Learning with Structured Inputs and Outputs

Christoph H. Lampert
IST Austria (Institute of Science and Technology Austria), Vienna

ENS/INRIA Summer School, Paris, July 2013

I‘S g AUSTRIA

Institute of Science and Technology

Slides: http://www.ist.ac.at/~chl/

10

http://www.ist.ac.at/~chl/

Schedule

Monday Introduction to Graphical Models
9:00-9:45 Conditional Random Fields

9:45-10:30 Structured Support Vector Machines

Slides available on my home page:

http://www.ist.ac.at/~chl

/10

http://www.ist.ac.at/~chl

Extended version lecture in book form (180 pages)

Foundations and Trends in
Computer Graphics and Vision

now publisher

http://www.nowpublishers.com/

Available as PDF on
http://pub.ist.ac.at/~chl/

new

3/10

http://www.nowpublishers.com/
http://pub.ist.ac.at/~chl/

Standard Regression /Classification:

f X =R

Structured Output Learning:
f:xX—=J.

Standard Regression /Classification:

f. X —R.

» inputs X’ can be any kind of objects
» output y is a real number

Structured Output Learning:
f:xX—=J.

» inputs X’ can be any kind of objects
» outputs y €) are complex (structured) objects

What is structured data?

Ad hoc definition: data that consists of several parts, and not only the
parts themselves contain information, but also the way in which the parts
belong together.

Jemand musste Josef K. verleumdet haben, denn ohne dass er etwas
B&ses getan hétte, wurde er eines Morgens verhaftet. »Wie ein
Hund! « sagte er, es war, als sollte die Scham ihn berleben. Als
Gregor Samsa eines Morgens aus unruhigen Traumen erwachte,
fand er sich in seinem Bett zu einem ungeheueren Ungeziefer
verwandelt. Und es war ihnen wie eine Bestéatigung ihrer neuen
Traume und guten Absichten, als am Ziele ihrer Fahrt die Tochter als
erste sich erhob und ihren jungen Kérper dehnte. »Es ist ein
eigentimlicher Apparat«, sagte der Offizier zu dem
Forschungsreisenden und tberblickte mit einem gewissermaBen

Source wikipedia org

Text

.e./.
B B

Documents/HyperText

What is structured output prediction?

Ad hoc definition: predicting structured outputs from input data
(in contrast to predicting just a single number, like in classification or regression)
» Natural Language Processing:

» Automatic Translation (output: sentences)
» Sentence Parsing (output: parse trees)

» Bioinformatics:

» Secondary Structure Prediction (output: bipartite graphs)
» Enzyme Function Prediction (output: path in a tree)

» Speech Processing:

» Automatic Transcription (output: sentences)
» Text-to-Speech (output: audio signal)

» Robotics:
» Planning (output: sequence of actions)

This tutorial: Applications and Examples from Computer Vision

Reminder: Graphical Model for Pose Estimation

(1)
Fiop

(2)
Fiophead

» Joint probability distribution of all body parts

exp ZEF Yr; T)).
FeF

p(ylr) = Z

Exponent ("energy”) decomposes into small but interacting factors.

8/10

Reminder: Graphical Model for Image Segmentation

» Probability distribution over all foreground/background segmentations

p(ylz) =

eXp Z Ep(yp;a
FeF

Exponent ("energy”) decomposes into small but interacting factors.

9/10

Reminder: Inference/Prediction

Monday: Probabilistic Inference

Compute marginal probabilities

p(yr|z)

for any factor F', in particular, p(y;|x) for all i € V.

Monday: MAP Prediction
Predict f : X —) by solving

*

y* = argmax p(y|lr) = argmin E(y,z)
yey yeY

Today: Parameter Learning

Learn learn potentials/energy terms from training data.

10/10

Part 1: Conditional Random Fields

Supervised Learning Problem

» Given training examples (z',3'),..., (@™, yV) e X x Y
» How to make predictions g : X — Y 7

Approach 1) Discrimitive Probabilistic Learning

1) Use training data to obtain an estimate p(y|x).

2) Use f(z) = argmingcy >, p(y|z)A(y,y) to make predictions.

Approach 2) Loss-minimizing Parameter Estimation

1) Use training data to learn an energy function E(z,y)

2) Use f(z) := argmin,cy E(z,y) to make predictions.

)

29

Conditional Random Field Learning

Goal: learn a posterior distribution

p(ylz) = GXP Z Ep(yr;x
FeF

with F = { all factors }: all unary, pairwise, potentially higher order, ...

» parameterize each Ep(yp;x) = (wp, or(z,yr)).
> fixed feature functions (#1(z1,9),. .., 97 (zF,y)) =: ¢(z,9)

> weight vectors (w1, ..., wF) = w

Result: log-linear model with parameter vector w

plyle; w) = Z(gj 5 EXp(— (1. 6(0.).
with = > exp(—(w, (7, z)))
geY

New goal: find best parameter vector w € RP.

29

Maximum Likelihood Parameter Estimation

Idea 1: Maximize likelihood of outputs y', ...,y for inputs z!, ..., 2
w* =argmax p(y, ... yN|zt, ... 2N, w)
weRP
. . N
il aremax [plyla, w)
weRD n=1
log() S
= argmin — Z log p(y"|z", w)
weRP n=1

negative conditional log-likelihood (of D)

MAP Estimation of w

Idea 2: Treat w as random variable; maximize posterior p(w|D)

MAP Estimation of w

Idea 2: Treat w as random variable; maximize posterior p(w|D)

Bayesp($1,y1,...,$N,yN|’lU)(.3.d p ‘CL’ U}
p(w|D) = = | |
wiP) p(D) p(y"|z")

p(w): prior belief on w (cannot be estimated from data).

w* = argmax p(w|D) = argmin [— log p(w|D)]

weRP weRP
N
=argmin[logp(w) — > logp(y"|z", w) + log p(y"|2")]
weRD n—1 e
indep. of w
= argmin [log p(w Z log p(y™|z", w)
weRP n=1

w* = argmin [— log p(w Zlogp Y|z, w)]
weRP

Choices for p(w):
» p(w) := const. (uniform; in R? not really a distribution)

w* = argmin [— Zlogp(y"|xn,w) + const.|
weRP

negative conditional log-likelihood

» p(w) = const. - e~ 2wl (Gaussian)

N
: Ao
w' = argmin | §HwH + Zlogp(y”|x”7w) + const.

weR n=1

regularized negative conditional log-likelihood

6

29

Probabilistic Models for Structured Prediction - Summary

Negative (Regularized) Conditional Log-Likelihood (of D)

N
)\ n n — "
L(w) = §||w||2 + 3 [(w, d(a",y™) +1log 3 e (" w)]
n=1 yey
(A — 0 makes it unregularized)

Probabilistic parameter estimation or training means solving

w* = argmin £(w).
weRD

Same optimization problem as for multi-class logistic regression.

