the number
of pixels using the clustering strategy presented above, this
could potentially be a problem for large images. In fact,
only a small subset of the vectors� ij is stored at any given
time: The online procedure of [16] computes themon the
�y and does not require storing them to learn the dictionary.
In the case of Eq. (8), the maximum number of vectors� ij

that have to be stored at any given time is the size of the
largest clusterCk of similar patches.

3.4. Real Images and Demosaicking

Single-chip digital cameras do not capture a noisy RGB
signal at each pixel. Instead, combined with a red (R), green



(G), or blue (B) �lter, the sensor associated with each pixel
integrates the incoming light �ux over the corresponding
frequency range and a short period of time. The relation
between the pixels and the color information they record is
obtained through a speci�c pattern, the most famous one
being the Bayer pattern, G-R-G-R on odd lines and B-G-
B-G on even ones. The demosaicking problem consists
of reconstructing the whole color image given the sensor
measurements. Although most of the approaches found in
the literature to solve this problem are based on interpola-
tion [13, 20, 32], the image models investigated in this pa-
per have also been used for demosaicking: Self-similarities
have been exploited in [4], and learned sparse coding has
been used in [15]. We adapt here [15] to our simultaneous
sparse coding framework. First we learn an initial dictio-
nary D 0 using [16] on a database of natural color images.
Our demosaicking procedure can then be decomposed into
four simple steps:
(1) Cluster similar patches on the mosaicked imagey .
(2) Reconstruct each patch usingD 0, addressing for alli

min
A i 2 Rk �j S i j

jjA i jj0;1 s.t. 8j M j (y j � D 0� ij ) = 0 ; (10)

whereM j is a binary masked corresponding to the Bayer
pattern of measured values, and average the reconstructions
to obtain an estimatex of the demosaicked image.
(3) Learn a dictionary D 1 for x with a strong
regularization—that is, replacey by x in Eq. (8), solving
this equation with a large value for" i .
(4) Reconstruct each patch usingD 2 = [ D 0 D 1] instead of
D 0 in Eq. (10), and average the estimates using Eq. (9) to
obtain the �nal demosaicked image.

As shown in the next section, this procedure outperforms
the state of the art from quantitative and qualitative points
of view. The raw mosaicked signal of digital cameras in
low-light, short-exposure settings is noisy. It should there-
fore be denoised before demosaicking is attempted. Since
our denoising procedure is generic and does not necessary
assume the input data to be natural images,the denoising
procedure can be performed on the mosaicked image itself.

4. Experimental Validation

4.1. Denoising – Synthetic Noise

Experiments on denoising with synthetic white Gaus-
sian noise have carried out with12standard benchmark im-
ages. The parameters used in this experiment arek = 512,
m = 9 � 9 for � � 25, m = 12 � 12 for � = 50 and
m = 16 � 16 for � = 100. The value of� is chosen a
bit more conservatively than in [15] and is set to0:8, while
� is chosen according to an empirical rule,� = (32 � )2=m
for images scaled between0 and255, which has shown to
be appropriate in all of our denoising experiments for both

real and synthetic noise. Peak signal-to-noise ratio (PNSR)
is used as performance measure in our quantitative evalu-
ation.5 Table 1 reports the results obtained on each image
for different values of the (known) standard deviation of the
noise� , and Table 2 compares the average PSNR on these
images obtained by several state-of-the-art image denoising
methods—namely GSM [22], FoE [24], K-SVD [11] and
BM3D [7]—with our method in three settings: SC (sparse
coding) uses a �xed dictionary learned on a database of
natural images without grouping the patches. It is there-
fore similar to the global approach to denoising of [11].
The only differences are that we have used the online pro-
cedure of [16] to learn the dictionary from2 � 107 natu-
ral image patches instead of the105 patches used in [11],
and we have used an`1 regularizer instead of aǹ0 one to
learn the dictionary. In the second setting (LSC, for learned
sparse coding), the dictionary is adapted to the test image,
again using aǹ1 regularizer, which is similar to theadap-
tive approach of [11] except for our (better) initial dictio-
nary and their̀ 0 regularizer. The last setting (LSSC, for
learned simultaneous sparse coding) adds a grouping step
and uses the full power of our simultaneous sparse coding
framework. These PSNR comparisons show that our model
leads to better performance than the state-of-the-art tech-
niques in general, and is always at least as good as BM3D,
the top performer among those, especially for high values
of � . Additional qualitative examples are given in Figure 2.

Note that the parameters have not been optimized for
speed but for quality in these experiments. On a recent Intel
Q9450 2.66Ghz CPU, it takes for instance0:5s to denoise
the256� 256imagepeppers with � = 25 and the setting
SC,85s with LSC, and220s with LSSC. With parameters
optimized for speed (k = 256, fewer iterations in the dic-
tionary learning procedure), the computation times become
respectively0:25s for SC,10s for LSC, and21s for LSC,
and the �nal results' quality only drops by0:05dB, which is
visually imperceptible. Our framework is therefore �exible
in terms of speed/quality compromise.

