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Deé'p' i_éarning = Learning Representatioﬁs/Featufés

& The traditional model of pattern recognition (since the late 50's)

» Fixed/engineered features (or fixed kernel) + trainable

classifier

hand-crafted
Feature Extractor

“Simple” Trainable
Classifier

&l End-to-end learning / Feature learning / Deep learning

» Trainable features (or kernel) + trainable classifier

Trainable
Feature Extractor

Trainable
Classifier




This Basic Modelihas not evolved much sir-ﬁce the 50's

# The first learning machine: the Perceptron
» Built at Cornell in 1960

# The Perceptron was a linear classifier on
top of a simple feature extractor

# The vast majority of practical applications
of ML today use glorified linear classifiers
or glorified template matching.
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# Designing a feature extractor requires y=sign
considerable efforts by experts.




Architecture of “Mainstream”Pattern Re_cog?ition Syéﬁtems
- Y LeCun

@ Modern architecture for pattern recognition
» Speech recognition: early 90's — 2011

—{ MFCC [ Mix of Gaussians —» Classifier —

fixed unsupervised supervised

» Object Recognition: 2006 - 2012

SIFT K-means , .
— , —>| Pooling [ Classifier [—
HoG Sparse Coding
fixed unsupervised supervised
Low-level Mid-level

Features Features



Deep Learning =’Learning Hierarchical Representations o
| eCun

@ 1t's deep if it has more than one stage of non-linear feature transformation

Low-Level Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Trainable Featufe Hierarchy

@ Hierarchy of representations with increasing level of abstraction
# Each stage is a kind of trainable feature transform

@l Image recognition
» Pixel -» edge - texton —» motif - part - object

M Text
» Character -» word —» word group — clause - sentence - story
@ Speech
» Sample - spectral band - sound - ... - phone -» phoneme - word
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Learning Representationsw.é challen _:._e for

ML, CV, Al, Neuroscienge,/Cognitive @cie.,nce‘f..

@ How do we learn representations of the perceptual
world? I

» How can a perceptual system build itself by
looking at the world?

Trainable Feature

» How much prior structure is necessary Transform
@ ML/AI: how do we learn features or feature hierarchies? I
» What is the fundamental principle? What is the| Trainable Feature
learning algorithm? What is the architecture? Transform
@ Neuroscience: how does the cortex learn perception? I
» Does the cortex “run” a single, general Trainable Feature
learning algorithm? (or a small number of
Transform
them) I
& CogSci: how does the mind learn abstract concepts on .
top of less abstract ones? Trainable Feature
Transform
il Deep Learning addresses the problem of learning
hierarchical representations with a single algorithm I

®» or perhaps with a few algorithms



Y LeCun

The MammalianVisual Cortex is Hierarchicaal

# The ventral (recognition) pathway in the visual cortex has multiple stages
# Retina - LGN - V1 - V2 - V4 - PIT - AIT ....

# Lots of intermediate representations

WHERE? {Motion,
Spatial Relationships) WHAT? {Farm, Color}
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Let's be inspired’by nature, but not too-much
eS|

# It's nice imitate Nature,
# But we also need to understand

» How do we know which
details are important?

» Which details are merely the
result of evolution, and the
constraints of biochemistry?

4 For airplanes, we developed
aerodynamics and compressible
fluid dynamics. S
» We figured that feathers and |/ 8 |

wing flapping weren't crucial |

8 QUESTION: What is the L'Avion III de Clement Ader, 1897

equivalent of aerodynamics for ~ (Musee du CNAM, Paris)

understanding intelligence? His “Eole” took off from the ground in 1890,
13 years before the Wright Brothers, but you
probably never heard of it (unless you are french).
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|
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End-to-end iea rni ng

Trainable FeatureHierarchies:

Y LeCun

# A hierarchy of trainable feature transforms

» Each module transforms its input representation into a higher-level
one.

» High-level features are more global and more invariant

» Low-level features are shared among categories

Trainable Trainable Trainable
Feature Feature |—»| Classifier/ —>

Transform Transform T Predictor

1

Learned Internal Representations

# How can we make all the modules trainable and get them to learn
appropriate representations?



Three Types of Deep Architectures

# Feed-Forward: multilayer neural nets, convolutional nets

# Feed-Back: Stacked Sparse Coding, Deconvolutional Nets [Zeiler et al.]

# Bi-Drectional: Deep Boltzmann Machines, Stacked Auto-Encoders




Three Types of Training Protocols

# Purely Supervised
» Initialize parameters randomly

» Train in supervised mode
» typically with SGD, using backprop to compute gradients

®» Used in most practical systems for speech and image
recognition

# Unsupervised, layerwise + supervised classifier on top
» Train each layer unsupervised, one after the other

» Train a supervised classifier on top, keeping the other layers
fixed

» Good when very few labeled samples are available

# Unsupervised, layerwise + global supervised fine-tuning
» Train each layer unsupervised, one after the other
» Add a classifier layer, and retrain the whole thing supervised
®» Good when label set is poor (e.g. pedestrian detection)

@ Unsupervised pre-training often uses regularized auto-encoders



Do we're'ally needydeep architectures? -

@ Theoretician's dilemma: “We can approximate any function as close as we
want with shallow architecture. Why would we need deep ones?”

y=>» oKX, X) y=FW"FW"X))

» kernel machines (and 2-layer neural nets) are “universal”.

@ Deep learning machines

y=FW" F(WH L F(..FOW’.X)..)))

8@ Deep machines are more efficient for representing certain classes of
functions, particularly those involved in visual recognition

» they can represent more complex functions with less “*hardware”

@ We need an efficient parameterization of the class of functions that are
useful for “AI" tasks (vision, audition, NLP...)



Why would deep archltectures Ifé more eff|C|ent7 v

[Bengio & LeCun 2007 “Scaling. Learnlng Algorlth ;s Towards Al"] Y LeCun

& A deep architecture trades space for time (or breadth for depth)
» more layers (more sequential computation),
» but less hardware (less parallel computation).

@ Example1: N-bit parity
» requires N-1 XOR gates in a tree of depth log(N).
» Even easier if we use threshold gates

» requires an exponential number of gates of we restrict ourselves
to 2 layers (DNF formula with exponential number of minterms).

@ Example2: circuit for addition of 2 N-bit binary numbers
» Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.
» Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).

» Bad news: almost all boolean functions have a DNF formula with
an exponential number of minterms O(2~N).....



Shallow vs Deepy== lookup table vs multisstep algﬁ';rithm

Y LeCun

@ “shallow & wide” vs “deep and narrow” == “more memory” vs “more time”
» Look-up table vs algorithm

» Few functions can be computed in two steps without an
exponentially large lookup table

» Using more than 2 steps can reduce the "memory” by an
exponential factor.

Step 4

n
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Step 2
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Step 1 (look up table/templates)
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Which Models ate Deep?i

& 2-layer models are not deep (even if you
train the first layer) G(X,a) =
» Because there is no feature
hierarchy

@ Neural nets with 1 hidden layer are not deep Oé.?

@ SVMs and Kernel methods are not dee '
veeeh T KXY, X))
» Layerl: kernels; layer2: linear |

» The first layer is “trained” in with
the simplest unsupervised method
ever devised: using the samples as
templates for the kernel functions.