Negative Conditional Log-Likelihood (Toy Example)

Steepest Descent Minimization — minimize £(w)

input tolerance € > 0
Weyr <= 0

2: repeat

3 v <4 VpLl(weyr)
4

5

=

1« argmin, cg L(Weur — 1)
Weyr £~ Weur — NV
6: until ||v] <e
output we,,

Alternatives:
» L-BFGS (second-order descent without explicit Hessian)
» Conjugate Gradient

We always need (at least) the gradient of L.

29

I\ N
£(w) = Sl + 3 [(w, 62, y™) +log Y e o)
n=1

yey

ey e A D g(an y)
Egey 67<w7¢(xnrg)> }

N
=Xw+ > [o@@"y") = > plyla™, w)da",y)]

yey

N
Vo L(w) = dw + Y [p(a",y") —
n=1

n=1
N

= \w + Z [d)(fﬁn, yn) - Eyrvp(ypc",w)(b(xna y)}
n=1

N
A[’(w) =)\IdDXD + ZEywp(y|x”,w){ ¢($n, y)¢($n, y)T}
n=1

10/29

A N
L(w) = Sl + 3 [fw, (e, y™) +log Y e~ o]

yey

» continuous (not discrete), C™-differentiable on all R .

L
slice through objective value (wy € [—3,5], wy = 0)

N
Vi L{w) = Z Eypiylanw) 9z, 9)]

» For A — O:

Epr(y|xn7w)(Z)(gL‘n’ y) = ¢(.,L.n7 yn) = Vwﬁ(w) = 07

criticial point of £ (local minimum/maximum/saddle point).

Interpretation:
» We want the model distribution to match the empirical one:

! b
Eypylaw)®(@,y) = oz, y7)
» E.g. Image Segmentation
Gunary: correct amount of foreground vs. background
Gpairwise: correct amount of fg/bg transitions — smoothness

12/29

N
A[‘(w) = >\/dD><D + Z]Eywp(ykc”,w){ d)(mna y)gf)(l‘n, y)T}

n=1

> positive definite Hessian matrix — L(w) is convex
— VwL(w) = 0 implies global minimum.

L
slice through objective value (wy € [—3,5], wy = 0)

13 /29

Milestone I: Probabilistic Training (Conditional Random Fields)

> p(y|z, w) log-linear in w € RP.
» Training: minimize negative conditional log-likelihood, £(w)

» L(w) is differentiable and convex,
— gradient descent will find global optimum with V,,L(w) = 0

» Same structure as multi-class logistic regression.

14 /29

Milestone I: Probabilistic Training (Conditional Random Fields)

> p(y|z, w) log-linear in w € RP.
» Training: minimize negative conditional log-likelihood, £(w)

» L(w) is differentiable and convex,
— gradient descent will find global optimum with V,,L(w) = 0

» Same structure as multi-class logistic regression.

For logistic regression: this is where the textbook ends. We're done.

For conditional random fields: we're not in safe waters, yet!

14 /29

Solving the Training Optimization Problem Numerically

Task: Compute v = V,,L(weyr), evaluate L(weyr + no):

N
)\ n mn —(w xn
E(w)=§lle2+§ [(w, d(a",y™) +1log > e~ (woE"v)
n=1

€y
Y y
§u1+»§::hﬂx”,y")—-j{:p(yhﬁkuﬂ¢(mnayﬂ

n=1 yey

Vi L(w) =

Problem:) typically is very (exponentially) large:
> binary image segmentation: || = 2640%480 ~ 1092475

> ranking NV images: |V| = N!, e.g. N = 1000: || ~ 102768,

We must use the structure in), or we're lost.

15/29

Solving the Training Optimization Problem Numerically

N
WV £(UJ) = Aw + Z [¢($n, yn) - Eywp(y\q:n,w)¢<xnv y)]
n=1

Computing the Gradient (naive): O(KM N D)

N
A
£lw) = Sl + 3 [(w. 6" ") + lox Z(s".)]
n=1
Line Search (naive): O(KM N D) per evaluation of £

» N: number of samples

» D: dimension of feature space

» M: number of output nodes

» K: number of possible labels of each output nodes

16 /29

Solving the Training Optimization Problem Numerically

N
Vi L(w) = Aw + Z [QS(;L‘TL’ y") — Epr(yIz",w)d)(mna y)]
n=1

Computing the Gradient (naive): O(K N D)

N
A
£lw) = Sl + 3 [(w. 6" ") + log Z(a",)]
n=1
Line Search (naive): O(K* ND) per evaluation of £

» N: number of samples

» D: dimension of feature space

» M: number of output nodes =~ 100s to 1,000,000s

» K: number of possible labels of each output nodes =~ 2 to 1000s

16 /29

Solving the Training Optimization Problem Numerically

In a graphical model with factors F, the features decompose:

oz, y) = (@r (e, yr))

FeF

Ey~p(y|z,w)¢(x7 y) = <Ey~p(y|m,w)¢F (‘Tu yF)) Fer

= (Eyp~p(yp\x7w)¢F(x’ yF))Fe]-'

Eypwp(yF|r,w)¢F(xv yF) = Z p(yF|$a ’LU) ¢F($a yF)
yFEJ/F' factor marginals

KIF| terms

Factor marginals ur = p(yr|z, w)
» are much smaller than complete joint distribution p(y|x, w),

» can be computed/approximated, e.g., with (loopy) belief propagation.

