Non-local Sparse Models for Image Restoration

Julien Mairat®  Francis Bach® Jean Ponc®  Guillermo Sapird  Andrew Zissermafi*®

YINRIA  2Ecole Normale Sugrieure  University of Minnesota  “Oxford University

Abstract sult of internal post-processing (demosaicking, white bal
ance, etc.). In this paper, we operate directly on the raw
We propose in this paper to unify two different ap- sensor output, that suffers from non-homogeneous noise,
proaches to image restoration: On the one hand, learning a but is less spatially correlated and not corrupted by post-
basis set (dictionary) adapted to sparse signal descnifgtio  processing artefacts. In turn, this requires demosaicking
has proven to be very effective in image reconstruction andthe raw signal—that is, reconstructing a full color image
classi cation tasks. On the other hand, explicitly exglait from the sensor's RGB (Bayer) pattern—a dif cult prob-
the self-similarities of natural images has led to the sssee  lem in itself. Whereas demosaicking is usually tackled us-
ful non-local means approach to image restoration. We pro- ing interpolation-based methods [13, 20, 32], much of the
pose simultaneous sparse coding as a framework for com-denoising effort has been aimed at nding a good model
bining these two approaches in a natural manner. This is for natural images. Early work relied on various smooth-
achieved by jointly decomposing groups of similar signals ness assumptions—such as anisotropic Itering [21], total
on subsets of the learned dictionary. Experimental results variation [25], or image decompositions on xed bases such
in image denoising and demosaicking tasks with syntheticas wavelets [17] for example. More recent approaches in-
and real noise show that the proposed method outperformsclude non-local means lItering [3], which exploits image
the state of the art, making it possible to effectively nesto  self-similarities, learned sparse models [11, 15], Gaussi
raw images from digital cameras at a reasonable speed andscale mixtures [22], elds of experts [24], and block match-
memory cost. ing with 3D Itering (BM3D) [7].
In this paper, we view both denoising and demosaick-
ing as image reconstruction problems, and propose a novel
1. Introduction image model that combines two now classical techniques
into a single framework: Thaon-local meanspproach to
This paper addresses the problem of reconstructing andmage restoration explicitly exploits self-similaritigsnat-
enhancing a color image given the noisy observations gath-ural images [3, 10] to average out the noise among simi-
ered by a digital camera sensor. Today, with advances injar patches, whereasparse codingncodes natural image
sensor design, the signal is relatively clean for digitaRSL  statistics by decomposing each image patch into a linear
at low sensitivities, but it remains noisy for consumerega  combination of a few elements from a basis set calldita
and mobile-phone cameras at high sensitivities (low-light tionary.! Although xed dictionaries based on various types
and/or high-speed conditions). The restoration problem is of wavelets [17] have been used in this setting, sparse de-
thus still of acute and in fact growing importance.d, compositions based on learned, possibly overcomplete, dic
[3, 7, 11, 15]), and we present a novel learned image modeltionaries adapted to speci cimages have been shown to pro-
that outperforms the state of the art in denoising and de-vide better results in practice [11, 15]. We propose to exten
mosaicking tasks on images with real and synthetic noise.and combine these two approaches by usimgultaneous
This model should also prove of interest in deblurring and sparse coding28, 29, 31] to impose that similar patches
inpainting tasks that have become the topic of much recentshare the same dictionary elements in their sparse decompo-
research€.g, [2, 6, 23]) with the emergence of computa- sition. To the best of our knowledge, this is the rsttimettha
tional photography. Working with noisy images recorded the corresponding models of image self-similarities are ex
by digital cameras is dif cult since different devices pro- plicitly used in a common setting with learned dictionaries
duce different kinds of noise, and introduce different type (the BM3D procedure [7] exploits both self-similaritiesdan
of artefacts and spatial correlations in the noise as a re-sparsity for the denoising task, but it is based on classical

SWILLOW project, Laboratoire d'Informatique de I'Ecole Norneal 1The usage of the word “basis” is slightly abusive here simeeele-
Superieure, ENS/INRIA/CNRS UMR 8548. ments of the dictionaries are not (a priori) necessarily petelent.



