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Fifty years of computer vision 
1963-2013 

• 1960s:  Beginnings in artificial intelligence, image processing 
and pattern recognition 

• 1970s: Foundational work on image formation: Horn, 
Koenderink, Longuet-Higgins … 

• 1980s: Vision as applied mathematics: geometry, multi-scale 
analysis, probabilistic modeling, control theory, optimization 

• 1990s:  Geometric analysis largely completed, vision meets 
graphics, statistical learning approaches resurface 

• 2000s:  Significant advances in visual recognition, range of 
practical applications  



Different aspects  of vision 

• Perception: study the “laws of seeing” -predict what a human 
would perceive in an image. 

• Neuroscience: understand the mechanisms in the retina and 
the brain  

• Function:  how laws of optics, and the statistics of the world 
we live in, make certain interpretations of an image more 
likely to be valid 

The match between human and  computer vision is strongest at the  

level of function, but since typically the results of computer vision are 

meant to be conveyed to humans makes it useful to be consistent 

with human perception. Neuroscience is a source of ideas but  being 

bio-mimetic is not a requirement. 
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The Three R’s of Vision 

Each of the 6 directed arcs in this diagram is a useful direction 

of information flow 

Recognition 

Reconstruction Reorganization 



Review 

• Reconstruction 

– Feature matching + multiple view geometry has led to city 
scale point cloud reconstructions 

• Recognition 

– 2D problems such as handwriting recognition, face 
detection successfully fielded in applications. 

– Partial progress on 3d object category recognition 

• Reorganization 

– Progress on bottom-up segmentation hitting diminishing 
returns 

– Semantic segmentation is the key problem now 

 



Image-based Modeling  
• Façade (1996) Debevec, Taylor & Malik 

– Acquire photographs 

– Recover geometry (explicit or implicit) 

– Texture map 



 Campus Model of UC Berkeley 

Campanile + 40 Buildings (Debevec et al, 1997) 



Arc de 
Triomphe 



The Taj Mahal 

Taj Mahal 

modeled from 

one photograph 

by G. Borshukov 



State of the Art in Reconstruction 

• Multiple photographs • Range Sensors 

Agarwal et al (2010) 

Kinect (PrimeSense) 

Velodyne Lidar 

Semantic Segmentation is needed to make this more 

useful…   

 Frahm et al, (2010) 



Shape, Albedo, and Illumination 

from Shading 

Jonathan Barron                                                   Jitendra Malik 

UC Berkeley 



Far 

Near 

shape / depth 

Forward Optics 



Far 

Near 

shape / depth 

Forward Optics 

illumination 



Far 

Near 

log-shading image of Z and L shape / depth 

Forward Optics 

illumination 



Far 

Near 

log-shading image of Z and L shape / depth 

log-albedo / log-reflectance 

Forward Optics 

illumination 



Far 

Near 

log-shading image of Z and L shape / depth 

log-albedo / log-reflectance 

illumination 

Lambertian reflectance in log-intensity 

Forward Optics 



Far 

Near 

 
 
 

? 

 
 
 

? 

 
 
 

? 

 
 
 
 

 

Shape, Albedo, and Illumination from Shading 
SAIFS (“safes”) 

 
 
 

? 

log-shading image of Z and L shape / depth 

log-albedo / log-reflectance 

illumination 

Lambertian reflectance in log-intensity 



 
 

“Find the most likely explanation (shape Z and log-albedo A) that together exactly 

reconstructs log-image I, given rendering engine S() and known illumination L.”  
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Known Lighting Problem Formulation: 



Demo! 



What do we know about reflectance? 

1) Piecewise smooth 

      (variation is small and sparse) 

 
2) Palette is small 

      (distribution is low-entropy) 

 
3) Some colors are common 

(maximize likelihood under density model) 



Reflectance: Absolute Color 



1) Piecewise smooth 

      (variation in mean curvature is small and sparse) 

 

 
2) Face outward at the occluding contour 

 

 
3) Tend to be fronto-parallel 

      (slant tends to be small) 

What do we know about shapes? 



Real World Images Evaluation: 



Real World Images Evaluation: 



Recognition helps reconstruction 
 Blanz & Vetter (1999) 

Geometric Context (Hoiem, Efros, Hebert) for outdoor scenes; 

 recent work on rooms (CMU, UIUC) is another example  
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Caltech-101 [Fei-Fei et al. 04] 
• 102 classes, 31-300 images/class 

 
 
 
 
 
 
 
 
 
 
 
 



 
Caltech 101 classification results 

 
(even better by combining cues..) 