17 /29

Solving the Training Optimization Problem Numerically

N
Vi ‘C(w) = \w + Z [¢($n> yn) - Ey~p(y|x",w)¢(xna y)]

n=1

Computing the Gradient: OTE4A), O(M K el ND):

A N
Lw) = Swl?+ 3 [fw,o(a",y") +log 3 e~ (wole
n=1

yey

Line Search: O1Fasg), O(M K!FnaeI N D) per evaluation of £

» N: number of samples

» D: dimension of feature space

» M: number of output nodes

» K: number of possible labels of each output nodes

18 /29

Solving the Training Optimization Problem Numerically

N
Vi ‘C(w) = \w + Z [¢($n> yn) - Ey~p(y|x",w)¢(xna y)]

n=1

Computing the Gradient: OIE4AT), O(M K el N D):

A N
Lw) = Swl?+ 3 [fw,o(a",y") +log 3 e~ (wole
n=1

yey

Line Search: O1Fasg), O(M K!Fnael N D) per evaluation of £

» N: number of samples ~ 10s to 1,000,000s

» D: dimension of feature space

» M: number of output nodes

» K: number of possible labels of each output nodes

18 /29

Solving the Training Optimization Problem Numerically

What, if the training set D is too large (e.g. millions of examples)?
Stochastic Gradient Descent (SGD)

» Minimize £(w), but without ever computing £(w) or VL(w) exactly
» In each gradient descent step:

» Pick random subset D' C D, < often just 1-3 elements!
» Follow approximate gradient

6‘6(= \w + |‘D||Z [¢($n7 yn) - Ey~p(y\z”,w)¢(xnv y)]

(zm,yn)€ED’

more: see L. Bottou, O. Bousquet: " The Tradeoffs of Large Scale Learning”, NIPS 2008.
also: http://leon.bottou.org/research/largescale
19/29

http://leon.bottou.org/research/largescale

Solving the Training Optimization Problem Numerically

What, if the training set D is too large (e.g. millions of examples)?
Stochastic Gradient Descent (SGD)
» Minimize £(w), but without ever computing £(w) or VL(w) exactly

» In each gradient descent step:

» Pick random subset D' C D, < often just 1-3 elements!
» Follow approximate gradient

6‘6(= \w + |‘D||Z [¢($n7 yn) - Ey~p(y\w",w)¢(xnv y)]

(zm,yn)€ED’

» Avoid line search by using fixed stepsize rule n (new parameter)

more: see L. Bottou, O. Bousquet: " The Tradeoffs of Large Scale Learning”, NIPS 2008.
also: http://leon.bottou.org/research/largescale
19/29

http://leon.bottou.org/research/largescale

Solving the Training Optimization Problem Numerically
What, if the training set D is too large (e.g. millions of examples)?

Stochastic Gradient Descent (SGD)

v

Minimize £(w), but without ever computing £(w) or V.L(w) exactly
In each gradient descent step:

» Pick random subset D' C D, < often just 1-3 elements!
» Follow approximate gradient

6‘6(= \w + |‘D||Z [¢($n7 yn) - Ey~p(y\w",w)¢(xnv y)]

(zm,yn)€ED’

v

\4

Avoid line search by using fixed stepsize rule 7 (new parameter)
SGD converges to argmin,, £(w)! (if n chosen right)

v

more: see L. Bottou, O. Bousquet: " The Tradeoffs of Large Scale Learning”, NIPS 2008.
also: http://leon.bottou.org/research/largescale
19/29

http://leon.bottou.org/research/largescale

Solving the Training Optimization Problem Numerically
What, if the training set D is too large (e.g. millions of examples)?

Stochastic Gradient Descent (SGD)

v

Minimize £(w), but without ever computing £(w) or V.L(w) exactly
In each gradient descent step:

» Pick random subset D' C D, < often just 1-3 elements!
» Follow approximate gradient

v

6‘6(= \w + |‘D|‘ [¢($n7 yn) - Ey~p(y\ax",w)¢(xnv y)]
(zm,ym)eD’

v

Avoid line search by using fixed stepsize rule 7 (new parameter)
SGD converges to argmin,, £(w)! (if n chosen right)
SGD needs more iterations, but each one is much faster

v

v

more: see L. Bottou, O. Bousquet: " The Tradeoffs of Large Scale Learning”, NIPS 2008.
also: http://leon.bottou.org/research/largescale
19/29

http://leon.bottou.org/research/largescale

Solving the Training Optimization Problem Numerically

N
Vw E(U}) = Aw + Z [¢(xn7 yn) - Ey~p(y|x”,w)¢(xn7 y)]

n=1

Computing the Gradient: OIEad), O(MK?N D) (if BP is possible):

A N
Llw) = Jlwl® + D [(w, o, y")) +1log Y e~ (w0l
n=1

yey

Line Search: OIEng), O(MK?N D) per evaluation of £

» N: number of samples

» D: dimension of feature space: ~ ¢; ; 1-10s, ¢;: 100s to 10000s
» M: number of output nodes

» K: number of possible labels of each output nodes

20/29

Solving the Training Optimization Problem Numerically

Typical feature functions in image segmentation:

> ¢i(yi, x) € R¥0: ocal image features, e.g. bag-of-words
— (w;, ¢i(ys, x)): local classifier (like logistic-regression)

> ¢i;i(vi,y;) = [yi = y;] € R': test for same label
— (wij, ¢i;j(yi,yj)): penalizer for label changes (if w;; > 0)

> combined: argmax, p(y|z) is smoothed version of local cues

local confidence local + smoothness

21/29

Solving the Training Optimization Problem Numerically

Typical feature functions in pose estimation:

> ¢i(y;, x) € R¥1090: Jocal image representation, e.g. HoG
— (w;, ¢i(yi, x)): local confidence map

> ¢ii(vi,y;) = good-fit(yi, y;) € R!: test for geometric fit
— (wij, i (yi, y;j)): penalizer for unrealistic poses

> together: argmax, p(y|r) is sanitized version of local cues

original local confidence local + geometry

[V. Ferrari, M. Marin-Jimenez, A. Zisserman: " Progressive Search Space Reduction for Human Pose Estimation”, CVPR 2008.]
22/29

Solving the Training Optimization Problem Numerically

Idea: split learning of unary potentials into two parts:
> local classifiers,

» their importance.

