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What we would like to be able to do…
• Visual scene understanding
• What is in the image and where

Dog 1: Terrier

Motorbike: Suzuki GSX 750

Ground: Gravel

Plant

Wall

Gate

Dog 2: Sitting on Motorbike

Person: John Smith, holding Dog 2

• Object categories, identities, properties, activities, relations, …



Recognition Tasks
• Image Classification

– Does the image contain an aeroplane?

• Object Class Detection/Localization
– Where are the aeroplanes (if any)?

• Object Class Segmentation
– Which pixels are part of an aeroplane 

(if any)?



Things vs. Stuff

Stuff (n): Material defined by a 
homogeneous or repetitive 
pattern of fine-scale properties, 
but has no specific or distinctive 
spatial extent or shape.

Thing (n): An object with a 
specific size and shape.

Ted Adelson,  Forsyth et al. 1996.

Slide: Geremy Heitz



• Object Class Detection/Localization
– Where are the aeroplanes (if any)?

Recognition Task

• Challenges
– Imaging factors e.g. lighting, pose,

occlusion, clutter
– Intra-class variation

• Compared to Classification
– Detailed prediction e.g. bounding box
– Location usually provided for training



Challenges: Background Clutter



Challenges: Occlusion and truncation



Challenges: Intra-class variation



Object Category Recognition by Learning
• Difficult to define model of a category. Instead, learn from 

example images



Level of Supervision for Learning
Image-level label

Pixel-level segmentation

Bounding box

“Parts”



aeroplane bicycle

car cow

motorbikehorse

Preview of typical results



Class of model: Pictorial Structure

• Intuitive model of an object

• Model has two components

1. parts (2D image fragments)

2. structure (configuration of parts)

• Dates back to Fischler & Elschlager 1973

Is this complexity of representation necessary ?

Which features?



Restrict spatial deformations



• Use a sub-window
– At correct position, no clutter is present
– Slide window to detect object
– Change size of window to search over scale

Problem of background clutter



Outline

1. Sliding window detectors

2. Features and adding spatial information

3. Histogram of Oriented Gradients (HOG)

4. PASCAL VOC and a state of the art detection algorithm

5. The future and challenges



Outline

1. Sliding window detectors

• Start: feature/classifier agnostic

• Method 

• Problems/limitations

2. Features and adding spatial information

3. Histogram of Oriented Gradients (HOG)

4. PASCAL VOC and a state of the art detection algorithm

5. The future and challenges



Yes,
a car
No,

not a car

Detection by Classification
• Basic component: binary classifier

Car/non-car
Classifier



Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale



Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale



Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale
(can use same size window over a spatial pyramid of images)



Window (Image) Classification

• Features usually engineered
• Classifier learnt from data

Feature
Extraction

•
•
•
•
•

Classifier

Training Data

Car/Non-car



Problems with sliding windows …

• aspect  ratio

• granuality (finite grid)

• partial occlusion

• multiple responses

See work  by

• Christoph Lampert et al CVPR 08, ECCV 08



Outline

1. Sliding window detectors

2. Features and adding spatial information
• Bag of visual word (BoW) models

• Beyond BoW I: Implicit Shape Model (ISM) models

• Beyond BoW II: Grids and spatial pyramids

3. Histogram of Oriented Gradients (HOG)

4. PASCAL VOC and a state of the art detection algorithm

5. The future and challenges



Recap: Bag of (visual) Words representation

• Detect affine invariant local features (e.g. 
affine-Harris)

• Represent by high-dimensional
descriptors, e.g. 128-D for SIFT

• Map descriptors onto a common vocabulary 
of visual words

• Summarizes sliding window content in a 
fixed-length vector suitable for classification

Represent sliding window as a histogram over 
visual words – a bag of words



Examples for visual words

Airplanes

Motorbikes

Faces

Wild Cats

Leaves

People

Bikes



Intuition

Visual Vocabulary

• Visual words represent “iconic” image fragments
• Feature detectors and SIFT give invariance to local rotation and scale
• Discarding spatial information gives configuration invariance



Learning from positive ROI examples

Bag of Words

•
•
•
•
•

•
•
•
•
•

Feature Vector



Sliding window detector
• Classifier: SVM with linear kernel

• BOW representation for ROI

Example detections for dog

Lampert et al CVPR 08:  Efficient branch and bound search over all windows



Discussion: ROI as a Bag of Visual Words 

• Advantages
– No explicit modelling of spatial information ⇒

high level of invariance to position and 
orientation in image

– Fixed length vector ⇒ standard machine 
learning methods applicable

• Disadvantages
– No explicit modelling of spatial information ⇒

less discriminative power
– Inferior to state of the art performance



Beyond BOW I: Pictorial Structure
• Intuitive model of an object

• Model has two components

1. parts (2D image fragments)