xed orthogonal dictionaries). Experiments with images 2.2. Learned Sparse Coding
corrupted by synthetic or real noise show that the proposed
method outperforms the state of the art in both image de-
noising and image demosaicking tasks, making it pOSSiblefrom a basis set called dictionary. Under this assumption
to effectively restore raw images from digital cameras at a denoising a patcly, in R™ with a aictionaryD in RM '
reasonable speed and memory cost. Furthermore, althougr%omposed ok elerT|1ents amounts to solving the sparse de-
it is demonstrated on image denoising and demosaickingComposition problem '

tasks in this paper, our model is generic, admits straight-

forward extensions to various image and video restoration min jj ijip stjiy; D ji3 " 2)
tasks such as inpainting, and can adapt to a large class of i 2R

data,e.g, multispectral images or MRI data.

An alternative is to assume that the clean signal can be
approximated by aparselinear combination of elements

whereD is an estimate of the clean signal, gpdjj, is
a sparsity-inducing regularization term. This regularize
2. Related Work associated with thé; norm whenp = 1, leading to the
We start with a brief description of well-established ap- Well-known Lasso [27] and basis psursun [5] problems, and
proaches to image restoration that are relevant and relatedVith the o pseudo norwhenp = 0.* Note that the dictio-
to the approach proposed in the next section. Since it is dif- "2y may beovercomplete-that is, the number of columns
cult to design a standard model for digital camera noise, °f D may be greater than the number of its rows. Following
these methods assume white Gaussian noise. Even thougﬂ'l' 15], can_bg chosen accqrdlng to th_e (supposed known)
this generic setting slightly differs from that of real ineg sta_ndard deviation of the noise. One |r_1deed expects the
denoising, it has allowed the development of effective al- '€Sidualy; --2D jfo behave as a Gaussian vector, anzd thus
gorithms that are now widely used in digital cameras and I¥i D iii2= ° to follow a chi-squared distributiong,
commercial software packages. We will use the same as-concentrated arouna. The strategy proposed in [15] is
sumption in the rest of this paper, but will demonstrate em- tozthr_eshold_ the cumulative d||'str|bu2t|onlfunct|6ra1 of thle
pirically that our approach is effective at restoring reakt i m distribution and chooseas” = “Fp, *( ), whereF,

ages corrupted by non-Gaussian, non-uniform noise. is the inverse of,. Selecting the value = 0:9 leads in
practice to acceptable values"of15].

Various types of wavelets [17] have been used as dic-
tionaries for natural images. Building on ideas proposed
Efros and Leung showed in [10] that the self-similarities in [19] to model neuronal responses in the V1 area of the
inherent to natural images could effectively be used in prain, Elad and Aharon [11] have proposed insteaéaon
texture synthesis tasks. Following their insight, Buades, a dictionaryD adapted to the image at hand, and demon-
Coll and Morel introduced in [3] th@on-local meansp- strated that learned dictionaries lead to better empideal
proach to image denoising, where the prominence of self-formance than off-the-shelf ones. Since images may be very
similarities is used as a prior on natural imagesCon- large, ef ciency concerns naturally lead to sparsely decom
cretely, let us consider a noisy image written as a column posing image patches rather than the full image. For an
vectory in R", and denote by [i] thei-th pixel and byy; image of sizen, a dictionary inR™ K adapted to then
the patch of sizen centered on this pixel for some appropri- overlapping patches of siza (typicalym =8 8 n)
ate sizem. This approach exploits the simple but very effec- associated with the image pixels, is learned by addressing
tive idea that two pixels associated with similar patches  the following optimization problem
andy; should have similar valuedi] andyj ]. Usingy; as