» “glorified template matching”

@ Classification trees are not deep
» No hierarchy of features. All
decisions are made in the input
space




Are Graphical Models Deep?

d There is no opposition between graphical models and deep learning.
» Many deep learning models are formulated as factor graphs
» Some graphical models use deep architectures inside their factors

# Graphical models can be deep (but most are not).

@ Factor Graph: sum of energy functions
» Over inputs X, outputs Y and latent variables Z. Trainable parameters: W

~log P(X,Y,ZIW)<E(X,Y,Z, W)=, E(X,Y,Z,W,)

EI(XLY )| E3(Z2.Y1) E4(Y3,Y4)|
g{ E2(X2,71,72) é é

#Each energy functlon can contain a deep network

#MThe whole factor graph can be seen as a deep network



Deep Léarning: A Theoretician's Nightmarg?

# Deep Learning involves non-convex loss functions
» With non-convex losses, all bets are off

» Then again, every speech recognition system ever deployed
has used non-convex optimization (GMMs are non convex).

# But to some of us all “interesting” learning is non convex
» Convex learning is invariant to the order in which sample are
presented (only depends on asymptotic sample frequencies).
» Human learning isn't like that: we learn simple concepts
before complex ones. The order in which we learn things
matter.



Deep Léarning: A Theoretician's Nightmarg?

& No generalization bounds?
» Actually, the usual VC bounds apply: most deep learning
systems have a finite VC dimension
» We don't have tighter bounds than that.

» But then again, how many bounds are tight enough to be
useful for model selection?

# 1t's hard to prove anything about deep learning systems
» Then again, if we only study models for which we can prove
things, we wouldn't have speech, handwriting, and visual
object recognition systems today.



Deep Léarning: A Theoretician's Paradise?y

@ Deep Learning is about representing high-dimensional data
» There has to be interesting theoretical questions there
» What is the geometry of natural signals?
» Is there an equivalent of statistical learning theory for
unsupervised learning?

» What are good criteria on which to base unsupervised
learning?

@ Deep Learning Systems are a form of latent variable factor graph

» Internal representations can be viewed as latent variables to
be inferred, and deep belief networks are a particular type of
latent variable models.

» The most interesting deep belief nets have intractable loss
functions: how do we get around that problem?

& Lots of theory at the 2012 IPAM summer school on deep learning
» Wright's parallel SGD methods, Mallat's “scattering transform”,

Osher's "split Bregman” methods for sparse modeling,
Morton's “algebraic geometry of DBN”,....



Deep _L'éarning and Feature fearningT?day &

= -__"

M Deep Learning has been the hottest topic in speech recognition in the last 2 years

» A few long-standing performance records were broken with deep
learning methods

» Microsoft and Google have both deployed DL-based speech
recognition system in their products

» Microsoft, Google, IBM, Nuance, AT&T, and all the major academic
and industrial players in speech recognition have projects on deep
learning

Ml Deep Learning is the hottest topic in Computer Vision

» Feature engineering is the bread-and-butter of a large portion of the
CV community, which creates some resistance to feature learning

» But the record holders on ImageNet and Semantic Segmentation are
convolutional nets

@ Deep Learning is becoming hot in Natural Language Processing

@ Deep Learning/Feature Learning in Applied Mathematics

» The connection with Applied Math is through sparse coding,
non-convex optimization, stochastic gradient algorithms, etc...



In Many Fields, Feature Learnﬂg Has Caus__ed a Revolutlon

(methods used In commeraally deployed ystems) i

& Speech Recognition I (late 1980s)
» Trained mid-level features with Gaussian mixtures (2-layer classifier)

@ Handwriting Recognition and OCR (late 1980s to mid 1990s)
» Supervised convolutional nets operating on pixels

@l Face & People Detection (early 1990s to mid 2000s)

» Supervised convolutional nets operating on pixels (YLC 1994, 2004,
Garcia 2004)

» Haar features generation/selection (Viola-Jones 2001)

# Object Recognition I (mid-to-late 2000s: Ponce, Schmid, Yu, YLC....)
» Trainable mid-level features (K-means or sparse coding)

& Low-Res Object Recognition: road signs, house numbers (early 2010's)
» Supervised convolutional net operating on pixels

& Speech Recognition II (circa 2011)
» Deep neural nets for acoustic modeling

& Object Recognition III, Semantic Labeling (2012, Hinton, YLC,...)
» Supervised convolutional nets operating on pixels



Y LeCun

1In Several Fields, Feature Leaﬁﬂng Has Cqused Revolutlons

Speech Recognltlon Handwrltlng Iiecogntuon

# U= unsupervised, S=supervised, X=unsupervised+supervised
| Low-level feat. = mid-level feat. — classifier = contextual post-proc

\
# Speech Recognition
» Early 1980s: Dyn. time Warping

» Late 1980s: Gaussian Mix. Model —™™
» 1990s: discriminative GMM —

» 2010: deep neural nets

\

—» P U

# Handwriting Recognition and OCR
» Early 80's: features+classifier

» Late 80's: supervised convnet
» Mid 90's: convnet+CRF




Y LeCun

' In Several Fields, Feature Leaﬁiing Has_ C_“___used Re\,(.;-_i;lutions:

- Object Detection, Object Recognition, Scene Labeling

# Face & People Detection (1993-now)
» Supervised ConvNet on pixels (93, 94, 05, 07)

» Selected Haar features + Adaboost (2001)
» Unsup+Sup ConvNet on raw pixels (2011)

# Object Recognition
» SIFT/HoG+sparse code+pool+SVM (06)

» unsup+sup convnet (07,10)

» supervised convnet (2012)

# Semantic Segmentation / scene labeling
»unsup mid-lvl, CRF (2009, 10, 11, 12)
»supervised convnet (2008, 12, 13)




What Are
Good Feature?



Discovering the Hidden Structure in Higl -Dimensioﬁ___al Data

X

The manifold hypothesis

# Learning Representations of Data:

» Discovering & disentangling the independent
explanatory factors

# The Manifold Hypothesis:
» Natural data lives in a low-dimensional (non-linear) manifold

» Because variables in natural data
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High-Dimens%onal Data’

DiscoVerin.g' the Hidden Structure in

Y LeCun

# Example: all face images of a person
» 1000x1000 pixels = 1,000,000 dimensions

» But the face has 3 cartesian coordinates and 3 Euler angles
» And humans have less than about 50 muscles in the face
» Hence the manifold of face images for a person has <56 dimensions

# The perfect representations of a face image:
» Its coordinates on the face manifold

» Its coordinates away from the manifold

# We do not have good and general methods to learn functions that turns an
image into this kind of representation

12 | Face/not face
3 Pose

0.2 | Lighting
Extractor —2...| Expression

Ideal
> Feature ——




D.ﬂat? Manifold & Invariance':'"l*f"

Some variations’' must be eliminated = § -

# Azimuth-Elevation manifold. Ignores lighting. [Hadsell et al. CVPR 2006]
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Y LeCun

Basic Idea for Ifivariant Feature Learning}

@l Embed the input non-linearly into a high(er) dimensional space

» In the new space, things that were non separable may become
separable

# Pool regions of the new space together
» Bringing together things that are semantically similar. Like

pooling.
. Pooling
Non-Linear
== . = = Or  m—
Function ]
Aggregation

Input Stable/invariant

high-dim features

Unstable/non-smooth
features



Non-Linear Expansion — Pooling

# Entangled data manifolds

Non-Linear Dim

Pooling.
Expansion, OOHES

Aggregation

Disentangling




Spa'rsé Non-Lin&ar Expansion = Poolingﬁ

# Use clustering to break things apart, pool together similar things

Clustering,
Quantization,
Sparse Coding

Pooling.
Aggregation

\

L W
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? @




Normallzatlon — Filter Bank — Non Lmeantyi—) Poollng Y LeCun

Ove rall Architecture:

Filter Non- feature Filter Non- feature )
Norm [ = = TP Norm [°¢ -»> -»> o (Classifier

Bank | |Linear| |Pooling Bank | |Linear| |Pooling

# Stacking multiple stages of
» [Normalization — Filter Bank = Non-Linearity — Pooling].

# Normalization: variations on whitening
» Subtractive: average removal, high pass filtering

» Divisive: local contrast normalization, variance normalization

# Filter Bank: dimension expansion, projection on overcomplete basis
# Non-Linearity: sparsification, saturation, lateral inhibition....