2. structure (configuration of parts)

• Dates back to Fischler & Elschlager 1973

Example spatial structures:

x1

x3

x4

x6

x5

x2

“Star” shape model

x1

x3

x4

x6

x5

x2

Fully connected shape model



Implicit Shape Model (ISM)

• Basic ideas
– Learn an appearance codebook
– Learn a star-topology structural model

• Features are considered independent given object centre

• Algorithm: probabilistic Generalized Hough Transform

x1

x3

x4

x6

x5

x2

Leibe, Leonardis, Schiele, 03/04



Codebook Representation

• Extraction of local object features
– Interest Points (e.g. Harris detector)
– Sparse representation of the object appearance

• Collect features from whole training set

• Example:

Class specific vocabulary



Leibe & Schiele 03/04: Generalized Hough Transform

• Learning: for every cluster, store possible “occurrences”

• Recognition: for new image, let the matched patches vote for possible object 
positions



Voting Space
(continuous)

Interest Points Matched Codebook 
Entries

Probabilistic 
Voting

Backprojection
of Maximum

Leibe & Schiele 03/04: Generalized Hough Transform



• Mean-Shift formulation for refinement
– Scale-adaptive balloon density estimator

Scale Voting: Efficient Computation

y

s

Binned 
accum. array

y

s

x

Refinement
(MSME)

y

s

x

Candidate
maxima

y

s

Scale votes



Detection Results

• Qualitative Performance
– Recognizes different kinds of cars
– Robust to clutter, occlusion, low contrast, noise



Discussion: ISM and related models
Advantages
• Scale and rotation invariance 

can be built into the 
representation from the start

• Relatively cheap to learn and 
test (inference)

• Works well for many different 
object categories

• Max-margin extensions 
possible, Maji & Malik, CVPR09

Disadvantages
• Requires searching for modes in the Hough space
• Similar to sliding window in this respect
• Is such a degree of invariance required? (many objects are horizontal)



Beyond BOW II: Grids and spatial pyramids

Bag of Words

•
•
•
•
•

•
•
•
•
•

Feature Vector

Start from BoW for ROI
• no spatial information recorded

• sliding window detector



Adding Spatial Information to Bag of Words

Bag of Words

•
•
•
•
•

•
•
•
•
•

Concatenate

Feature Vector
[Fergus et al, 2005]Keeps fixed length feature vector for a window



Tiling defines (records) the spatial correspondence of the words

If codebook  has V visual words, then representation has dimension 4V

Fergus et al ICCV 05

• parameter: number of tiles



Spatial Pyramid – represent correspondence

• As in scene/image classification can use pyramid kernel

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1 BoW

4 BoW

16 BoW

[Lazebnik et al, 2006][Grauman & Darrell, 2005]



Dense Visual Words
• Why extract only sparse image 

fragments?

• Good where lots of invariance and 
matches are needed, but not 
relevant to sliding window detection?

• Extract dense visual words on an overlapping grid

• More “detail” at the expense of invariance
• Pyramid histogram of visual words (PHOW)

[Luong & Malik, 1999]
[Varma & Zisserman, 2003]

[Vogel & Schiele, 2004]
[Jurie & Triggs, 2005]

[Fei-Fei & Perona, 2005]
[Bosch et al, 2006]

•
•
•
•
•

Patch / SIFT

Quantize
Word



Outline

1. Sliding window detectors

2. Features and adding spatial information

3. Histogram of Oriented Gradients + linear SVM classifier
• Dalal & Triggs pedestrian detector

• HOG and history

• Training an object detector

4. PASCAL VOC and a state of the art detection algorithm 

5. The future and challenges



Dalal & Triggs CVPR 2005
Pedestrian detection

• Objective: detect (localize) standing humans in an image

• Sliding window classifier

• Train a binary classifier on whether a window contains a 
standing person or not

• Histogram of Oriented Gradients (HOG) feature

• Although HOG + SVM originally introduced for pedestrians 
has been used very successfully for many object categories