4.2. Demosaicking

We have used the standard Kodak PhotoCD benchmark
to evaluate the performance of our demosaicking algorithm.
This dataset consists of24 RGB images of size512� 768
to which a Bayer mask has been applied. Ground truth is
thus available, allowing quantitative comparisons. We have
arbitrarily tuned the parameters of our method to optimize
its performance on the5 last images, choosingk = 256
(dictionary size),m = 8 � 8 (patch size), and� = 3 � 104

(for images scaled between 0 and 255). These parameters

5Denoting by MSE the mean-squared-error for images whose in-
tensities are between0 and 255, the PSNR is de�ned as PSNR=
10 log10 (2552=MSE) and is measured in dB. A gain of1dB reduces the
MSE by approximately20%.



� 5 10 15 20 25 50 100
house 39.93 36.96 35.35 34.16 33.15 30.04 25.83
peppers 38.18 34.80 32.82 31.37 30.21 26.62 23.00
camera. 38.32 34.21 32.01 30.57 29.51 26.42 23.08

lena 38.69 35.83 34.15 32.90 31.87 28.87 25.82
barbara 38.48 34.97 33.00 31.57 30.47 27.06 23.59

boat 37.35 34.02 32.20 30.89 29.87 26.74 23.84
hill 37.17 33.67 31.89 30.71 29.80 27.05 24.44

couple 37.45 33.98 32.06 30.69 29.61 26.30 23.28
man 37.89 34.06 32.01 30.64 29.63 26.69 24.00

�ngerp. 36.70 32.57 30.31 28.78 27.62 24.25 21.26
bridge 35.78 31.22 28.92 27.46 26.42 23.68 21.46
�intst. 36.13 32.46 30.78 29.63 28.71 25.16 21.10

Av. 37.67 34.06 32.12 30.78 29.74 26.57 23.39

Table 1. Quantitative denoising experiments on 12 standard im-
ages. The PSNR values are averaged over5 experiments with5
different noise realizations and values of� between 5 and 100.
The variance is negligible and not reported due to space limita-
tions.

� [22] [24] [11] [7] SC LSC LSSC
5 37.05 37.03 37.42 37.62 37.46 37.66 37.67
10 33.34 33.11 33.62 34.00 33.76 33.98 34.06
15 31.31 30.99 31.58 32.05 31.72 31.99 32.12
20 29.91 29.62 30.18 30.73 30.29 30.60 30.78
25 28.84 28.36 29.10 29.72 29.18 29.52 29.74
50 25.66 24.36 25.61 26.38 25.83 26.18 26.57
100 22.80 21.36 22.10 23.25 22.46 22.62 23.39

Table 2. Quantitative comparative evaluation. We compare our al-
gorithm to GSM [22], FoE [24], K-SVD [11] and BM3D [7], that
were the top performers so far on this benchmark, and whose im-
plementations are available online. The PSNR is chosen as before
as performance measure. Best results are in bold.

Figure 2. Qualitative evaluation of our denoising method with
standard images. Left: noisy images. Right: restored images.
Note that we reproduce the original brick texture in thehouse im-
age (� = 15 ) and the hair texture for theman image (� = 50 ),
both hardly visible in the noisy images. (The details are better seen
by zooming on a computer screen.)

Figure 3. Left: Demosaicking with LSC sometimes causes arte-
facts such as the yellow and blue pixels in the middle of the fence.
Right: The reconstruction obtained with the LSSC algorithm does
not exhibit such artefacts. (This �gure should be viewed in color.)

have been used for all 24 photos.
We evaluate the performance of the three variants SC,

LSC, LSSC of our framework de�ned in the previous sub-
section, and compare them with the state of the art using
the experimental protocol of Paliyet al. [20] whose LPA
method is, to the best of our knowledge, the top performer
so far in terms of PSNR (or equivalently mean-squared er-
ror) on the Kodak PhotoCD benchmark. Following [20], we
have excluded a 15-pixel border in fairness to methods that
are susceptible to boundary effects. Table 3 adds our results
to those reported in [20] for each one of the 24 photos. The
proposed LSSC method outperforms the state-of-the-art al-
gorithms AP [13], DL [32] and LPA [20] by a signi�cant
margin of 0:87dB even though our formulation is generic
and not tuned to the task of demosaicking, demonstrating
the promise of our image model.

When including the image border so as to be able to com-
pare our results with those of [15], it is interesting to note
that, in the SC setting, we achieve a mean PSNR of40:72dB
on the24images, compared to the39:56dB of [15]. Clearly,
it is thus preferable in this case to learn the dictionary from
a large dataset of natural images. With LSC, we achieve a
mean PSNR of40:98dB, compared to the40:32dB of [15],
reaching a mean PSNR of41:24dB with LSSC. Although
this quantitative improvement may seem small, it is qualita-
tively quite signi�cant. Even though SC and LSC perform
very well in terms of PSNR, they suffer from classical de-
mosaicking artefacts, as shown by the example of Figure 3.
On the other hand, our new LSSC model, which exploits
self-similarities as well as learned sparse coding, is usually
free of most of these artefacts.