» Rectification (ReLU), Component-wise shrinkage, tanh,
winner-takes-all
# Pooling: aggregation over space or feature type

> . Py, 1 bX,
X L,V X7 PROB:olog| 2 e

e b




Deep Supervised Learning
(modular approach)




Multimodule Systems: Cascade

Energy

| C(Xn, Y)

Wn-.I

Fn(Xn-1, Wn) I

Xn-1 f

I
Xi |

]

Fi(Xi-1, Wi) I

Xi-1 '
]

K1:

i

F1(X0, W1) ‘

}m' desired
input X output Y

# Complex learning machines can be
built by assembling modules into
networks

@ Simple example: sequential/layered
feed-forward architecture (cascade)

# Forward Propagation:

let X = XU,
X-i = F@(Xa;g_h Wi) Vi € [1,5’1]

E(Y,X,W) = C(X,,Y)



Multimodule Systems: Implementation 3

@ Each module is an object

Energy » Contains trainable
. parameters

» Inputs are arguments
» Output is returned, but also

| C(Xn, Y) |

an l,,, stored internally
Wn_.I FrlXe1, Wn) I » Example: 2 modules m1, m2
Xn-1} @ Torch7 (by hand)
: » hid = ml:forward(in)
Xi| » out = m2:forward(hid)
W —I nioa-1, WO I @ Torch7 (using the nn.Sequential class)
xm! I » model = nn.Sequential()
x1: » model:add(ml)
Wi -I F10X0, W1) ‘ » model:add(m2)
F o » out = model:forward(in)
esired

input X output Y



Corﬁpﬂting the Gradientiin Multi-Layer Sﬁste__ms

Energy

E

C(Xn, Y)

xn] | 1¥

Wn =i

Fn(Xn-1, Wn)

Il"l—'l' .',-;,_. 41X -1

Wi =t

Fi(Xi-1, Wi)

Ii-1'
I ]

W1 =d

F1(X0, W1)

xof

input X

desired
output Y

gl

To train a multi-module system, we must
compute the gradient of E with respect to
all the parameters in the system (all the
Wi).

Let’s consider module ¢ whose fprop
method computes X; = F;(X;_1, W;).

Let’s assume that we already know 5} L

other words, for each component of vector
X; we know how much E would wiggle if
we wiggled that component of Xj;.

in

Y LeCun



Cohﬁpﬂting the Gradientiin Multi-Layer Sﬁste__ms

Energy

E

C(Xn, Y)

,..,,,1 ”

Wn-l

Fn(Xn-=1, Wn)

Wi
dE/'dW i

Fi(Xi-1, Wi)

xi-1f | JE/dXi-1

1)
| |

X1y  dE/dX1

w1-|

F1(X0, W1)

xol

input X

desired
output Y

OFE
oW,

(how much E would wiggle if we wiggled
each component of W;):

We can apply chain rule to compute

OE  OFE OFi(Xi_1,W;)

oW, 90X, W

1 X Ny] = [1 X Ng].[Nz x Ny]

OF;(Xi_1,W;)
oW,

with respect to W;.

1S the Jacobian matrix of F;

OF;(X;—1,W;)| _ O[Fi(Xi—1, Wi)l,,
OW; L Wil

Element (k,l) of the Jacobian indicates
how much the &-th output wiggles when we
wiggle the [-th weight.



Cohﬁpﬂting the Gradientiin Multi-Layer Sﬁste__ms

Using the same trick, we can compute .{ —. Let’s assume again that we already

know g( , in other words, for each component of vector X; we know how much E

would wiggle if we wigﬂled that component of X;.
! We can apply chain rule to compute dX : (how much £

would wiggle if we wiggled each component of X;_1):

Energy
OE  OFE 0F,(X;_1,W;)
Cixn, ) : —
% | PR B 0Xi-1  0Xi  0Xi
".w: Fr{Xn-1, Wn)
-t | Fi(Xi_1,Wi
¥ o E,), - L is the Jacobian matrix of F; with respect to
I'I } i R
""'f': FI:II—'I‘. Wiy ;Y? . 7
Ki-1f | d
. F; has two Jacobian matrices, because it has to
| -
””:" F1 (X0, W1) Ell'gllmemh.
xof " " : : i &
max  omar M Element (k,[) of this Jacobian indicates how much the

k-th output wiggles when we wiggle the [-th input.

The equation above is a recurrence equation!



Jacobians and Dimensions

derivatives with respect to a column vector are line vectors (dimensions:
[1 X Nj—1] =[1 X N;] *[N; X Nij—1])

GE B E?E E)P}(X.i_l, H?z)
0X;_1 O0X; 08X

(dimensions: [1 X Ny;| = [1 X N;] * [N; X Nys)):

0E  OF OF,(X;_\,W;)
oW, 00X, oW

' we may prefer to write those equation with column vectors:

OE '  OF)(X;-1,W;) OE'
8X3-_1 - 6Xi_1 de

OE ' OF(X;-1,W;) 0E'

AW oW DX




Back Propgatiof

To compute all the derivatives, we use a backward sweep called the back-propagation

algorithm that uses the recurrence equation for S5

Energy

Et 9E _ OC(X,,Y)
gX. — BX,
C(Xn, Y) i . -
7 1 oF . oF d-f"n.(xn 1,Whn)
. e ; D Xn_ 1 — 0Xn  OXa_1
WI..II:- Fn{Xn-1, Wn) oF  OF oFy {—xu —1 :I’J";ri ]
In—“i 1 E'dXn anrﬂ - aXﬂ dWv '*n
: . dE — AE OF, 1(XTT- 2,Wn 1:]
xllv b Ha!{:r:. 2 o HX'H. 1 HXH 2
Wi =i
mes|  TVELTY 8E __ OE OFa_1(Xn-2,Wn—-1)
Ii—iF L . ! l.:)“fi;rn.---l o 54‘{-”—] d111?|
HH ....etc, until we reach the first module.
Wi = F1(X0, W1)
we now have all the .‘} = fm 1 E 1
xof desired o}

input X output ¥



Multimodule Systems: Implementation 3

Energy

| C(Xn, Y)

)

Wn-I

Fn(Xn-1, Wn) I

Xn-1 f

I
Xi |

]

Fi(Xi-1, Wi) I

Xi-1 f
]

]{1:

|

F1(X0, W1) ‘

}(D*

input X

desired
output Y

@l Backpropagation through a module
» Contains trainable parameters
» Inputs are arguments

» Gradient with respect to input is
returned.

» Arguments are input and
gradient with respect to output

@ Torch7 (by hand)
» hidg =
m2 :backward(hid, outq)
» ing = ml:backward(in,hidg)

@ Torch7 (using the nn.Sequential class)
»ing =
model :backward(in,outqg)



Linéar. Module

The input vector is multiplied by the weight matrix.