Feature:  Histogram of Oriented 
Gradients (HOG)

image
dominant 
direction HOG

fre
qu

en
cy

orientation

• tile 64 x 128 pixel window into 8 x 8 pixel cells

• each cell represented by histogram over 8 
orientation bins  (i.e. angles in range 0-180 degrees)



Histogram of Oriented Gradients (HOG) continued

• Adds a second level of overlapping spatial bins re-
normalizing orientation histograms over a larger spatial area

• Feature vector dimension (approx) =  16 x 8 (for tiling) x 8 
(orientations) x 4 (for blocks) = 4096



Window (Image) Classification

• HOG Features
• Linear SVM classifier

Feature
Extraction

•
•
•
•
•

Classifier

Training Data

pedestrian/Non-pedestrian





Averaged examples



Advantages of linear SVM:

• Training (Learning)
• Very efficient packages for the linear case, e.g. LIBLINEAR for batch 
training and Pegasos for on-line training. 

• Complexity O(N) for N training points (cf O(N^3) for general SVM)

• Testing (Detection)

Classifier: linear SVM
f(x) = w>x+ b

f(x) =
SX
i

αik(xi,x) + b

f(x) =
SX
i

αixi
>x+ b

= w>x+ b

S = # of support vectors 

= (worst case ) N

size of training data

Non-linear

Linear

Independent of size of training data

More on linear/non-linear in the image classification practical



Dalal and Triggs, CVPR 2005



Learned model

f(x) = w>x+ b

average over 
positive training data



Slide from Deva Ramanan



What is represented by HOG

Inverting and Visualizing Features for Object Detection

Carl Vondrick Aditya Khosla Tomasz Malisiewicz Antonio Torralba

http://web.mit.edu/vondrick/ihog/index.html

HOG Inverse

Original



What is represented by HOG
HOG Inverse Original



Why does HOG + SVM work so well?
• Similar to SIFT, records spatial arrangement of histogram orientations
• Compare to learning only edges:

– Complex junctions can be represented
– Avoids problem of early thresholding
– Represents also soft internal gradients

• Older methods based on edges have become largely obsolete

• HOG gives fixed length vector for window, 
suitable for feature vector for SVM



Contour-fragment models

• Generalized Hough like representation using contour 
fragments

• Contour fragments learnt from edges of training images

• Hough like voting for detection

Shotton et al ICCV 05, Opelt et al ECCV 06

pσ
T x1

x3

x4

x6

x5

x2



Training a sliding window detector
• Object detection is inherently asymmetric: much more

“non-object” than “object” data

• Classifier needs to have very low false positive rate
• Non-object category is very complex – need lots of data



Bootstrapping

1. Pick negative training 
set at random

2. Train classifier
3. Run on training data
4. Add false positives to 

training set
5. Repeat from 2

• Collect a finite but diverse set of non-object windows
• Force classifier to concentrate on hard negative examples

• For some classifiers can ensure equivalence to training on 
entire data set



Example: train an upper body detector
– Training data – used for training and validation sets

• 33 Hollywood2 training movies
• 1122 frames with upper bodies marked

– First stage training (bootstrapping)
• 1607 upper body annotations jittered to 32k positive samples
• 55k negatives sampled from the same set of frames

– Second stage training (retraining)
• 150k hard negatives found in the training data



Training data – positive annotations



Positive windows

Note: common size and alignment



Jittered positives



Jittered positives



Random negatives



Random negatives



Window (Image) first stage classification

HOG Feature
Extraction

•
•
•
•
•

Linear SVM
Classifier

Jittered positives 

random negatives f(x) = w>x+ b

• find high scoring  false positives detections

• these are the hard negatives for the next round of training

• cost = # training images x inference on each image



Hard negatives



Hard negatives



First stage performance on validation set



Precision – Recall curve

0 0.2 0.4 0.6 0.8 10

0.2
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all windows

returned 
windows

correct 
windows

• Precision: % of returned windows that 
are correct

• Recall: % of correct windows that are 
returned

classifier score decreasing



First stage performance on validation set



Performance after retraining



Effects of retraining



Side by side

before retraining after retraining



Side by side

before retraining after retraining



Side by side
before retraining after retraining



Tracked upper  body detections



Notes
• Training (bootstrapping, retraining) can be done in a more 

principled way using Structured Output learning with the 
cutting plane algorithm

– See Christoph Lampert’s lecture on Wednesday

• An object category detector can be learnt from a single 
positive example

– See Exemplar SVM by Malisiewicz, Gupta, Efros, ICCV 2011



Accelerating Sliding Window Search
• Sliding window search is slow because so many windows are 

needed e.g. x × y × scale ≈ 100,000 for a 320×240 image

• Most windows are clearly not the object class of interest

• Can we speed up the search?