2.1. Non-Local Means Filtering

an explanatory variable fot]i] leads to the non-local means X N NP
formulation, where the denoised pixeli] is obtained by a oot Uil sty Dol % 3)
weighted average (the corresponding Nadaraya-Watson es- =
timator [3]): whereC is the set of matrices iR™ ¥ with unit *,-norm
0 K polumns,A = 15 nl isamatrix inRK "y, is th_e
x[i] = p h(yi Y;j) Vil (1) i-th patch of thenoisyimagey, i is the corresponding
IR Kn(yi v code, and  is the estimate of the denoised patch. Note
that this procedure implicitly assumes that the patches are
andK, is a Gaussian kernel of bandwidth independenfrom each other, which is questionable since
2This idea has in fact appeared in the literature in variotisegand un- p 3The‘p norm of a vectox in R™ is de ned, forp 1, byjixjjp v
der different equivalent interpretatioresg, kernel density estimation [10], ¢ 1 x [i1jP)*=P. Following tradition, we denote hbiyx jjo the number
Nadaraya-Watson estimators [3], mean-shift iterationsdiffusion pro- of nonzero elements of the vector This “ ¢” sparsity measure is not a

cesses on graphs [26], and long-range random elds [14]. true norm.



they overlap. However, this approximation makes the cor-
responding optimization tractable. Indeed, althoughialict
nary learning is traditionally considered as extremelytlyos
online procedures such as [16] make it possible to ef -
ciently process millions of patches, allowing the use ajéar
photographs and/or large image databases.

Once the dictionarp and codes ; have been learned,
every pixel admitan estimates (one per patch containing
it), and its value can be computed by averaging these:

1 X

X = — RiD

i=1

i (4)
whereR; in R" ™ is the binary matrix which places patch
numberi at its proper position in the image. This approach
learns the dictionary on the set of overlapping noisy pache
thereby adapting the dictionary to the image itself, which i
a key element in obtaining better results.

How to choose betweep = 0 or p = 1 is not a pri-
ori clear. Solving Eq. (2) witlp = 0 is NP hard, leading
to approximate solutions obtained with a greedy algorithm

such as forward selection [30] (also known as orthogonal

matching pursuit [18]). Whep = 1, the problem is convex
and can be solved ef ciently with the LARS algorithm [9].
Following Elad and Aharon [11], we have observed experi-
mentally that, given a xed dictionarip , the reconstructed
image is in general of better quality when using the
pseudo norm rather than its convex counterpart. How-

ever, we have also observed that dictionaries learned with

the™; norm are usually better for denoising, even when the
nal reconstruction is done with the, pseudo norm.

2.3. Block Matching 3D (BM3D)

Dabovet al. propose in [7] a patch-based procedure that
exploits image self-similarities and gives state-of-tnere-
sults. As in [11], they estimate the codes of overlapping

patches and average the estimates. However, similar to non

local means ltering [3], they reconstruct patches by ndin
similar ones in the imageblock matching, stacking them
together into a 3D signal block, and denoising the block
using hard or soft thresholding [8] with a 3D orthogonal
dictionary @D ltering). In conjunction with a few heuris-
tics* this simple idea has proven to be very ef cient and

gives better results than regular non-local means. A key

idea of our paper is to implement a similar joint decompo-

sition approach in the context of sparse coding with learned

dictionaries, as explained in the next section.

3. Proposed Formulation

We show in this section how image self-similarities can
be used to improve learned sparse models withultane-

4Namely, using a combination of weighted averages of overtappi
patches, Kaiser windows, and Wiener ltering to further irope results.

Figure 1. Sparsity vs. joint sparsity: Grey squares represents non-
zeros values in vectors (left) or matrix (right).

ous sparse codingvhich encourages similar patches to ad-
mit similar sparse decompositions.

3.1. Simultaneous Sparse Coding

A joint sparsity pattern—that is, a common set of
nonzero coef cients—can be imposed to a set of vectors
| through agrouped-sparsity regularizeon the
matrixA =[ 1;:::; ]in R* ! (Figure 1). This amounts
to restricting the number of nonzero rowsAf or replacing
the ™, vector (pseudo) norm in Eq. (3) by thgq (pseudo)
matrix norm

u X

i 6)

i
i=1
where ' denotes thé-th row of A . In practice, one usually
chooses for the palip; g) the valueg1;2) or (0;1 ), the
former leading to a convex norm, while the latter actually
counts the number of nonzero rows and is only a pseudo

norm [28].