Yook

/% ok

fprop: Xout = W Xin

bprop to input:
E‘}!rr_: — E:”': H.Y{_H” — I:‘
aJYin 8-3{:-1” E}Xi” chm‘r

by tran‘-;pming, we get column vectors:
dlr".r f 7 f
=W 5% Y

l[.-}}{]U out
bprop to weights:
O0E _ _O8E 9Xowi _ y, . OE

OWi; — 0Xouti OWij NS DX s

We can write '[hi'i as an outer-product:

dE'! _  BE /
dW  0Xow Xm




Tanh module (6F any other pointwise furiction)

fprop: (Xout )i = tanh((Xiy); + B;)

bprop to input:

(ﬁfn) = (a?{it) tanh'((Xin); + B;)
bprop to bias:

5_& - (diiu) tanh'((Xiy ); + Bi)

, . 2 1 _ l-exp(-z)
tanh(z) = oo — 1 =5 T



fprop: X,y = H\X-," -Y|?

bprop to X input: ax =Ain—Y

11

bprop toYmput m =Y — Xip




Any ‘Architecture works

@ Any connection is permissible

» Networks with loops must be
“unfolded in time”.

‘ ‘ # Any module is permissible

? / » As long as it is continuous and
differentiable almost everywhere

with respect to the parameters, and

with respect to non-terminal inputs.




Module-Based Deep Learning with Tor‘chi

Y LeCun

@ Torch7 is based on the Lua language
» Simple and lightweight scripting language, dominant in the game industry
» Has a native just-in-time compiler (fast!)
» Has a simple foreign function interface to call C/C++ functions from Lua

@ Torch7 is an extension of Lua with
» A multidimensional array engine with CUDA and OpenMP backends

» A machine learning library that implements multilayer nets, convolutional
nets, unsupervised pre-training, etc

» Various libraries for data/image manipulation and computer vision
» A quickly growing community of users

@Single-line installation on Ubuntu and Mac OSX:
» curl -s https://raw.github.com/clementfarabet/torchinstall/master/install-all | bash

@ Torch7 Machine Learning Tutorial (neural net, convnet, sparse auto-encoder):
P> http://code.cogbits.com/wiki/doku.php



Example: buildifg a Neural Net in TorchZ

Y LeCun

. Net for SVHN digit recognition

4l 10 categories Noutputs = 10;

@ Input is 32x32 RGB (3 channels) nfeats = 3; Width = 32; height = 32
ninputs = nfeats*width*height

4l 1500 hidden units nhiddens = 1500

#l Creating a 2-layer net —— Simple 2-layer neural network

@ Make a cascade module model = nn.Sequential()

#l Reshape input to vector model:add(nn.Reshape(ninputs))

@ Add Linear module model:add(nn.Linear(ninputs,nhiddens))
@ Add tanh module model:add(nn.Tanh())

@ Add Linear Module model:add(nn.Linear (nhiddens, noutputs))
@l Add log softmax layer model:add(nn.LogSoftMax())

gl Create loss function module criterion = nn.ClassNLLCriterion()

See Torch7 example at http://bit.ly/16tyLAx



Example: Trainifg a Neural Netin TorchZ%

for t = 1,trainData:size(),batchSize do &l one epoch over training set

inputs,outputs = getNextBatch() 4l Get next batch of samples

local feval = function(x) gl Create a “closure” feval(x) that takes the
parameter vector as argument and returns

parameters:copy(x) the loss and its gradient on the batch.

gradParameters:zero()
local £ =0
_ _ ZRun model on batch

for i = 1,#inputs do

local output = model:forward(inputs[i])

local err = criterion:forward(output,targets[i])

f =f + err

local df do = criterion:backward(output,targets[i])

model :backward(inputs[i], df do) @l backprop
end
gradParameters:div(#inputs)
f = f/#inputs
return f,gradParameters

# Normalize by size of batch

end — of feval .Return loss and gradient

optim.sgd(feval,parameters,optimState)
end .call the stochastic gradient optimizer



Deep Supervised Lkearning is Non-Convex i

@ Example: what is the loss function for the simplest 2-layer neural net ever

» Function: 1-1-1 neural net. Map 0.5 to 0.5 and -0.5 to -0.5
(identity function) with quadratic cost:

y = tanh(W; tanh(Wy.z)) L = (0.5 — tanh(W; tanh(W;,0.5)?

"-1m|:l.g'|l.|:+:-lh:r-|.TE".i:I-F|Fﬂ:l|:h:Ié
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Backprop in Practice

& Use RelLU non-linearities (tanh and logistic are falling out of favor)
8@ Use cross-entropy loss for classification

& Use Stochastic Gradient Descent on minibatches

& Shuffle the training samples

@l Normalize the input variables (zero mean, unit variance)

8l Schedule to decrease the learning rate

& Use a bit of L1 or L2 regularization on the weights (or a combination)
» But it's best to turn it on after a couple of epochs

& Use "dropout” for reqularization
» Hinton et al 2012 http://arxiv.org/abs/1207.0580

& Lots more in [LeCun et al. “Efficient Backprop” 1998]

& Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Miiller (Springer)



Convolutional
Networks


http://code.cogbits.com/wiki/doku.php

ﬁmhlﬂg

Convolutional Nets
@ Are deployed in many practical pplications
» Image reco, speech reco, Google's and Baidu's photo taggers

@ Have won several competitions

» ImageNet, Kaggle Facial Expression, Kaggle Multimodal
Learning, German Traffic Signs, Connectomics, Handwriting....

@ Are applicable to array data where nearby values are correlated

» Images, sound, time-frequency representations, video,
volumetric images, RGB-Depth images,.....

& One of the few models that can be trained purely supervised

Layer 1
64x75x7

Layer 2
64@14x14

input
83x83

| =

9x9
convolution
(64 kernels)

10x10 pooling, 1+ olution

5x5 subsampling 496 kernels)


http://bit.ly/16tyLAx

Fully-connected” neural net in high dimerision

@ Example: 200x200 image
» Fully-connected, 400,000 hidden units = 16 billion parameters

» Locally-connected, 400,000 hidden units 10x10 fields = 40
million params

» Local connections capture local dependencies




S"ha'regl Weights & Convolutiofis:

Exploiting Stationarity

& Features that are useful on one part of @ Example: 200x200 image

the image and probably useful » 400,000 hidden units with
elsewhere. 10x10 fields = 1000
: : params
@ AUl units share the same set of weights » 10 feature maps of size
# Shift equivariant processing: 200x200, 10 filters of size

» When the input shifts, the output
also shifts but stays otherwise
unchanged.

# Convolution
» with a learned kernel (or filter)
» Non-linearity: ReLU (rectified
linear)

A”:Zkz Wit X isj ke

7
@ The filtered “image” Z is called a feature

o L= max(O,Al-j)




Multiple Convolutions with Different Kerr}els_

# Detects multiple motifs at each
location

& The collection of units looking at
the same patch is akin to a
feature vector for that patch.

@ The result is a 3D array, where
each slice is a feature map.

Multiple
convolutions



Early Hierarchical-Feature Models for Visioin
# [Hubel & Wiesel 1962]:
» simple cells detect local features

III

» complex cells “"pool” the outputs of simple
cells within a retinotopic neighborhood.