Two-Stage Training

> pre-train f/(z) = logp(yi|z)

> use ¢;(yi,) == f(x) € RX (low-dimensional)
> keep ¢;;(yi,y;) are before

» perform CRF learning with éz and ¢;;

23 /29

Solving the Training Optimization Problem Numerically

Idea: split learning of unary potentials into two parts:
> local classifiers,

» their importance.

Two-Stage Training

> pre-train f/(z) = logp(yi|z)

> use ¢;(yi,) == f(x) € RX (low-dimensional)
> keep ¢;;(yi,y;) are before

» perform CRF learning with &z and ¢;;

Advantage:

» lower dimensional feature space during inference — faster

> fY(z) can be any classifiers, e.g. non-linear SVMs, deep network,. . .
Disadvantage:

» if local classifiers are bad, CRF training cannot fix that.

23 /29

Solving the Training Optimization Problem Numerically

CRF training methods is based on gradient-descent optimization.
The faster we can do it, the better (more realistic) models we can use:

N

Vi L) = — | 5 [9(a" ") - -¢<w”, y)] [ER2

A lot of research on accelerating CRF training:

problem " solution” method(s)
exploit structure (loopy) belief propagation
smart sampling contrastive divergence
use approximate £ e.g. pseudo-likelihood
N too large mini-batches stochastic gradient descent
- trained @unary two-stage training

24 /29

CRFs with Latent Variables

So far, training was fully supervised, all variables were observed.
In real life, some variables can be unobserved even during training.

missing labels in training data latent variables, e.g. part location

latent variables, e.g. part occlusion latent variables, e.g. viewpoint

25 /29

CRFs with Latent Variables

Three types of variables in graphical model:
» x € X always observed (input),
» y € Y observed only in training (output),
> z € Z never observed (latent).

Example:

> x :image

> y : part positions

» z€{0,1}: flag
front-view or side-view

images: [Felzenszwalb et al., " Object Detection with Discriminatively Trained Part Based Models”, T-PAMI, 2010]

26 /29

CRFs with Latent Variables

Marginalization over Latent Variables

Construct conditional likelihood as usual:

p(y,Z|I,U)) = exp(—(w,qb(x,y,z)))

Z(z,w)

Derive p(y|z,w) by marginalizing over z:

plylz,w) = p(y, 2|z, w) = Zexp (w, ¢(z,y,2)))

2ZEZ

27/29

Negative regularized conditional log-likelihood:

N
A
L(w) = Zlw]® + D log p(y"|a", w)

n=1
= \w|!2+zlogzpy , zla", w)
ZEZ
= HUJ||2+ZIOgZeXp z",y", 2)))
z2€EZ
- Z log Y _ exp(—(w, p(z",y, 2)))
zZEZ
yeY

» L is not convex in w — local minima possible

How to train CRFs with latent variables is active research.

28 /29

Summary — CRF Learning

Given:
» training set {(z',y1),..., (@, yM)} c X x Y

» feature functions ¢ : X x Y — RP
that decomposes over factors, ¢ : X x Vp — R? for F € F

Overall model is log-linear (in parameter w)
CREF training requires minimizing negative conditional log-likelihood:

N
* A 2
w* = argqlﬂnm §Hw|| + Z [(w, p(z", y" logz (w,g(z" ,y)
n=1 yey

» convex optimization problem — (stochastic) gradient descent works

» training needs repeated runs of probabilistic inference

> latent variables are possible, but make training non-convex

29 /29

Part 2: Structured Support Vector Machines

Supervised Learning Problem
» Training examples (z',y"),..., (", V) € & x Y
» Loss function A: Y x)Y — R.
» How to make predictions g : X —) ?

Approach 2) Loss-minimizing Parameter Estimation

1) Use training data to learn an energy function E(z,y)

2) Use f(x) := argmin, ¢y F(z,y) to make predictions.

Slight variation (for historic reasons):
1) Learn a compatibility function g(z,y) (think: "g = —FE")
2) Use f(x) := argmax,cy g(,y) to make predictions.

Loss-Minimizing Parameter Learning

v

D={(z',y"),..., (@, yN)} iid. training set
¢: X x) — RP be a feature function.
A:Y xY — R be a loss function.

v

v

v

Find a weight vector w* that minimizes the expected loss

E(m,y)A(yv f(.%‘))

for f(x) = argmax ¢y (w, p(x,y)).

Loss-Minimizing Parameter Learning

v

D={(z',y"),..., (@, yN)} iid. training set
¢: X x) — RP be a feature function.
A:Y xY — R be a loss function.

v

v

v

Find a weight vector w* that minimizes the expected loss

E(m,y)A(yv f(.’L‘))

for f(r) = argmax,cy, (w, d(z,y)).

Advantage:
» We directly optimize for the quantity of interest: expected loss.
» No expensive-to-compute partition function Z will show up.

Disadvantage:
» We need to know the loss function already at training time.
» We can't use probabilistic reasoning to find w*.

Reminder: Regularized Risk Minimization

Task: for f(z) = argmax, cy (w, ¢(x,y))

min]E(:v,y)A(ya f(l‘))

weRP

Two major problems:

» data distribution is unknown — we can't compute E

» f: X —)Y has output in a discrete space
— f is piecewise constant w.r.t. w
— A(y, f(z)) is discontinuous, piecewise constant w.r.t w

we can't apply gradient-based optimization

Reminder: Regularized Risk Minimization

Task: for f(z) = argmax,cy (w, d(z,y))

min]E($,y)A(ya f(l'))

weRP

Problem 1:

» data distribution is unknown

Solution:
> Replace E(;) d(zy) (-) with empirical estimate Dy ()

> To avoid overfitting: add a regularizer, e.g. %|w|>.

New task:

A 1 &
: - 2 - n n
min S| +N;A(y NICODE

Reminder: Regularized Risk Minimization

Task: for f(x) = argmax,cy (w, ¢(v,y))

A 1 Y
. 2 n n
min - Sfw| +N;A(y f(")).

we

Problem:
> A(y", f(z")) = A(y, argmax, (w, ¢(z,y))) discontinuous w.r.t. w.

Solution:
» Replace A(y,y) with well behaved ¢(x,y, w)

» Typically: £ upper bound to A, continuous and convex w.r.t. w.