Al

3.2. Principle of the Formulation

Non-local means ltering has proven very effective in
general, but it fails in some cases. In the extreme, when
a patch does not look like any other one in the image, it
is impossible to exploit self-similarities to denoise ttw-c
responding pixel value. Sparse image models can handle
such situations by exploiting the redundancy between over-
lapping patches, but they suffer from another drawback:
Similar patches sometimes admit very different estimates
due to the potential instability of sparse decompositiding (

"o pseudo norm is, after all, piecewise constant, andsits
counterpart is only piecewise differentiable), which can r
sult in practice in noticeable reconstruction artefaatshis
paper, we address this problem by forcing similar patches to
admit similar decompositions. Concretely, let us de ne for
each patcly; the setS; of similar patches as

M

S yjiiz @ (6)
where is some threshold. Let us also consider for the mo-
menta xed dictionanyD inR™ ¥. Decomposing the patch
y; with a grouped-sparsity regularizer on the Seamounts
to solving
X
ngivn liAilipq st iy,
' i2s

D i3 "

("



whereA; =[ j Jj2s, 2 R*J Sil. We adopt the same strat-
egy as in Section 2.2 to chooeaccordingly to the size of
Sii " 2ijlsij( ). In the ";.,-case, this optimization
problem is convex and can be solved ef ciently [12]. In the

w w. This semi-local approach is also used in [7], and
it reduces the worst-case number of vectofs to nw?. In
practice, we never usg greater tharb4 in this paper.
Clustering. It is also possible to cluster pixels into disjoint

“0:1 case, on the other hand, it is intractable, and a greedygroupsCy such that all pixels in C¢ share the same s8t.
approach such as simultaneous orthogonal matching pursuiThe optimization problems (7) associated with all pixels in

[28] must be used to obtain an approximate solution.

In the framework of learned sparse coding, adapiing
to the image(s) of interest naturally leads to the following
optimization problem

X jiAilipa g
S D s.t. 8i
= 1 j2s;

D iz "

(8)
whereD is in R™ K with unit *,-norm columns. The nor-
malization byjS;jP is used to ensure equal weights for all
groups (as before, we only consider the cases were
is (1;2) or (0;1)). As noted in the previous section, in
classical learned sparse coding, we prefer ‘theorm for
learning the dictionary and thg pseudo norm for the nal

(A, iD2C i

the same cluster are identical, further reducing the oleral
computational cost: In fact, only vectors ; are com-
puted in this case since each pixel belongs to exactly one
cluster. This is a key ingredient to the ef ciency of our im-
plementation. Other strategies are also possible, algpain
few clusters to overlap for instance.

Initialization of D. One important asset of sparse repre-
sentations is that they can bene t from dictionaries ledrne
of ine on a database of natural images, which can be used
as a good initial dictionaries for the denoising procedure
[11]. Using the online procedure of [16], our initial dic-
tionaries are learned dd 10’ patches of natural images
taken randomly from théd0 000images of the PASCAL
VOC'07 database. As shown in the next section, using this

reconstruction. We adopt here a similar choice: We use theonline procedure and such a large training sample has led to

convex’ 1., horm for learning the dictionary, which can be
done ef ciently using a simple modi cation of [16], and we
use the'o.; pseudo-norm for the nal reconstruction. As
in [11], this formulation allows all the image patches to be
processed as if they wenmnedependenof each other. To re-

a signi cant performance improvement compared to meth-
ods such as [15] that use batch learning methods such as
K-SVD [11] and are unusable with such large-scale data.
Improved matching. Following [7], we have noticed that
better groups of similar patches can be found by using a

construct the nal image, we average the estimates of each r'st round of denoising on the patches (using, for example,

pixel,

X X

. ;|_><1
x = diag( Rj1m) )

i=1 jZSi

R;D
i=1j2s;

whereR; is de ned as in Eq. (4) and, is a vector of size
m lled with ones. The term on the left is a scaling diago-
nal matrix, counting the number of estimates for each pixel.
Note that whers; = fig, our formulation is equivalent to
regular learned sparse coding.