Ug

“Simple cells”

“Complex
cellg”

input / - i I
layer

contrast S

recognition :
extraction ¢ | . pooling
ayer Multiple subsampling
convolutions
UM / masker

layer

Cognitron & Neocognitron [Fukushima 1974-1982]


http://arxiv.org/abs/1207.0580

o
I &

The Convolutional Net Model

(Multistage Hubel-Wiesel system)

Convolutions w/ Convs: Pooling:

Convs:

. Pooling: . -
Local Divisive . Linear Object
o filter bank; 20xdxd 100x7x7 20x4x4 800x7x7 5 Cateaories / Positions
Nomakzztion 20x7x7 kernels kernels kernels kernels kernels Classifer %
-'-'}‘,;;'HI_I,L;FF[F- 3 ” Jat (xy)
i ;b I' 4
: 4 bat (x.y)
82: 20x123x123 Nx23x23 | “1°

Normalized Image
1x500x500

Input Image
1x500x500

C1: 20x494x494

G3: 20x117x117

“Simple cells”
“Complex cells”

54: 20x29x29

.....
------
........

[t ey

C5: 200x23x23

# Training is supervised

# With stochastic gradient
descent

pooling

v\ subsamplin%‘

Retinotopic Feature Maps

Multiple
convolutions

[LeCun et al. 89]
[LeCun et al. 98]




Normallzatlon — Filter Bank — Non Lmeantyi—) Poollng Y LeCun

Featu re.Transform:

Filter Non- feature Filter Non- feature )
Norm [ = = TP Norm [°¢ -»> -»> o (Classifier

Bank | |Linear| |Pooling Bank | |Linear| |Pooling

# Stacking multiple stages of
» [Normalization — Filter Bank —» Non-Linearity — Pooling].

# Normalization: variations on whitening
» Subtractive: average removal, high pass filtering

» Divisive: local contrast normalization, variance normalization

# Filter Bank: dimension expansion, projection on overcomplete basis
# Non-Linearity: sparsification, saturation, lateral inhibition....
» Rectification, Component-wise shrinkage, tanh, winner-takes-all

# Pooling: aggregation over space or feature type, subsampling

- p 1 bX,
X, L,:VX7; PROB:log|2 e

Y b




Normallzatlon — Filter Bank = Non Lmeantyd—) Poollng Y LeCun

Featu re.Transform:

Filter Non- feature Filter Non- feature )
Norm [ = = TP Norm [°¢ -»> -»> o (Classifier

Bank | |Linear| |Pooling Bank | |Linear| |Pooling

# Filter Bank — Non-Linearity = Non-linear embedding in high dimension

# Feature Pooling = contraction, dimensionality reduction, smoothing

# Learning the filter banks at every stage

# Creating a hierarchy of features

# Basic elements are inspired by models of the visual (and auditory) cortex
» Simple Cell + Complex Cell model of [Hubel and Wiesel 1962]

III

» Many “traditional” feature extraction methods are based on this

» SIFT, GIST, HoG, SUREF...

# [Fukushima 1974-1982], [LeCun 1988-now],
» since the mid 2000: Hinton, Seung, Poggio, Ng,....



Convolutional Network (ConvNet)

Layer 3
256(@6x6 Layer 4
256(@1x1

Layer 1

| 64x75x75 ~ Layer2
mput 64@14x14
83x83

/

9x9 10x10 pooling,  convolution

convolution 5x5 subsampling (4096 kernels)
(64 kernels)

s |6X6 pooling

4x4 subsamp

# Non-Linearity: half-wave rectification, shrinkage function, sigmoid

# Pooling: average, L1, L2, max
# Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)
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Parzen Windows Classifier
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Filter Bank + Tanh + Gain

Input

high-pass filtered
contrast-normalized
83x83 (raw: 91x91)

256 features 1x1
4x4 subsampling

6x6 pooling

CLASSIFIER

STAGE 2

10x10 pooling

STAGE 1



Convolutional Network (vintage 1990)

3 Y LeCun

4 filters = tanh — average-tanh — filters = tanh — average-tanh — filters - tanh
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"’Malnstream object recognltltn plpellne 2006 201 2

somewhat S|m|lar to ConvNets . .1___
Filter - .Non-. L feat?re 1], Filter - .Non—. L, featl.lre L Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented Winner Histogram K-means Spatial Max Any simple
Edges Takes All (sum) Sparse Coding Or average (|assifier
Ve \/
Fixed (SIFT/HoG/...) Unsupervised Supervised

# Fixed Features + unsupervised mid-level features + simple classifier
» SIFT + Vector Quantization + Pyramid pooling + SVM
@ [Lazebnik et al. CVPR 2006]
» SIFT + Local Sparse Coding Macrofeatures + Pyramid pooling + SVM
@ [Boureau et al. ICCV 2011]
» SIFT + Fisher Vectors + Deformable Parts Pooling + SVM
@ [Perronin et al. 2012]



Tasks for Which'Deep Convolutional Nets gre the Bést

Y LeCun

# Handwriting recognition MNIST (many), Arabic HWX (IDSIA)

# OCR in the Wild [2011]: StreetView House Numbers (NYU and others)
# Traffic sign recognition [2011] GTSRB competition (IDSIA, NYU)

# Pedestrian Detection [2013]: INRIA datasets and others (NYU)

# Volumetric brain image segmentation [2009] connectomics (IDSIA, MIT)
# Human Action Recognition [2011] Hollywood II dataset (Stanford)

# Object Recognition [2012] ImageNet competition

# Scene Parsing [2012] Stanford bgd, SiftFlow, Barcelona (NYU)

# Scene parsing from depth images [2013] NYU RGB-D dataset (NYU)
# Speech Recognition [2012] Acoustic modeling (IBM and Google)

# Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

# The list of perceptual tasks for which ConvNets hold the record is growing.
# Most of these tasks (but not all) use purely supervised convnets.



Y LeCun

Ideas from Neuroscience and Psychophysiﬁs

# The whole architecture: simple cells and complex cells
# Local receptive fields
# Self-similar receptive fields over the visual field (convolutions)
# Pooling (complex cells)
# Non-Linearity: Rectified Linear Units (ReLU)
# LGN-like band-pass filtering and contrast normalization in the input
# Divisive contrast normalization (from Heeger, Simoncelli....)
» Lateral inhibition

# Sparse/Overcomplete representations (Olshausen-Field....)
# Inference of sparse representations with lateral inhibition
# Sub-sampling ratios in the visual cortex

» between 2 and 3 between V1-V2-V4

# Crowding and visual metamers give cues on the size of the pooling areas



Simple ConvNet Applications with State-of-the-ﬁi;rt Performance

# Traffic Sign Recognition (GTSRB) & House Number Recognition (Google)

» German Traffic Sign Reco » Street View House Numbers
Bench

» 94.3 % accuracy

I.Ml..wl”ﬂ

» 99.2% accuracy
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One Stage: Contrast,Norm — Filte-llf' Bank — Shiinkage =#L2 Pooling
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Results on Caltech101 with sigmoid haon-line_-érity

Single Stage System: [64.F .~ — R/N/P>*®] - log_reg
R/N/P Rabs — N —Pa | Raps — Pa N —Pm N —Pa Pa
U™ 54.2% 50.0% 44.3% 18.5% 14.5%
R™ 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.2% 43.3%(£1.6) 44.0% 17.2% 13.4%
R 33.3% 31.7% 32.1% 15.3% 12.1%(x=2.2)
G 52.3%
Two Stage System: [64.F 55 — R/N/P°*®] — [256.F s& — R/N/P**?] - log reg
R/N/P Rabs — N —Pa | Raps — Pa N — Pm N —Pa Pa
Uutut 65.5% 60.5% 61.0% 34.0% 32.0%
RTR™ 64.7% 59.5% 60.0% 31.0% 29.7%
Uu 63.7% 46.7% 36.0% 23.1% 9.1%
RR 62.9% 33.7%(x1.5) | 37.6%(£1.9) 19.6% 8.8%
GT 35.8% < like HMAX model

Single Stage: [64.F ., — R/N/P**%] - PMK-SVM

U 64.0%

Two Stages: [64.F .7

CSG

— R/N/P®*°| — [256.F Jyo

— R/N] - PMK-SVM

uu

52.8%
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Local Contrast/Normalizatjon

o

@ Performed on the state of every layer, including
the input

@ Subtractive Local Contrast Normalization

» Subtracts from every value in a feature a
Gaussian-weighted average of its neighbors
(high-pass filter)

@ Divisive Local Contrast Normalization

» Divides every value in a layer by the standard
deviation of its neighbors over space and over
all feature maps

@ Subtractive + Divisive LCN performs a kind of
approximate whitening.