New task:

2

Nl
min - Sfwll” + Z 2"y, w)

Reminder: Regularized Risk Minimization

A
i A Yz
min Sl Z "yt w)

Regularization + Loss on training data

Reminder: Regularized Risk Minimization

)\
min — Z W)
Regularization + Loss on tra/n/ng data

Hinge loss: maximum margin training

E(J"nvyna w) ‘= max [A<yn7y) + <wa ¢($nay)> - <’UJ, ¢(mn,yn)>]

yey

Reminder: Regularized Risk Minimization

)\
min — Z W)
Regularization + Loss on tra/n/ng data

Hinge loss: maximum margin training

E(J"nvyna w) ‘= Inax [A(y'rI’y) + <wa ¢($n,y)> - <’UJ, qb(l'n?yn»]

yey

» ¢ is maximum over linear functions — continuous, convex.

» [is an upper bound to A: "small £ = small A"

Reminder: Regularized Risk Minimization

A
min — 0z, y", w)
min, 5 llw] Z "yt
Regularization + Loss on training data

Hinge loss: maximum margin training

E(xn7yn’ 'LU) ‘= max [A(yn7y) + (’LU, ¢(xn7y)> - <w7 ¢(wn,yn)>]

yeY

Alternative:

Logistic loss: probabilistic training

",y w) =1log Y exp ((w, $(z",y)) — (w, $(z",y")))

yey

Differentiable, convex, not an upper bound to A(y,y’).

Structured Output Support Vector Machine

A 1
min 5lhwl?+ 5 Yo max [A@"y) + (w,o(@"y)) — (w.d(a",y")

Conditional Random Field

N
in {0l + 3 log 3 exp ((w, 8o) ~ {w, 6", ™)
n=1

yey

= —(w,p(x™,y"))+exp({w,p(z™,y))) = cond.log.likelihood

CRFs and SSVMs have more in common than usually assumed.
> log >, exp(-) can be interpreted as a soft-max
» but: CRF doesn’t take loss function into account at training time

Example: Multiclass SVM

1 fory#4y
0 otherwise

» V={1,2,...,K}, A(y,y) :{

> o(z,y) = (Iy = 116(), [y =206(), ..., [y = K]o(x))

Solve:

A N
min Gl 5 Do mas [AW0) + o)~ (006"

Classification: f(z) = argmax,cy (w, ¢(z,9)).

Crammer-Singer Multiclass SVM

[K. Crammer, Y. Singer: " On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines”, JMLR, 2001]

Example: Multiclass SVM

1 fory#4y
0 otherwise

» V={1,2,...,K}, A(y,y) :{

> o(z,y) = (Iy = 116(), [y =206(), ..., [y = K]o(x))

Solve:

A N
min Gl 5 Do mas [AW'0) + o) — (006" 0]

_jJo fory = y™
T (w, 0@, y) = (w, p(a™,y™)) fory #y™

Classification: f(z) = argmax,cy (w, ¢(z,9)).

Crammer-Singer Multiclass SVM

[K. Crammer, Y. Singer: " On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines”, JMLR, 2001]

Example: Hierarchical Multiclass SVM

Hierarchical Multiclass Loss:

1
Ay, y) == i(distance in tree)

A(cat,cat) =0, A(cat,dog) =1,
A(cat,bus) =2, etec.

|cat]||dog| [car] |bus]

A 1

[L. Cai, T. Hofmann: "Hierarchical Document Categorization with Support Vector Machines”, ACM CIKM, 2004]
[A. Binder, K.-R. Miiller, M. Kawanabe: " On taxonomies for multi-class image categorization”, 1JCV, 2011]

10/1

Example: Hierarchical Multiclass SVM

Hierarchical Multiclass Loss:

1
Ay, y) == i(distance in tree)
A(cat,dog) =1,
|cat]||dog| [car] |bus]

A(cat, cat) =0,

A(cat,bus) =2, etec.

]

N
LA 1
min 7HwH2 + = Z max [A(yn7 y) + <w7 ¢(xn, y)> - <w7 ¢(xn, yn)>:|
w2 N = vey
(w, B(a™, car)) — (w, $(a", dog)) > 1
e.g. if y" = cat, (w, ¢p(z", cat)) — (w, ¢p(z™, car)) é 2

(w, ¢(x™, cat)) — (w, ¢(z™, bus)) > 2.

» labels that cause more loss are pushed further away
— lower chance of high-loss mistake at test time

[L. Cai, T. Hofmann: "Hierarchical Document Categorization with Support Vector Machines”, ACM CIKM, 2004]

[A. Binder, K.-R. Miiller, M. Kawanabe: " On taxonomies for multi-class image categorization”, 1JCV, 2011]

10

Solving S-SVM Training Numerically

We can solve SSVM training like CRF training:

D WIS i N n -
min 2o +NZ[W (") + (w, 6",) — (w, 6(a",y™)]

» continuous ©
» unconstrained ©
» convex ©

» non-differentiable @
— we can't use gradient descent directly.
— we'll have to use subgradients

1/1

Solving S-SVM Training Numerically — Subgradient Method

Definition

Let f:R” — R be a convex, not necessarily differentiable, function.

A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wp) for all w.

12

Solving S-SVM Training Numerically — Subgradient Method

Definition

Let f:R” — R be a convex, not necessarily differentiable, function.

A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wp) for all w.

12

Solving S-SVM Training Numerically — Subgradient Method

Definition

Let f:R” — R be a convex, not necessarily differentiable, function.

A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wp) for all w.

12

Solving S-SVM Training Numerically — Subgradient Method

Definition
Let f:R” — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wp) for all w.

Solving S-SVM Training Numerically — Subgradient Method

Subgradient method works basically like gradient descent:

Subgradient Method Minimization — minimize F'(w)

> require: tolerance € > 0, stepsizes 7;
> Weyr < 0
> repeat

> v € VP F(wey,)
> Weur — Weuyr — ntv

» until F' changed less than ¢

> return wey,,

Converges to global minimum, but rather inefficient if F' non-differentiable.

[Shor, " Minimization methods for non-differentiable functions”, Springer, 1985.]

13/1

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 Y
min 2wl + 3 07(w)

n=1

with (" (w) = max, £} (w), and

g;(w) = A(yn7y) + <w7¢(xn7y)> - <w’¢($n,yn)>

14/1

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N
. A 2 1 n
min [|w]| +Nn§:1€ (w)
with (" (w) = max, £} (w), and

g;(w) = A(yn7y) + <w7¢(xn7y)> - <w’¢($n,yn)>

£(w)4

Y=

For each y € ¥, £(w) is a linear function of w.