At rst sight, the proposed technique may seem partic-

the classical sparse coding approach of Eq. (3) presented
in the previous section) before grouping them. In turn, as
shown by our experiments, our simultaneous sparse coding
approach greatly improves on this initial denoising step.
Patch normalization. To improve the numerical stability

of sparse coding, the mean intensity (or RGB color) value
of a patch is often subtracted from all its pixel values befor
decomposing it, then added back to the estimated values
[11]. We have adopted this approach in our implementation,
and our experiments have shown that it improves the visual
quality of the results.

ularly costly, since decomposing a single patch requires Reducing the memory costAt rst sight, Eq. (8) requires

solving a large-scale optimization problem (7). Similar
concerns hold for the original formulations of non-local

storing a large number of codes; . Even though these
are sparse, and their number can be reduced to the number

means [3] and BM3D [7]. As in these cases, slight changesof pixels using the clustering strategy presented above, th

to our approach are suf cient to make it ef cient.

3.3. Practical Formulation and Implementation

The computational cost of the optimization problem (8)
is dominated by the computation of the vectors. In the
worst case scenarim? of these vectors have to be com-
puted. We show in the rest of this section how to modify
our original formulation in order to make this number lin-
ear inn and allow ef cient optimization.

Semi-local grouping. When buildingS;, one can restrict
the search for patches similar 1q to a window of size

could potentially be a problem for large images. In fact,
only a small subset of the vectors; is stored at any given
time: The online procedure of [16] computes themthe

y and does not require storing them to learn the dictionary.
In the case of Eq. (8), the maximum number of vectojs
that have to be stored at any given time is the size of the
largest clusteCy of similar patches.

3.4. Real Images and Demosaicking

Single-chip digital cameras do not capture a noisy RGB
signal at each pixel. Instead, combined with ared (R), green



(G), or blue (B) lter, the sensor associated with each pixel

integrates the incoming light ux over the corresponding

frequency range and a short period of time. The relation
between the pixels and the color information they record is
obtained through a speci c pattern, the most famous one
being the Bayer pattern, G-R-G-R on odd lines and B-G-
B-G on even ones. The demosaicking problem consists
of reconstructing the whole color image given the sensor

real and synthetic noise. Peak signal-to-noise ratio (PNSR
is used as performance measure in our quantitative evalu-
ation® Table 1 reports the results obtained on each image
for different values of the (known) standard deviation & th
noise , and Table 2 compares the average PSNR on these
images obtained by several state-of-the-art image dempisi
methods—namely GSM [22], FoE [24], K-SVD [11] and
BM3D [7]—with our method in three settings: SC (sparse

measurements. Although most of the approaches found incoding) uses a xed dictionary learned on a database of

the literature to solve this problem are based on interpola-
tion [13, 20, 32], the image models investigated in this pa-
per have also been used for demosaicking: Self-similaritie

natural images without grouping the patches. It is there-
fore similar to the global approach to denoising of [11].
The only differences are that we have used the online pro-

have been exploited in [4], and learned sparse coding hascedure of [16] to learn the dictionary froé& 10’ natu-

been used in [15]. We adapt here [15] to our simultaneous
sparse coding framework. First we learn an initial dictio-
nary D o using [16] on a database of natural color images.

ral image patches instead of thé® patches used in [11],
and we have used an regularizer instead of aiy one to
learn the dictionary. In the second setting (LSC, for ledrne

Our demosaicking procedure can then be decomposed intsparse coding), the dictionary is adapted to the test image,

four simple steps:

(1) Cluster similar patches on the mosaicked impge

(2) Reconstruct each patch usibg, addressing for all

min _ jjAijjon st.8Mj(y; Do j)=0; (10)

A 2Rk Sii

whereM; is a binary masked corresponding to the Bayer

pattern of measured values, and average the reconstrsiction

to obtain an estimate of the demosaicked image.