- The Effect of Archltectu ral El%ments

@ Pyramid pooling on last layer: 1% |mprovement over regular pooling

@ Shrinkage non-linearity + lateral inhibition: 1.6% improvement over tanh
@ Discriminative term in sparse coding: 2.8% improvement

Architecture Protocol 70
(1) Fianh — Raps — N — P, | RTR™ | 65.4+ 1.0
B (2) Ftanh — Rabs — N — Pin Uutut 66.2 = 1.0
(3) Fsi - Rabs — N — PA R+R+ 63.3 1.0
4) Fs; — Raps — N — Py uUu 60.4 4= 0.6
(5) FSi — Rabs — N — PA U—I_U—I_ 66.4 += 0.5
(6) FS?Z - Rabs — N — Pin U_I_U—I_ 67.8 1+ 0.4
(7) F'y; — Raps — N — Py DD 66.0 = 0.3
(8) F.Si — Rabs — N — PA D+D+ 68.7 £ 0.2
‘(9) FSZ’ _ Rabs — N — Piyr D+D+ 70.6 + 0.3




Results on Caltech1 O{ purely supervised

with soft-shrink, L2 pooling, contrast ngrmallzatlbn

@ Supervised learning with soft-shrinkage non-linearity, L2 complex cells, and
sparsity penalty on the complex cell outputs: 71%

@ Caltech101 is pathological, biased, too small, etc...

s 7.2 & 683 &7 638 &7.2 64.32 52,27 B8

mOPs0
B B4-1024 {O=-[5.2h
Fpoal
m L2 (256]
™~ Pyr (1024
= Py (256]
m 5a- 1024 (D5 10.5)
B4-256 (De-{10,5[)
W~ Pyr (1024)
=~ Pyr (256]
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®m 1 Layar
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what doessLocal Contrast Normalization D62

Original
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With LCN

Reconstruction
Without LCN




Why Do Random Filters. Work?
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Small NORB dataset i

|

@ Two-stage system: error rate versus number of labeled training samples
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Object Recognition [Krizhevsky, Sutskever,
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8 Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops
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Y LeCun

Object RecognitionyILSVRC 2012 results &' |

o |1}

# ImageNet Large Scale Visual Recognition Challenge
# 1000 categories, 1.5 Million labeled training samples

TASK 1 - CLASSIFICATION TASK2 - DETECTION

CNN  SIFT+FV SVM1  SVYM2  NCM CNN DPM-SVM1 DPM-SVM2



Loy o8 |

Object Recognition[Krizhevsky, Sutskever, Hinton 2012]

# Method: large convolutional net
» 650K neurons, 832M synapses, 60M parameters

» Trained with backprop on GPU

» Trained “with all the tricks Yann came up with in
the last 20 years, plus dropout” (Hinton, NIPS
2012)

» Rectification, contrast normalization,...

# Error rate: 15% (whenever correct class isn't in top 5)
# Previous state of the art: 25% error

# A REVOLUTION IN COMPUTER VISION

# Acquired by Google in Jan 2013
# Deployed in Google+ Photo Tagging in May 2013




Object Recognitiony[Krizhevsky, Sutskever, Hilﬁon 2012]
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Object Recognitiony[Krizhevsky, Sutskever, Hinton 2012§
stlih =N \ Y LeCun

RETRIEVED IMAGES




- {Q .ﬁ' -y

ConvNet-Based Google+ Photo Tagger '.] R Y LeCun

8l Searched my personal collection for “bird”
4 | 8 https://plus.google.com/u/0/photos/ses .
& academic.rese... &2 ArduinoBlog | Printrbot Talk F... FD FrenchDistrict... 3 Hacka Day
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Another ImageNet-trained CofivNet

[Zeiler & Fergus'2013]

@ Convolutional Net with 8 layers, input is 224x224 pixels
» conv-pool-conv-pool-conv-conv-conv-full-full-full
» Rectified-Linear Units (ReLU): y = max(0,x)
» Divisive contrast normalization across features [Jarrett et al.
ICCV 2009]

& Trained on ImageNet 2012 training set
» 1.3M images, 1000 classes
» 10 different crops/flips per image .

& Regqularization: Dropout
» [Hinton 2012]
» zeroing random subsets of units

& Stochastic gradient descent
» for 70 epochs (7-10 days)
» With learning rate annealing




Object Recognitiomeon-line demo [Zeiler & Fﬁrgus 2013]

E

|_] I/mage Classifier Demo
€ € | [ horatio.cs.nyu.edu w @ & By S &= 2
academic.rese... &2 Arduino Blog [ Printrbot Talk F... FD French District... [T]BeingBeoing ~ [ other Bookmarks

Image Classifier Demo Demo About Terms

Image Classifier Demo

Upload your images to have them classified by a machine! Upload multiple images using the button below or dropping them on
this page. The predicted objects will be refreshed automatically. Images are resized such that the smallest dimension becomes
256, then the center 256x256 crop is used. More about the demo can be found here .

| agree to the Terms of Use

Demo Notes

+ [If your images have objects that are not in the 1,000 categories of ImageMet, the model will not know about them.

+« Other objects can be added from all 20,000+ ImageMet categories (it may be slow to load the autocomplete results.. just wait a little ).
+ The maximum file size for uploads in this demo is 10 MB.

« Only image files (JPEG, JPG, GIF, PNG) are allowed in this demo .

+ You can drag & drop files from your desktop on this webpage with Google Chrome, Mozilla Firefox and Apple Safari.

+ Some mobile browsers are known to work, others will not. Try updating your browser or contact us with the problem.

+ All images for your current IP and browsing session are shown above and not shown to others.

+ This demo is powered by research out of New York University. Click here to find out more

+ If you encounter problems, please contact zeiler@cs.nyu.edu

Demo created by: Matthew Zeiler

NEW YORK UNIVERSITY © Copyright 2013




[ |

o

ConvNet trained on ImageNet [Zeiler& Ifrgus 2&]

Y LeCun

Error %

Val
Top-1

Val
Top-5

Deng et al. SIFT + FV [7]
Krizhevsky et al. [12], 1 convnet
Krizhevsky et al. [12], 5 convnets
*Krizhevsky et al. [12], 1 convnets
*Krizhevsky et al. [12], 7 convnets

40.7
38.1
39.0
36.7

18.2
16.4
16.6
15.4

Our replication of [12], 1 convnet

41.7

19.0

1 convnet - our model

38.4 = 0.05

16.5 &= 0.05

5 convnets - our model (a)

36.7

15.3

1 convnet - tweaked model (b)

37.5

16.0

6 convnets, (a) & (b) combined

36.0

14.7




BINetwork first 75
trained on 70
ImageNet. 65

60

@ Last layer L. °°
chopped off S 50
dLast layer trained e

on Caltech 256, 40

35
@ifirst layers N-1

kept fixed. 50

@ State of the art

State of the art W|th

onl)_/ 6 tralnlng examgles

b - o mm e e mm = owm - —— - e - ——

R T P ——Our Model| .
‘ ‘ ‘ — Bo etal :
Sohn etal

Tralnln Imaes Der— class

Acc % Acc % Acc % Acc %
oy o
samples/class Sohn et al. [16] 35.1 42.1 45.7 47.9

51.9+0.2 (55.2+0.3

3: [Bo, Ren, Fox. CVPR, 2013] 16: [Sohn, Jung, Lee, Hero ICCV 2011]



@ Network first trained on ImageNet.