4.3. Denoising – Real Noise

To evaluate qualitatively our denoising method on real
images, we have taken three RAW photographs using a
Canon Powershot G9 digital camera at 1600 ISO with a
short time exposure. At such a setting, the images are
quite noisy. We have extracted the mosaicked data from
the RAW image using the open-sourcedcrawsoftware. We
have then scaled manually the R,G,B channels so that they



Im. AP DL LPA SC LSC LSSC
1 37.84 38.46 40.47 40.84 40.92 41.36
2 39.64 40.89 41.36 41.76 42.03 42.24
3 41.40 42.66 43.47 43.15 43.92 44.24
4 39.92 40.49 40.84 41.99 42.14 42.45
5 37.28 38.07 37.51 38.72 39.15 39.45
6 38.69 40.19 40.92 41.29 41.36 41.71
7 41.75 42.35 43.06 43.30 43.59 44.06
8 35.58 36.02 37.13 37.42 37.38 37.57
9 41.84 43.05 43.50 43.17 43.74 43.83
10 41.93 42.54 42.77 43.01 43.17 43.33
11 39.25 40.01 40.51 41.19 41.29 41.51
12 42.62 43.45 44.01 44.29 44.49 44.90
13 34.28 34.75 36.08 36.16 36.29 36.35
14 35.66 36.91 36.86 37.64 38.48 38.77
15 39.17 39.82 40.09 41.04 41.24 41.74
16 42.10 43.75 44.02 44.36 44.42 44.91
17 41.23 41.68 41.75 41.75 41.86 41.98
18 37.31 37.64 37.59 38.05 38.27 38.38
19 39.99 41.01 41.55 41.58 41.71 42.31
20 40.63 41.24 41.48 41.95 42.25 42.27
21 38.72 39.10 39.61 40.55 40.59 40.65
22 37.63 38.37 38.44 38.73 38.97 39.24
23 41.93 43.22 43.92 43.47 43.93 44.34
24 34.74 35.55 35.44 35.59 35.85 35.89
Av. 39.21 40.05 40.52 40.88 41.13 41.39

Table 3. Comparison of demosaicking performance in terms of
PSNR between AP [13], DL [32], LPA [20] and the SC, LSC and
LSSC variants of our method. Best results are in bold.

visually appear to contain similar amounts of noise. At this
point, the noise is, to a �rst approximation, roughly uni-
form, and we apply our denoising algorithm to the scaled
mosaicked image, before performing demosaicking, white
balance, sRGB space conversion, gamma correction, and
contrast enhancement to reconstruct the �nal image. This
approach has proven experimentally to lead to better re-
sults than denoising each R,G,B channel independently. Of
course, assuming that the noise is uniform is only a rough
approximation. Non-spatially uniform noise models are
available for speci�c cameras, and exploited by commer-
cial software packages such at those discussed later in this
section. Incorporating these models into our framework is
feasible (following [15]), but beyond the scope of this paper.
Instead, we demonstrate that, even with a uniform assump-
tion, our algorithm is qualitatively competitive with top-of-
the-line commercial denoising software.

The parameters we have used are a patch size ofm =
8 � 8 pixels, andk = 256 dictionary elements, which is
typical for sparse coding methods [11, 15]. The noise level
� is estimated by the user and assumed to be uniform across
the image, and� is chosen according to the empirical rule
presented in Section 4.1. Demosaicking is performed using
the same parameters as in Section 4.2. Figure 4 compares
closeups of the images reconstructed from the RAW �le
by the camera itself (jpeg output), the image obtained with
Adobe Camera Raw 5.0 (no denoising), two state-of-the-art
denoising softwares NoiseWare 4.2 and the DxO Optics Pro

5.3 package, and our method. The commercial programs
have been run with their default parameters, and these could
certainly be further tuned to improve image quality a bit.6

However, note that, unlike ours, these programs do take ad-
vantage of a detailed, non-uniform noise model speci�c to
the camera, yet do not appear to give qualitatively better
results. Although a quantitative comparison is not possi-
ble, we believe (subjectively) that our method does best on
the �rst and third images, while DxO Optics Pro is slightly
better for the second one. As in our previous experiments,
LSSC suffers from fewer artefacts than LSC in general. The
noise's non-uniformity does not seem to affect our results
much, except perhaps for the background of the third im-
age, where part of the noise is reconstructed.

5. Conclusion

We have proposed in this paper a new image model
that combines the non-local means and sparse coding ap-
proaches to image restoration into a uni�ed framework
where similar patches are decomposed using similar spar-
sity patterns. Quantitative and qualitative experiments with
images corrupted with synthetic or real noise have shown
that the proposed algorithm outperforms the state of the
art in image demosaicking and denoising tasks. Next on
our agenda is to include non-uniform noise models in the
reconstruction process, then adapt our approach to other
challenging image manipulation problems in computational
photography, including deblurring, inpainting, and texture
synthesis in still images and video sequences.
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