(3) Learn a dictionary D; for x with a strong

regularization—that is, replace by x in Eq. (8), solving

this equation with a large value fbr.

(4) Reconstruct each patch usibg = [D D] instead of

Dy in Eqg. (10), and average the estimates using Eqg. (9) to

obtain the nal demosaicked image.

As shown in the next section, this procedure outperforms
the state of the art from quantitative and qualitative point
of view. The raw mosaicked signal of digital cameras in
low-light, short-exposure settings is noisy. It shouldrére

again using an; regularizer, which is similar to thadap-
tive approach of [11] except for our (better) initial dictio-
nary and their g regularizer. The last setting (LSSC, for
learned simultaneous sparse coding) adds a grouping step
and uses the full power of our simultaneous sparse coding
framework. These PSNR comparisons show that our model
leads to better performance than the state-of-the-art tech
nigues in general, and is always at least as good as BM3D,
the top performer among those, especially for high values
of . Additional qualitative examples are given in Figure 2.
Note that the parameters have not been optimized for
speed but for quality in these experiments. On a recent Intel
Q9450 2.66Ghz CPU, it takes for instan@®s to denoise
the256 256imagepeppers with = 25 and the setting
SC, 85s with LSC, and220s with LSSC. With parameters
optimized for speedk( = 256, fewer iterations in the dic-
tionary learning procedure), the computation times become
respectively0:25s for SC,10s for LSC, and?1s for LSC,
and the nal results' quality only drops b§.05dB, which is

fore be denoised before demosaicking is attempted. Since/isually imperceptible. Our framework is therefore exéol
our denoising procedure is generic and does not necessar} terms of speed/quality compromise.

assume the input data to be natural imagdks,denoising
procedure can be performed on the mosaicked image.itself

4. Experimental Validation
4.1. Denoising — Synthetic Noise

Experiments on denoising with synthetic white Gaus-
sian noise have carried out witl2 standard benchmark im-
ages. The parameters used in this experimenk arés12,
m=9 9for 25 m =12 12for =50 and
m = 16 16for = 100. The value of is chosen a
bit more conservatively than in [15] and is setd®, while

4.2. Demosaicking

We have used the standard Kodak PhotoCD benchmark
to evaluate the performance of our demosaicking algorithm.
This dataset consists @4 RGB images of siz&12 768
to which a Bayer mask has been applied. Ground truth is
thus available, allowing quantitative comparisons. Weehav
arbitrarily tuned the parameters of our method to optimize
its performance on thé last images, choosing = 256
(dictionary size)m =8 8 (patch size),and =3 10
(for images scaled between 0 and 255). These parameters

is chosen according to an empirical rulez (32 )2=m
for images scaled betwednand 255, which has shown to
be appropriate in all of our denoising experiments for both

5Denoting by MSE the mean-squared-error for images whose in-

tensities are betweefl and 255, the PSNR is de ned as PSNR=

101090 (255%=MSE) and is measured in dB. A gain &fiB reduces the
MSE by approximately20%.



5 10 15 | 20 | 25 | 50 | 100 044404792 "
house || 39.93] 36.96| 35.35| 34.16| 33.15| 30.04] 25.83
peppers || 38.18| 34.80| 32.82| 31.37| 30.21| 26.62| 23.00
camera. || 38.32| 34.21| 32.01| 30.57| 29.51| 26.42| 23.08
lena 38.69| 35.83| 34.15| 32.90| 31.87| 28.87| 25.82
barbara || 38.48| 34.97| 33.00| 31.57| 30.47| 27.06| 23.59
boat 37.35| 34.02| 32.20| 30.89| 29.87| 26.74| 23.84
hill 37.17| 33.67| 31.89| 30.71| 29.80| 27.05| 24.44
couple || 37.45| 33.98| 32.06| 30.69| 29.61| 26.30| 23.28
man 37.89| 34.06| 32.01| 30.64| 29.63| 26.69| 24.00

LTI ALIASes

T

1

ngerp. || 36.70| 32.57| 30.31| 28.78 27.62 24.25 21.26 Figure 3. Left: Demosaicking with LSC sometimes causes arte-
bridge || 35.78| 31.22| 28.92| 27.46| 26.42| 23.68| 21.46 facts such as the yellow and blue pixels in the middle of the fence.

intst. 36.13| 32.46| 30.78| 29.63| 28.71| 25.16| 21.10
Av. 37.67| 34.06] 32.12| 30.78| 29.74| 26.57| 23.39
Table 1. Quantitative denoising experiments on 12 standard im-

ages. The PSNR values are averaged &vexperiments wittb

different noise realizations and values ofbetween 5 and 100.  have been used for all 24 photos.