14/1

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 Y
min 2wl + 3 07(w)

n=1

with (" (w) = max, £} (w), and

g;(w) = A(yn7y) + <w7¢(xn7y)> - <w’¢($n,yn)>

£(w)4 y'

w

/
For each y € ¥, £(w) is a linear function of w.

14/1

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 Y
min 2wl + 3 07(w)

n=1

with (" (w) = max, £} (w), and

g;(w) = A(yn7y) + <w7¢(xn7y)> - <w’¢($n,yn)>

£(w)4

w

/ / /
For each y € ¥, £(w) is a linear function of w.

14/1

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N
.)\ 2]. n
min §Hw|| +Nn§:1€ (w)
with (" (w) = max, £} (w), and

ZZ(IU) = A(y",y) + (w, ¢($n?y)> - (wv (", y"))

Z(w)4

/ / !

max over finite): piece-wise linear

14/1

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N
.)\ 2]. n
min §Hw|| +Nn§:1€ (w)
with (" (w) = max, £} (w), and

ZZ(IU) = A(y",y) + (w, ¢($n?y)> - (wv (", y"))

Z(w)4

Wo'/ 1
Subgradient of /™ at wy:

14/1

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N
. A 2 1 n
min 3ol + 5 35 0/0)
with (" (w) = max, £} (w), and

EZ(U’) = A(yn7y) + <’LU, ¢($n)y)> - <wa ¢($n,yn)>

£(w)4

Wo'/ 1
Subgradient of ¢™ at wy: find maximal (active) y.

14/1

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N
. A 2 1 n
min [|w]| +Nn§:1€ (w)
with (" (w) = max, £} (w), and

g;(w) = A(yn7y) + <w7¢(xn7y)> - <w’¢($n,yn)>

£(w)4

w

w7
Subgradient of ¢ at wy: find maximal (active) y, use v = V£ (wo).

14/1

Solving S-SVM Training Numerically — Subgradient Method

Subgradient Method S-SVM Training

input training pairs {(z%,y1),..., (2" y")} C X x),
input feature map ¢(z,y), loss function A(y,y’), regularizer \,
input number of iterations 7', stepsizes n; fort =1,...,T

1. w4 6

2. fort=1,..., T do
3: fori=1,...,ndo
& g agmax,ey A"+ (w0 y)) — (000" ")
5 V" 4 (2™, g) — ¢(a", y")

6: end for

7. wew-n(dw -y Z)

8: end for

output prediction function f(x) = argmax,cy(w, ¢(z,y)).

Obs: each update of w needs N argmax-prediction (one per example).

15/1

Solving S-SVM Training Numerically — Subgradient Method

Same trick as for CRFs: stochastic updates:

Stochastic Subgradient Method S-SVM Training

input training pairs {(z!,y!),..., (2", y")} C X x),
input feature map ¢(z,y), loss function A(y,y’), regularizer \,
input number of iterations 7', stepsizes n; fort =1,...,T

w0

: for t=1,...,T do
(x™,y™) <« randomly chosen training example pair
§ + argmax,cy A(y™, y) + (w, ¢(@",y)) — (0. 6", y"))
w e w — s (w — S 6(a%,9) — o, y™)])

end for

S CIE s OB NOR

output prediction function f(x) = argmax, ¢y (w, ¢(z,y)).

Observation: each update of w needs only 1 argmax-prediction

(but we'll need many iterations until convergence)
16/1

Example: Image Segmenatation

» X images,) = { binary segmentation masks }.

P

» Training example(s): (z",y") =

- AW.9) =X, lp #5] (Hamming loss)

Images: [Carreira, Li, Sminchisescu, " Object Recognition by Sequential Figure-Ground Ranking”, 1JCV 2010] 17/1

Example: Image Segmenatation

» X images,) = { binary segmentation masks }.

» Training example(s): (z",y") =

> AW 5) =X, [pp # 5] (Hamming loss)

t=1: g) = o(y™) — #(y): black +, white +, green —, blue —, gray —

Images: [Carreira, Li, Sminchisescu, " Object Recognition by Sequential Figure-Ground Ranking”, 1JCV 2010] 17/1

Example: Image Segmenatation

» X images,) = { binary segmentation masks }.

» Training example(s): (z",y") =

t=1: g) = ¢(y™) — ¢(9): black 4, white 4, green —, blue —, gray —
t=2: :I,) = d(y™) — ¢(9): black 4+, white 4, green =, blue =, gray —

Images: [Carreira, Li, Sminchisescu, " Object Recognition by Sequential Figure-Ground Ranking”, 1JCV 2010] 17/1

Example: Image Segmenatation

» X images,) = { binary segmentation masks }.

» Training example(s): (z",y") =

¢(y™) — ¢(9): black 4, white 4, green —, blue —, gray —

t=1: 9=
t=2: :I,) = d(y™) — ¢(9): black 4+, white 4, green =, blue =, gray —

d(y™) — ¢(9): black =, white =, green —, blue —, gray —

~
Il
el

<

Images: [Carreira, Li, Sminchisescu, " Object Recognition by Sequential Figure-Ground Ranking”, 1JCV 2010] 17/1

Example: Image Segmenatation

» X images,) = { binary segmentation masks }.

» Training example(s): (z",y") =

t=1: 9= d(y™) — #(9): black 4, white +, green —, blue —, gray —
t=2: 9= o(y™) — ¢(9): black +, white 4, green =, blue =, gray —
t=3 9= d(y™) — (9): black =, white =, green —, blue —, gray —
t=4. 9= d(y™) — (9): black =, white =, green —, blue =, gray =

Images: [Carreira, Li, Sminchisescu, " Object Recognition by Sequential Figure-Ground Ranking”, 1JCV 2010] 17/1

Example: Image Segmenatation

» X images,) = { binary segmentation masks }.