Cascaded Classification
• Build a sequence of classifiers with increasing complexity

Classifier
N

Face

Non-face

Classifier
2

Non-face

Classifier
1

Non-face

Window

More complex, slower, lower false positive rate

• Reject easy non-objects using simpler and faster classifiers

Possibly a 
face

Possibly a 
face



Cascaded Classification

• Slow expensive classifiers only applied to a few windows ⇒
significant speed-up

• Controlling classifier complexity/speed:
– Number of support vectors [Romdhani et al, 2001]
– Number of features [Viola & Jones, 2001]
– Type of SVM kernel [Vedaldi et al, 2009]
– Number of parts                             [Felzenszwalb et al, 2011]



“Accelerating” Training

Discriminative Decorrelation for Clustering and Classification
Bharath Hariharan, Jitendra Malik and Deva Ramanan, ECCV 2012

Problem: SVM training is expensive
– Mining for hard negatives, bootstrapping

Solution: LDA (Linear Discriminant Analysis)
– Extremely fast training, very similar 

performance



Linear Discriminant Analysis (LDA) 

Assumptions

Learning ‐ Classification

difference in class means



Pedestrian Detection
Linear Discriminant Models

• no need for costly bootstrapping and hard negatives

• very fast for learning multiple classes

• Intuition: covariance learns correlation on HOGs in advance, so 
learning the classifier can concentrate on discriminative gradients

• whitened HOG also better for clustering

SVM LDA

covariance  mean 
positives  

mean 
negatives 

• μ1 — quick to compute

• μ0, Σ — compute once, use for any class



SVM

LDA

Pedestrian Detection
Linear Discriminant Models

Precision-Recall graph on INRIA dataset



Summary: Sliding Window Detection
• Can convert any image classifier into an 

object detector by sliding window. Efficient 
search methods available.

• Requirements for invariance are reduced by 
searching over e.g. translation and scale

• Spatial correspondence can be 
“engineered in” by spatial tiling



Outline

1. Sliding window detectors

2. Features and adding spatial information

3. HOG + linear SVM classifier

4. PASCAL VOC and a state of the art detection algorithm
• VOC challenge

• Felzenswalb et al. – multiple parts, latent SVM

5. The future and challenges



The PASCAL Visual Object Classes 
(VOC) Dataset and Challenge

Mark Everingham
Luc Van Gool
Chris Williams

John Winn
Andrew Zisserman



The PASCAL VOC Challenge

• Challenge in visual object
recognition funded by
PASCAL network of
excellence

• Publicly available dataset of
annotated images

• Main competitions are classification (is there an X in this 
image), detection (where are the X’s), and segmentation 
(which pixels belong to X)

• “Taster competitions” in 2-D human “pose estimation” (2007-
12) and static action classes (2010-12)

• Standard evaluation protocol (software supplied)



Dataset Content

• 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, 
chair, cow, dining table, dog, horse, motorbike, person, 
potted plant, sheep, train, TV

• Real images downloaded from flickr, not filtered for “quality”

• Complex scenes, scale, pose, lighting, occlusion, ...



Annotation
• Complete annotation of all objects

• Annotated in one session with written guidelines

Truncated
Object extends 
beyond BB

Occluded
Object is 
significantly 
occluded within BB

Pose
Facing left

Difficult
Not scored 
in evaluation



Examples
Aeroplane

Bus

Bicycle Bird Boat Bottle

Car Cat Chair Cow



Examples
Dining Table

Potted Plant

Dog Horse Motorbike Person

Sheep Sofa Train TV/Monitor



Challenges

20 object classes

1. Classification Challenge: Name Objects
Predict whether at least one object of a 
given class is present in an image

2. Detection Challenge:  Localize objects
Predict the bounding boxes of all objects of 
a given class in an image (if any)

3. Segmentation Challenge: 
For each pixel, predict the class of the 
object containing that pixel or ‘background’.



Detection: Evaluation of Bounding Boxes
• Area of Overlap (AO) Measure

Ground truth Bgt

Predicted Bp

Bgt ∩ Bp

> ThresholdDetection if
50%

• Evaluation: Average precision per class on predictions



Precision/Recall - Motorbike
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Precision/Recall - Person
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Precision/Recall – Potted plant
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“True Positives” - Motorbike
NLPR_DD_DC