ICCV '99, Corfu, Greece 

Texton Histogram Model for Recognition 
(Leung & Malik, 1999) cf. Bag of Words 

Terrycloth 

Rough Plastic 

Pebbles 

Plaster-b 



 
Lazebnik, Schmid & Ponce (2006) 

They proposed using vector-quantized 

SIFT descriptors as “words” 



PASCAL Visual Object Challenge  (Everingham et al) 







A good building block is a linear SVM trained 
on HOG features (Dalal & Triggs) 





AP=0.23 





Problems with current recognition approaches 

• Performance is quite  poor compared to that 
at 2d recognition tasks and the needs of many 
applications. 

• Pose Estimation / Localization of parts or 
keypoints is even worse. We can’t isolate 
decent stick figures from radiance images, 
making use of depth data necessary. 

• Progress has  slowed down. Variations of 
HOG/Deformable part models dominate. 



PCA Results on APs of 20 VOC classes 
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Next steps in recognition 

• Richer features than SIFT/HOG (deep learning ?)  

• Incorporate the “shape bias” known from child 
development literature to improve generalization 

– This requires monocular computation of shape, as once 
posited in the 2.5D sketch, and distinguishing albedo and 
illumination changes from geometric contours 

• Top down templates should predict keypoint 
locations and image support, not just information 
about category  

• Recognition and figure-ground inference need to co-
evolve. Occlusion is signal, not noise. 
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Object Recognition 

High-Level Computer Vision 
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Object Recognition 

Semantic Segmentation 

Pose Estimation 

High-Level Computer Vision 

Facing the camera 

Facing back, head to the right 

In a back view 



Object Recognition 

Semantic Segmentation 

Pose Estimation 

Action Recognition 

High-Level Computer Vision 

talking 

Walking away 



Object Recognition 

Semantic Segmentation 

Pose Estimation 

Action Recognition 

Attribute Classification 

High-Level Computer Vision 

blue GMC van 

Entlebucher 

mountain dog 

Man with 

glasses and a 

coat 

elderly white 

man with a 

baseball hat 



Object Recognition 

Semantic Segmentation 

Pose Estimation 

Action Recognition 

Attribute Classification 

High-Level Computer Vision 

“A man with glasses  

and a coat, facing back,  

walking away” 

“An entlebucher 

mountain dog sitting in 

a bag” 

“An elderly man with a 

hat and glasses, facing 

the camera and talking” 

“A blue GMC van 

parked, in a back view” 



Trying to extract stick figures is  hard (and 
unnecessary!) 

Generalized cylinders (Marr & Nishihara, Binford) 

Pictorial Structures (Felszenswalb & Huttenlocher) 

 



All the wrong limbs… 



Motivation 



  

  

  

  
  

Results on various images submitted to the CMU on-line face detector 

http://www.vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi 

Face Detection  
Carnegie Mellon University 



Examples of poselets  

(Bourdev & Malik , 2009) 

Patches are often far visually, but they are close semantically 



How do we train a poselet for a 

given pose configuration? 



Finding Correspondences 

 Given part of  a human 
pose 

 How do we find a similar 
pose configuration in the 
training set? 



Finding Correspondences 

We use keypoints to annotate the joints, eyes, nose, 
etc. of  people 

Left Hip 

Left Shoulder 



Finding Correspondences 

Residual Error 



Training poselet classifiers 

 Residual 
Error: 

0.15 0.20 0.10 0.35 0.15 0.85 

1. Given a seed patch 

2. Find the closest patch for every other person 

3. Sort them by residual error 

4. Threshold them 



Male or female? 



How do we train attribute 

classifiers “in the wild”? 

 Effective prediction requires inferring the pose 

and camera view 

 Pose reconstruction is itself  a hard problem, but 

we don’t need perfect solution. 

 We train attribute classifiers for each poselet 

 Poselets implicitly decompose the pose 



Gender classifier per poselet is 

much easier to train 



Is male 



Has long hair 



Wears a hat 



Wears glasses 



Wears long pants 



Wears long sleeves 



Some discriminative poselets (Maji et al) 



Armlets (Gkioxari et al, CVPR 2013) 
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Multiple Instances 



Results 

• Results of Augmented Armlets and Comparison with baseline[1] 

PCP Yang & Ramanan [1] Our model 

R_UpperArm 38.9 50.2 

R_Lower Arm 21.0 25.0 

L_Upper Arm 36.9 49.2 

L_Lower Arm 19.1 25.4 

Average 29.0 37.5 

[1] Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. CVPR, 2011  
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  75 
D. Martin, C. Fowlkes, D. Tal, J. Malik. "A Database of Human Segmented Natural Images and its 

Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics", ICCV, 2001 

Berkeley Segmentation DataSet  [BSDS] 

http://www.cs.ubc.ca/conferences/ICCV/


State of the Art in Reorganization 
• Interactive segmentation 

using graph cuts 
• Berkeley gPb edges & 

regions 

Rother, Kolmogorov & Blake (2004), 

Boykov & Jolly (2001), Boykov, Veksler & 

Zabih(2001) 

Arbelaez et al (2009), Martin, Fowlkes, 

Malik (2004), Shi & Malik (2000) 

We may be hitting the limits of bottom-up segmentation… 



What boundaries do you see? 



Motion Boundaries 

Sundberg et al, CVPR 2011; Brox & Malik, ECCV 2010 



Recognition Helps Reorganization 
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Superpixel 

assemblies as 

candidates 



Semantic Segmentation using 
Regions and Parts 

P. Arbeláez, B. Hariharan, S. Gupta,  

C. Gu, L. Bourdev and J. Malik 

 



This Work 
Top-down Part/Object Detectors 

0.93 

Cat Segmenter 

0.57 0.32 

Bottom-up Region Segmentation 



Results on PASCAL VOC 



Perceptual Robotics 

 
Using RGBD images to 

semantically parse scenes 

•S. Gupta, P. Arbeláez & J. Malik (CVPR 2013) 



Using RGBD Images to Semantically Parse 

Scenes 

SVM 

Classifier 

Color Image 

Depth Image  

visualized in pseudo color 

blue is close, orange is far 

Normal Image  

visualized in pseudo color 

blue are surfaces facing up 

Input  Reorganization 

Bottom Up Segmentation  

into superpixels 

Long Range Linking 

Semantic  

Segmentation From Kinect-like depth sensors 

Compute features on superpixels, 

classify using SVMs as classifiers 



Semantic Segmentation 
Super Pixel Classification 

Classifier 

IK SVM 

Category Pr 

wall 0.90 

cabinet 0.05 

window 0.05 

chair 0.0 

table 0.0 

- 

- 



Semantic Segmentation 

Affordance Based Features 
 

• Geocentric Pose 

• Orientation Features 

• Height above ground 

 

• Size Features 

• Spatial extent 

• Surface Area 

• Is clipped/occluded 

 

• Shape Features 

• Planarity 

• Strength of local geometric gradients 

 

 

 

 

 

 

 

 

 

Category Specific Features 

 

• Scores of one-versus-rest SVMs using 

histogram of  

• Vector Quantized SIFT 

• Geocentric Textons 

Use orientation with respect to gravity, 

heights above ground, 

actual sizes 



Semantic Segmentation 



Semantic Segmentation 

Category wise performance 

[NYU] Our 

wall 55.25 62.2 

floor 73.08 75.9 

cabinet 31.4 44.5 

bed 38.87 49.4 

chair 28.94 37.9 

sofa 24.52 39.3 

table 20.13 31.2 

door 5.59 10.4 

window 26.35 32.4 

bookshelf 20.6 19 

[NYU] Our 

picture 34.31 39.5 

counter 32.03 47.4 

blinds 39.01 42.1 

desk 4.52 9.4 

shelves 3.07 3.3 

curtain 26.43 32 

dresser 13.08 19.9 

pillow 18.34 27.1 

mirror 4.08 18.9 

floor mat 7.11 20.8 

NYU [Silberman et al ECCV12] Indoor segmentation and support inference from RGBD images. 

 

[NYU] Our 

35.26 42.04 

Aggregate Performance 



Semantic Segmentation 
Performance – some more categories 

[NYU] Our 

clothes 6.27 8.5 

ceiling 62.99 58.3 

books 5.34 3.4 

refrigerator 1.28 17.3 

television 5.66 19.1 

paper 12.6 12.5 

towel 0.11 8 

shower curtain 3.55 15 

box 0.12 3.3 

whiteboard 0 31.2 

[NYU] Our 

person 6.35 16.7 

night stand 5.95 29 

toilet 26.49 39.4 

sink 24.66 25.2 

lamp 14.99 23.5 

bathtub 0 20.5 

bag 0 0.1 

otherstructure 5.75 2.6 

otherfurniture 3.66 19.8 

otherprop 20.29 25.5 
[NYU] Silberman et al, ECCV12, Indoor segmentation and support inference from RGBD images. 
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Thank You 