The variance is negligible and not reported due to space limita-  We evaluate the performance of the three variants SC,
tions. LSC, LSSC of our framework de ned in the previous sub-
section, and compare them with the state of the art using

Right: The reconstruction obtained with the LSSC algorithm does
not exhibit such artefacts. (This gure should be viewed in color.)

(2] | [24] | [11] | [7] || SC | LSC | LSSC the experimental protocol of Paligt al. [20] whose LPA

5 || 37.05| 37.03| 37.42| 37.62|| 37.46| 37.66| 37.67 hod | he b ; knowled h ;

10 || 3334 | 3311 | 3362 | 34.00!| 3376 | 3398 | 34.06 method is, to the best of our knowledge, the top performer
15 || 31.31| 30.99 | 31.58| 32.05|| 31.72| 31.99 | 32.12 so far in terms of PSNR (or equivalently mean-squared er-
20 1| 29.91| 29.62| 30.18 | 30.73 || 30.29| 30.60 | 30.78 ror) on the Kodak PhotoCD benchmark. Following [20], we
25 || 2884 28.36| 29.10) 29.72)) 29.18| 29.52 29.74 have excluded a 15-pixel border in fairness to methods that
50 || 25.66 | 24.36 | 25.61 | 26.38|| 25.83| 26.18| 26.57 ible to bound i Table 3 add |
100 || 22.80 | 21.36| 2210 | 2325 22.46| 22.62 | 2339 are susceptible to boundary effects. Table 3 adds our gesult

Table 2. Quantitative comparative evaluation. We compare our al-to those reported in [20] for each one of the 24 photos. The
gorithm to GSM [22], FOE [24], K-SVD [11] and BM3D [7], that proposed LSSC method outperforms the state-(_)f—the—art al-
were the top performers so far on this benchmark, and whose im-90rithms AP [13], DL [32] and LPA [20] by a signi cant
plementations are available online. The PSNR is chosen as beforénargin of 0:87dB even though our formulation is generic
as performance measure. Best results are in bold. and not tuned to the task of demosaicking, demonstrating
the promise of our image model.

When including the image border so as to be able to com-
pare our results with those of [15], it is interesting to note
that, in the SC setting, we achieve a mean PSN&af2dB
on the24images, compared to t139:56dB of [15]. Clearly,
it is thus preferable in this case to learn the dictionaryrfro
a large dataset of natural images. With LSC, we achieve a
mean PSNR of0:98dB, compared to thé0:32dB of [15],
reaching a mean PSNR df:24dB with LSSC. Although
this quantitative improvement may seem small, it is qualita
tively quite signi cant. Even though SC and LSC perform
very well in terms of PSNR, they suffer from classical de-
mosaicking artefacts, as shown by the example of Figure 3.
On the other hand, our new LSSC model, which exploits
self-similarities as well as learned sparse coding, is llisua
free of most of these artefacts.

4.3. Denoising — Real Noise

To evaluate qualitatively our denoising method on real

Figure 2. Qualitative evaluation of our denoising method with images, we have taken three RAW photographs using a
standard images. Left: noisy images. Right: restored images.Canon Powershot G9 digital camera at 1600 I1SO with a

Note that we reproduce the original brick texture in Hoaise im- short time exposure. At such a setting, the images are
age (= 15) and the hair texture for thman image ( = 50), quite noisy. We have extracted the mosaicked data from

both hardly visible in the noisy images. (The details are better seenthe RAW image using the open-soumerawsoftware. We

by zooming on a computer screen.) have then scaled manually the R,G,B channels so that they



'T- 3?24 32516 4L0P27 43%4 ;05;32 'ﬁig 5.3 package, and our method. The commercial programs
> |l 30564 | 2089 | 4136 || 4176 | 42.03 | 4224 have .been run with their defaylt param'eters, and these qould
3 || 41.40 | 4266 | 43.47 || 43.15 | 43.92 | 44.04 certainly be further tuned to improve image quality a%it.