» Training example(s): (z",y") =

t=1: 9= d(y™) — #(9): black 4, white +, green —, blue —, gray —
t=2: 9= o(y™) — ¢(9): black +, white 4, green =, blue =, gray —
t=3 9= d(y™) — (9): black =, white =, green —, blue —, gray —
t=4. 9= d(y™) — (9): black =, white =, green —, blue =, gray =
t=>5 g= d(y™) — (9): black =, white =, green =, blue =, gray =

Images: [Carreira, Li, Sminchisescu, " Object Recognition by Sequential Figure-Ground Ranking”, 1JCV 2010] 17/1

Example: Image Segmenatation

» X images,) = { binary segmentation masks }.

» Training example(s): (z",y") =

t=1: 9= d(y™) — #(9): black 4, white +, green —, blue —, gray —
t=2: 9= o(y™) — ¢(9): black +, white 4, green =, blue =, gray —
t=3 9= d(y™) — (9): black =, white =, green —, blue —, gray —
t=4. 9= d(y™) — (9): black =, white =, green —, blue =, gray =
t=>5 g= d(y™) — (9): black =, white =, green =, blue =, gray =
t=26,...: no ore changes.

Images: [Carreira, Li, Sminchisescu, " Object Recognition by Sequential Figure-Ground Ranking”, 1JCV 2010] 17/1

Solving S-SVM Training Numerically

Structured Support Vector Machine:

min lw||* + Zmax { + (w, p(z",y)) — <w,¢(m‘n,yn)>)}

Subgradient method converges slowly. Can we do better?

18/1

Solving S-SVM Training Numerically

Structured Support Vector Machine:

min 5ol + Zmax[")+ w,6(a"y) — (w, 6(a"

v

Subgradient method converges slowly. Can we do better?

Remember from SVM:
We can use inequalities and slack variables to encode the loss.

18

Solving S-SVM Training Numerically

Structured SVM (equivalent formulation):

Idea: slack variables

A 1
. - 2 - n
e PRkl +NnZ:1§

)

subject to, forn =1,..., N,

max [A(Y",y) + (w, 6(a") — (w.d(a",y")] < €

Note: £™ > 0 automatic, because left hand side is non-negative.

’ Differentiable objective, convex, N non-linear contraints,

19/1

Solving S-SVM Training Numerically

Structured SVM (also equivalent formulation):

Idea: expand max-constraint into individual cases

)

A 1 &
: - 2 - n
min 7w + D€
n=1
subject to, forn =1,..., N,

A(y",y) + (w, o(z",y)) — (w, ¢(2",y")) <&", [forally €y

Differentiable objective, convex, N |Y| linear constraints

20

Solving S-SVM Training Numerically

Solve an S-SVM like a linear SVM:

A 1 &
min —||lw||* + — E
weRP £eRn 2” | Nn 16

subject to, fori =1,...n,

<w’¢(mn,yn)>7<w’¢($n’y)> > A(yn’y) - §n7 for all y e y

Introduce feature vectors dp(x™, Y™, y) := o(x™, y") — ¢(z™, y).

21/1

Solving S-SVM Training Numerically

Solve

A\ 1 N
: 2 n
min —||lw + —
L S DI

subject to, fori=1,...n, forally €),

Same structure as an ordinary SVM!
» quadratic objective ©®
> linear constraints ©

22/

Solving S-SVM Training Numerically

Solve

A\ 1 N
: 2 n
min —||lw + —
L S DI

subject to, fori=1,...n, forally €),

Same structure as an ordinary SVM!
» quadratic objective ©®
> linear constraints ©

Question: Can we use an ordinary SVM/QP solver?

22/

Solving S-SVM Training Numerically

Solve

A\ 1 N
. 2 n
min —||lw + —
L S DI

subject to, (fori=1,...n, forally € Y,

Same structure as an ordinary SVM!
» quadratic objective ©®
> linear constraints ©

Question: Can we use an ordinary SVM/QP solver?

Answer: Almost! We could, if there weren't | N|)| constraints .

» E.g. 100 binary 16 x 16 images: 107 constraints

22

Solving S-SVM Training Numerically — Working Set

Solution: working set training
» It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

23/1

Solving S-SVM Training Numerically — Working Set

Solution: working set training
» It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically — Working Set

» Start with working set S =0 (no contraints)

» Repeat until convergence:
» Solve S-SVM training problem with constraints from .S
» Check, if solution violates any of the full constraint set

> if no: we found the optimal solution, terminate.
> if yes: add most violated constraints to .S, iterate.

23/1

Solving S-SVM Training Numerically — Working Set

Solution: working set training
» It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically — Working Set

» Start with working set S = (no contraints)

» Repeat until convergence:
» Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set

> if no: we found the optimal solution, terminate.
> if yes: add most violated constraints to .S, iterate.

Good practical performance and theoretic guarantees:
» polynomial time convergence e-close to the global optimum

Working Set S-SVM Training

input training pairs {(z%,y'),..., (2" y")} C X x),
input feature map ¢(z,y), loss function A(y,y’), regularizer

Lw<«0, 5«0
2: repeat
32 (w,§) < solution to QP only with constraints from S
for i=1,...,n do

§ « argmax,cy A(Y",y) + (w, ¢(z",y))

if § # y" then

S Su{(=",9)}

end if
9: end for
10: until S doesn’t change anymore.

@ F @ @& 2

output prediction function f(x) = argmax,cy(w, ¢(z,y)).

Obs: each update of w needs N argmax-predictions (one per example),

but we solve globally for next w, not by local steps.
24 /1

Example: Object Localization

/ |
» Loss function: area overlap A(y,y') =1 — % i

[Blaschko, Lampert: "Learning to Localize Objects with Structured Output Regression”, ECCV 2008]

25/1

Example: Object Localization

Structured SVM:

» ¢(z,y) := "bag-of-words histogram of region y in image ="

A 1 N
. 2 n
min —|lw + = E

subject to, fori =1,...n,

(w, o(2", y"))=(w, ¢(z",y)) = Aly",y) — £, forallye).

Interpretation:

» For every image, the correct bounding box, y™, should have a higher
score than any wrong bounding box.

» Less overlap between the boxes — bigger difference in score

26/1

Example: Object Localization

Working set training — Step 1:
» w <+ 0.