& Last layer trained on Pascal VOC, keeping N-1 first layers fixed.

Acc %

Dining table
Dog

Horse
Motorbike
Person
Potted plant

Tv/monitor

# won

[15] K. Sande, J. Uijlings, C. Snoek, and A. Smeulders. Hybrid coding for selective search. In
PASCAL VOC Classification Challenge 2012,
[19] S. Yan, J. Dong, Q. Chen, Z. Song, Y. Pan, W. Xia, Z. Huang, Y. Hua, and S. Shen. Generalized

hierarchical matching for sub-category aware object classification. In PASCAL VOC Classification
Challenge 2012
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Applying a ConvNet on " &

Sliding Windows is Very Cheap!

. output: 3x3
il 96x96

mput:120x120

@ Traditional Detectors/Classifiers must be applied to every location on
a large input image, at multiple scales.

@ Convolutional nets can replicated over large images very cheaply.
@ The network is applied to multiple scales spaced by 1.5.



Buildi.".g a Detector/ Recogﬂi‘zer':’""”

Replicated Convolutional Nets

& Computational cost for replicated convolutional net:
& 96x96 -> 4.6 million multiply-accumulate operations
¥ 120x120 -> 8.3 million multiply-accumulate ops
¥ 240x240 -> 47.5 million multiply-accumulate ops
¥ 480x480 -> 232 million multiply-accumulate ops

&® Computational cost for a non-convolutional detector
of the same size, applied every 12 pixels:

& 96x96 -> 4.6 million multiply-accumulate operations

& 120x120 -> 42.0 million multiply-accumulate
operations

¥ 240x240 -> 788.0 million multiply-accumulate ops
¥ 480x480 -> 5,083 million multiply-accumulate ops

< 96x96 window

= 12 pixel shift

- 84x84 overlap




ConvNets for Image Segmegntation

= |

# Biological Image Segmentation
» [Ning et al. IEEE-TIP 2005]
@ Pixel labeling with large context
using a convnet
@ Cleanup using a CRF
» Similar to a field of expert




COI‘I\/N'e’c.in Connectomics |\ " & ¥
[Jain, Turaga, Seung 2007-present] _ ’;

N Y LeCun

3D ConvNet

Volumetric

Images

Each voxel
labeled as
“membrane”
or
“non-membra
ne” using a
7x7x7 voxel
neighborhood




F ba Y LeCun

ConvNets for Imége Segmentation
=4

# Image Labeling for Off-Road Robots [Hadsell JFR 2008]
» ConvNet labels pixels as one of 3 categories

» Traversible/flat (green), non traversible (red), foot of obstacle (purple)

» Labels obtained from stereo vision and SLAM

* Inputimage Stereo'LLabels ~ Classifier Output
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Pedestrian Detéction, Face Detection p

GOOSSENS - N-AD,
OTLiB - COUTELIS-S

-.—i'I

[Osadchy,Miller LeCun JMLR 2007],[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. CVPR 2013]



ConvNet Architécture with Multi-Stage F§atu_._|_res

& Feature maps from all stages are pooled/subsampled and sent to the final
classification layers

» Pooled low-level features: good for textures and local motifs
» High-level features: good for “gestalt” and global shape

2040 9x9 :
Av Pooling

filtersttanh |, filter+tanh
68 feat maps

Input
78x126xYUV

1
7x7 filter+tanh, L2 Pooling \_) T
38 feat maps  3x3 subsampling output
Task Single-Stage features | Multi-Stage features | Improvement %
Pedestrians detection (INRIA) 14.26% 9.85% 31%
Traffic S1gns classification (GTSRB) [ 7] 1.80% 0.83% 54%
House Numbers classification (SVHN) [5] 5.54% 5.36% 3.2%

[Sermanet, Chintala, LeCun CVPR 2013]



Pedestrlan Detection: INRIA D ' aset. M|ss rate VS false
p05|t|ves

- Shapelet-orig (91.13%)
« PoselnySvm (68.76%)
« Poselnv (55.01%)
V]-OpenCv (52.97%)
 Shapelet (50.25%)

Area Under Curve [0, 1] FPPI

- Shapelet-orig (94.71%)

« Poselnvsvm (79.04%)

« Poselnv (72.02%)

» Shapelet (65.09%) .
V]-OpenCy (62.35%) e

v V] (57.94%) CO V.

Miss rate
[
(=]
o

. V) (47.37%) .
| FtrMine (44.36%) FtrMine (33.96%) I
| — HOG (33.52%) Co|0r+Sk|p Pls (23.26%) .
-~ Pls(30.49%) — HOG (22.58%) I
|-~ HikSvm (30.13%) Superwsed | == Hiksvm (20.54%) '

| -- LatSvm-V1 (28.20%)
— ConvNet-Supervised (26.05%)
MultiFtr (22.76%)

— ConvNet-MRC-5upervised (20.43%) ConVNet L

b b == LatsvmVl (1681%)

MultiFtr (15.11%)

. CONVIN@L......| — convNetsupervised (14.26%)
BuE - - MultiFtr+CSS (10.70%)

ConvNet-Unsup (17.81%) N B&W ConvNet-Unsup (10.19%)
- Unsup+8up B&W [ e
— ConvNet-MRC- Unsup {11.05%) | L + = ConvNet-MRC-Unsup (6.62%)
|t = S N . _Unsup Sup EEEET ——————|

False positives per image (FPPI)

[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]
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Results_ _oh-”Near Scale” Images (!80 pix-els tall, no occlygions)
-

EO] EO]
© T o) | =— 71.89% VJ
% % = = = 58 19% FeatSynth
= = - = == 44.68% HOG
42.50% LatSvm-V1
——— 80 .34% \/J — 41 .48% HikSvm
10H = = =s5t1129%HOG | NN T o 10H ™ = =38883%Ps | ..
) —50.36% HikSvm ) —— 37 .61% HogLbp
45.29% MultiFtr 35.01% MultiFtr
37.78% LatSvm-V1 23.16% MultiFtr+CSS
33.23% MultiFtr+CSS s wm D0).24% ChnFirs
05 || === 18.22% HoglL bp 05 L 19.52% FPDW
) 16.85% LatSvm-V2 : : : ) ——18.76% ConvNet
— 14.63% ConvNet 17.91% LatSvm-V2
1 1 1 1 1 1 1 1 1 1
107 1072 107" 10° 10" 107 1072 107" 10° 10"
false positives per image false positives per image
1r R 1r
80 . 80 .
50 -- ET H . 50
AO o B N Ty SRR 40+
_30_,,p rrrrrrr DT 30
RO ‘ ‘ ‘ ‘ [
S 20f ‘ S 20}
@ e 87 17 % VJ @ :
é 64.70% LatSvm—V1 é —— 93.01% VJ
— 59 .23% HikSvm 81.29% LatSvm-V1
= = = 53.48% HOG = = = 73.55% HOG
1ok 50.98% MultiFtr+CSS| ... . . I E 10 || == 73.08% HikSvm | ... ... . ...
) 50.69% FPDW : : : ) 66.31% MultiFtr
50.32% MultiFtr : : : = = = 51.56% Pls
= == == 48.34% ChnFirs . . . 58.05% LatSvm-V2
- = = 46.01% Pls : : : 56.29% MultiFtr+CSS
05 || === 42.97% HoglLbp ‘ ‘ ‘ o5l 49.98% FPDW
) 40.57% LatSvm-V2 : : : ) — 49.95% ConvNet
m—— 39 26% ConvNet = = = 49 64% ChnFtrs
1 1 1 1 1 1 1 1 1 1
107 1072 107" 10° 10" 107 1072 107" 10° 10"

false positives per imaae false positives per imaae



miss rate

miss rate
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Results_ _oh “Reasonable” Images