4 || 39.92 | 40.49 | 40.84 || 41.99 | 42.14 | 42.45 However, note that, unlike ours, these programs do take ad-
Z 3;-23 43181(1); %-g; i’i-;; i;’ég i‘i-;‘i vantage of a detailed, non-uniform noise model speci ¢ to
72 Wl 2175 | 4235 | 4306 || 4330 | 4359 | 44.06 the camera, yet do not appear to give quahtgtlvely bettgr
8 3558 | 36.02 | 37.13 || 37.42 | 37.38 | 3757 results. Although a quantitative comparison is not possi-
9 || 41.84| 43.05| 4350 || 43.17 | 43.74 | 43.83 ble, we believe (subjectively) that our method does best on
10 |1 4193 | 42.54| 42.77 || 43.01 | 43.17 43.33 the rst and third images, while DxO Optics Pro is slightly
11 || 39.25| 40.01 | 40.51 || 41.19 | 41.29 | 41.51 b for th q AS | : :

12 || 2262 | 4345 | 4401 || 2429 | 4449 | 4490 etter for the second one. As in our previous experiments,
13 || 34.28 | 34.75 | 36.08 || 36.16 | 36.29 | 36.35 LSSC suffers from fewer artefacts than LSC in general. The
14 || 35.66 | 36.91 | 36.86 || 37.64 | 38.48 | 38.77 noise's non-uniformity does not seem to affect our results

15 39.17 | 39.82 | 40.09 || 41.04 | 41.24 | 41.74

1o || 2210 | 4375 | 4202 || 2236 | 2422 | az91 much, except perhaps for the background of the third im-

17 || 4123 | 4168 | 41.75 || 41.75 | 41.86 | 41.98 age, where part of the noise is reconstructed.
18 || 37.31| 37.64 | 37.59 || 38.05 | 38.27 | 38.38
19 || 39.99 | 41.01 | 41.55 || 41.58 | 41.71 | 42.31 5. Conclusion

20 40.63 | 41.24 | 41.48 || 41.95 | 42.25 | 42.27
21 38.72 | 39.10 | 39.61 || 40.55 | 40.59 | 40.65

52 || 3763 | 38.37 | 3842 || 3873 | 3897 | 3924 We have proposed in this paper a new image model

23 || 4193 | 4322 | 43.92 || 43.47 | 43.93 | 4434 that combine:?‘ the non—local_megns and sparse coding ap-
24 || 34.74 | 3555 | 3544 || 35.59 | 35.85 | 35.89 proaches to image restoration into a unied framework
Av. || 39.21 | 40.05| 40.52 || 40.88 | 41.13 | 41.39 where similar patches are decomposed using similar spar-

Table 3. Comparison of demosaicking performance in terms of sity patterns. Quantitative and qualitative experimerith w
PSNR between AP [13], DL [32], LPA [20] and the SC, LSC and images corrupted with synthetic or real noise have shown
LSSC variants of our method. Best results are in bold. that the proposed algorithm outperforms the state of the
art in image demosaicking and denoising tasks. Next on
] o ] ~our agenda is to include non-uniform noise models in the
visually appear to contain similar amounts of noise. Atthis reconstruction process, then adapt our approach to other
point, the noise is, to a rst approximation, roughly uni- cpajienging image manipulation problems in computational

form, and we apply our denoising algorithm to the scaled ynoiography, including deblurring, inpainting, and tewtu
mosaicked image, before performing demosaicking, white synthesis in still images and video sequences.

balance, sRGB space conversion, gamma correction, and
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