For every example:

> g < argmaxyey A(yn’ y) + <’U), (b(mn? y)>
N——
=0
maximal A-loss = minimal overlap with ¢y = gnNy" =10

» add constraint

<w’¢(xn’yn)> - <wv¢($n?g)> >1 - £n

Note: similar to _ for object detection:

> positive examples: ground truth bounding boxes

> negative examples: random boxes from 'image background’

27/1

Example: Object Localization

Working set training — Later Steps:

For every example:
> § ¢ argmax,cy Aly"™,y) + (w, 02", y))
N—— ——
bias towards 'wrong’ regions object detection score
» if § = y™: do nothing,

else: add constraint

enforces ¢ to have lower score after re-training.
Note: similar to 'hard negative mining for object detection:

» perform detection on training image

» if detected region is far from ground truth, add as negative example

Difference: S-SVM handles regions that overlap with ground truth.

28

Kernelized S-SVM

We can also kernelize S-SVM optimization:

mé}v}liyl E anyA(y 7y) -) O‘nyanyKnnyy
a€RY ™ =1, N Y. 7EY
yey n,n=1,....N

subject to, forn =1,..., N,

> am < 5
ny = \ ar°
= AN

N|Y| many variables: train with working set of «;,.

Kernelized prediction function:

f(@) = argmax 3 anyk((2", y)), (2.1))

yey ny'

Not very popular in Computer Vision (quickly becomes inefficient)
29/1

SSVMs with Latent Variables

Latent variables also possible in S-SVMs

» z € X always observed,
» y € Y observed only in training,
» z € Z never observed (latent).

Decision function: f(z) = argmax, cy max.ez (w, p(v,y, 2))

30/1

SSVMs with Latent Variables

Latent variables also possible in S-SVMs

» z € X always observed,
» y €) observed only in training,
» z € Z never observed (latent).

Decision function: f(z) = argmax, cy max.ez (w, p(v,y, 2))

Maximum Margin Training with Maximization over Latent Variables
\ | XN
. : 2 n
Solve: I{ljl’lgl 5 |w|*+ = ng_l I;lea)}}{ o (y)

with

Co(y) = A", y) + max (w, p(z",y, 2)) — max (w, p(z",y", 2))

Problem: not convex — can have local minima

[Yu, Joachims, " Learning Structural SVMs with Latent Variables”, 2009]
similar: [Felzenszwalb et al., " A Discriminatively Trained, Multiscale, Deformable Part Model”, 2008], but) = {£1} 30/1

Summary — S-SVM Learning

Given:
> training set {(z',y'),..., (" y")} C X x Y
» loss function A : Y x Y — R.
> parameterize f(z) := argmax, (w, #(z,y))

Task: find w that minimizes expected loss on future data, E, ,)A(y, f(7))

31/1

Summary — S-SVM Learning

Given:
> training set {(z',y'),..., (" y")} C X x Y
» loss function A : Y x Y — R.
> parameterize f(z) := argmax, (w, #(z,y))

Task: find w that minimizes expected loss on future data, E, ,)A(y, f(7))

S-SVM solution derived from regularized risk minimization:

> enforce [COMFECEIBUEPUE to be better than [all others by a |margin :
(w,e@™y") > A" y) + (w,¢(a",y)) forallye.

» convex optimization problem, but non-differentiable
» many equivalent formulations — different training algorithms

> training needs many argmax predictions, but no probabilistic inference

Latent variable possible, but optimization becomes non-convex.

31/1

Summary — S-SVM Learning

Structured Learning is full of Open Research Questions

» How to train faster?

» CRFs need many runs of probablistic inference,
» SSVMs need many runs of argmax-predictions.

v

How to reduce the necessary amount of training data?
» semi-supervised learning? transfer learning?

How can we better understand different loss function?
» how important is it to optimize the "right” loss?

v

v

Can we understand structured learning with approximate inference?

» often computing VL(w) or argmax, (w, ¢(z,y)) exactly is infeasible.
> can we guarantee good results even with approximate inference?

v

More and new applications!

32/1

Ad: Positions at IST Austria, Vienna

IST Austria Graduate School

» enter with MSc or BSc
» 1(2) + 3 yr PhD program

» Computer Vision/Machine Learning
(me, Vladimir Kolmogorov)
Computer Graphics (C. Wojtan)
Comp. Topology (H. Edelsbrunner)
Game Theory (K. Chatterjee)
Software Verification (T. Henzinger)
Cryptography (K. Pietrzak)

Comp. Neuroscience (G. Tkacik)
Random Matrix Theory (L. Erdds)
Statistics (C. Uhler), and more...

vVVYyVYVYVYYVYYVYY

» fully funded positions

Postdoc Positions in my Group

> see http://www.ist.ac.at/~chl

More info: www.ist.ac.at Internships: send me an email!

33/1

Additional Material

34/

Solving S-SVM Training Numerically — One-Slack

One-Slack Formulation of S-SVM:
(equivalent to ordinary S-SVM formulation by £ = £ >°, &™)

. A
min Sllwl® + ¢
weRDP ceR, 2

subject to, for all (71,...,9V) €Y x---x D,

N
> [a +{w, ¢z, ")) — (w, d(a",y"))] < NE,

n=1

35/1

Solving S-SVM Training Numerically — One-Slack

One-Slack Formulation of S-SVM:
(equivalent to ordinary S-SVM formulation by £ = £ >°, &™)

. A

min Slwll® +¢
weRDP ceR, 2

subject to, for all (g',...,9V) €Y x---x D,

N
> [a +{w, ¢z, ")) — (w, d(a",y"))] < NE,

n=1

|V|V linear constraints, convex, differentiable objective.

We blew up the constraint set even further:
» 100 binary 16 x 16 images: 107" constraints (instead of 107%).

35/1

Solving S-SVM Training Numerically — One-Slack

Working Set One-Slack S-SVM Training

input training pairs {(z%,y1),..., (2" y")} C X x),
input feature map ¢(z,y), loss function A(y, '), regularizer

1: S« 0

2: repeat

3. (w,§) < solution to QP only with constraints from S
4 for i=1,...,n do

5; §" + argmax,cy A(y", y) + (w, (2", y))
6: end for

7 S« Su{(...,2"), @,9")}

8: until S doesn’t change anymore.

output prediction function f(x) = argmax, ¢y (w, ¢(z,y)).

Often faster convergence:
We add one strong constraint per iteration instead of n weak ones.

36/1