NYUUCLA_HIERARCHY

OXFORD_DPM_MK



“False Positives” - Motorbike
NLPR_DD_DC

NYUUCLA_HIERARCHY

OXFORD_DPM_MK



“True Positives” - Cat
NYUUCLA_HIERARCHY

OXFORD_DPM_MK

UVA_SELSEARCH



“False Positives” - Cat
NYUUCLA_HIERARCHY

OXFORD_DPM_MK

UVA_SELSEARCH



Progress 2009-2012



ImageNet Challenge 2013



Object Detection with Discriminatively 
Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester, 
Deva Ramanan, Ross Girshick

PAMI 2010



Single rigid template usually not enough to represent a category

1. Many objects (e.g. humans) are articulated, or have parts 
that can vary in configuration 

2. Many object categories look very different from different 
viewpoints, or from instance to instance

Slide by N. Snavely



Discriminative part-based models

Root 
filter

Part 
filters

Deformation 
weights

• One component of person model

x1

x3

x4

x6

x5

x2



Object Hypothesis
• Position of root + each part
• Each part: HOG filter (at higher resolution)

Score is sum of filter 
scores minus 

deformation costs

p0 : location of root
p1,..., pn : location of parts

z = (p0,..., pn)



Score of a Hypothesis

• Linear classifier applied to feature subset defined by hypothesis

filters deformation parameters

displacements

Appearance term Spatial prior

concatenation of 
HOG features and 
part displacement 

features

concatenation of filters 
and deformation 

parameters



Single rigid template usually not enough to represent a category

1. Many objects (e.g. humans) are articulated, or have parts 
that can vary in configuration 

2. Many object categories look very different from different 
viewpoints, or from instance to instance

Slide by N. Snavely



Multiple components

• Mixture of deformable part-based models
– One component per “aspect” e.g. front/side view

• Each component has global template + deformable parts
• Discriminative training from bounding boxes alone



Training
• Training data = images + bounding boxes
• Need to learn: model structure, filters, deformation costs

Training



Latent SVM (MI-SVM)

Minimize

Training data

We would like to find β such that:

Classifiers that score an example x using

β are model parameters
z are latent values

• Which component?
• Where are the parts?

SVM objective



Latent SVM Training

• Convex if we fix z for positive examples

• Optimization:
– Initialize β and iterate:

• Pick best z for each positive example
• Optimize β with z fixed

• Local minimum: needs good initialization
– Parts initialized heuristically from root

Alternation 
strategy



Person Model

root filters
coarse resolution

part filters
finer resolution

deformation
models

Handles partial occlusion/truncation



Person model with 3 left-right components
• Mixture model using max over multiple components with left-

right pairs



Car Model

root filters
coarse resolution

part filters
finer resolution

deformation
models



Car Detections

high scoring false positiveshigh scoring true positives



Person Detections

high scoring true positives
high scoring false positives 

(not enough overlap)



Comparison of Models



Summary

• Discriminative learning of model with latent 
variables for single feature (HOG):

– Latent variables can learn best alignment in the 
ROI  training annotation

– Parts can be thought of as local SIFT vectors
– Some similarities to Implicit Shape Model but with 

discriminative/careful training throughout

NB: Code available for latent model !



Outline

1. Sliding window detectors

2. Features and adding spatial information

3. HOG + linear SVM classifier

4. PASCAL VOC and a state of the art detection algorithm

5. The future and challenges



There are alternatives to sliding - jumping window

Hypothesis

Position of visual word with respect to the object

learn the position/scale/aspect ratio of the ROI with respect to the visual word

Tr
ai

ni
ng

D
et

ec
tio

n

Handles change of aspect ratio



Current  Research Challenges
• Improving precision, e.g. by context

– from scene properties: GIST, BoW, stuff 
– from other objects, e.g. Felzenszwalb et al, PAMI 10
– from geometry of scene, e.g.  Hoiem et al CVPR 06

• Improving recall, e.g. missed due to occlusion/truncation
– Winn & Shotton, Layout Consistent Random Field, CVPR 06
– Vedaldi & Zisserman, NIPS 09
– Yang et al, Layered Object Detection, CVPR 10
– Tang et al, Detection and Tracking of Occluded People, BMVC 12

• Weak and noisy supervision, e.g. dot or image level
– Deselaers et al, IJCV 2012
– Arteta et al, CVPR 13