50 pixels tall, few ocﬁ___,cfusions)

‘ \ Y LeCun

1
1
Daimler |
=21790 *
p_ 3 og|| m— 72.48% VJ
3 = = = 59 33% FeatSynth
‘ 1 : = = = 45.98% HOG
: - 43.83% LatSvm-V1
——— 04 26% VJ — 4D _82% HikSvm
= = = 59.44% HOG 10k = = = 40.09% PIs
57.44% LatSvm—V1 ’ —— 39.10% HoglLbp
56.94% MultiFtr 36.50% MultiFtr
—— 56 .85% HikSvm 24.74% MultiFtr+CSS
—— 19 .04% HogLbp = = = 22 18% ChnFirs
42.25% MultiFtr+CSS 051 21.47% FPDW
37.90% LatSvm-V2 ) 19.96% LatSvm-V2
— 32.66% ConvNet : : : —— 19.78% ConvNet :
1 1 1 1 1 1 1 1 1 1
1072 1072 107" 10° 10" 107° 1072 107" 10° 10
false positives per image false positives per image
80| L.
64
ETH SO
- TudBrussels
p=804 o p=508
=10 e e R SRR PC R
— 89.89% VJ 3 : : : : "
76.66% LatSvm—V1 : : —— 94.53% VJ : -
— 72 _.00% HikSvm : ~ - 90.22% LatSvm-V1 :
= = = 64.23% HOG : : Lo w, — 82 54% HikSvm
60.74% MultiFtr+CSS| .. . 10k = = = 77.90% HOG | .. ...
60.10% FPDW ’ 73.42% MultiFtr
59.78% MultiFtr = = = 70.71% Pls
= = = 57.47% ChnFirs 69.59% LatSvm-V2
— 55.18% HoglLbp — 58.81% ConvNet
= = = 54.86% Pls 051 63.03% FPDW
50.89% LatSvm-Vv2 ) = mm = 50.33% ChnFtrs
m—50.31% ConvNet : 59.49% MultiFtr+CSS :
1 1 1 1 1 1 1 1 1 1

1072 107" 10° 10
false positives per image

107°

1072 107" 10
false positives per image

107°



Unsupervised pre-training with convolutional PSD P

& 128 stage-1 filters on Y channel.

& Unsupervised training with convolutional predictive sparse decomposition




Unsupervised pre-training with convolutional PSD P

& Stage 2 filters.

& Unsupervised training with convolutional predictive sparse decomposition
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Semantlc Labeling:
Labeling every pixel with the object it belgngs to

Y LeCun

# Would help identify obstacles, targets, landing sites, dangerous areas
# Would help line up depth map with edge maps

[Farabet et al. ICML 201 2 PAMI 2013]



Scene Parsing/Labeling: ConvNet Architeciur' '
# Each output sees a large input context:
» 46x46 window at full rez; 92x92 at Y2 rez; 184x184 at V4 rez
» [7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

» Trained supervised on fully-labeled images

1.1." :
1
1
: D
1

-1 |

-] 1
P, | E 1

1
B
1
] 1
1

% Categories

Laplacian Level 1 Level 2 Upsampled

Pyramid Features Features Level 2 Features



" Method 1r majority over super=pixel regions

—: E»—E SR Majority
*i,. _3;,, ) Vote
1 1 ‘@Jﬁr?— '
=S R T Over
Superpixels

Superpixel boundaries

sasoyadAy Arepunoq [axid-1adng

Categories aligned

With region
boundaries

Input image

sV lmana

JONAUO)) J[BIS-INIA

“soft” categories scores

JITJISSE[O [BUOIIN[OAUO))

Features from

Convolutional net
(d=768 per pixel)  [Farabet et al. IEEE T. PAMI 2013]



- Method 2: optimal cover of_'pLg'ity___‘ tree”

T,{(/ik,Sk} o .
Distribution of

Categories within
Each Segment

T {Cr}

(o |
panning Tree
S, (G)  Spanning T
@ @ @ @ @ _ Frompixel

W Similarity graph

masking/pooling

FnCrk pooling O«

[Farabet et al. ICML 2012]



Scene Parsmg/Labellng Performance

# Stanford Background Dataset [Gould 1009] 8 categorles

Pixel Acc. | Class Acc. | CT (sec.)
Gould ef al, 2009 [17] 76.4% : T0 to 600
Munoz et al. 2010 [37] 76.9% 66.2% 125
Tighe ef al. 2010 [46] 77 5% - 10 to 300s
Socher et al. 2011 [45] 78.1% . ?
Kumar ef al. 2010 [27] 79.4% - < 600s
Lempitzky ef al. 2011 [25] 81.9% 72.4% > 605
singlescale convnet 66.0% | 56.5% 0.35s
multiscale convnet 78.8 % 72.4% 0.68
multiscale net + superpixels 80.4% 74.56% 0.7s
multiscale net + gPb + cover | 80.4% 75.24% 61s
multiscale net + CRF on gPb | 81.4% 76.0% 60.5s

[Farabet et al. IEEE T. PAMI 201 3]




Sc'ené -ﬁarsing/Labeling: Perfori*nance

Pi:-s:l Acc. | Class Acc,

Ciu ef o, 2009 [1] A | ey
Tighe ef al. 2010 | ] 76.9% 29.4% 833 categories
raw multiscale net’ 67.9% 45.9%

multiscale net + supurpir{elﬁl 71.9% 50.8%
multiscale net + cover 72.3% 50.8%
multiscale net + cover 78.5% 29.6%
Pixel Acc. | Class Acc.
Tighe et al. 2010 [4] 66.9% 7.6%

# Barcelona dataset raw multiscale net! 37.8% 12.1%
# [Tighe 2010]: multiscale net + supﬂrpixelﬂl 44.1% 12.4%
# 170 categories. multiscale net + cover 46.4% 12.5%

multiscale net + cover? 67.8% 9.5%

[Farabet et al. IEEE T. PAMI 2012]
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Scene Parsing/Labeling: SIFT Flow dataset‘;(33 categories) o
: eLun

# Samples from the SIFT-Flow dataset (Liu)

| [ .
sw 4

hmldl g'sa:l

hu.ﬂ'ﬁ,ﬁ

.'i"

1] '.'_-i. %\.:
1 il

1 *-=‘-'v'-d

Silals

[Farabet et al. ICML 2012, PAMI 2013]



Scene Parsing/Labeling: SIFT Flow dataset (33 catégories) o
ecun

[Farabet et al. ICML 2012, PAMI 2013]



Scene Parsing/Labeling . i AP
eun

[Farabet et al. ICML 2012, PAMI 2013]



Scene Parsing/Labeling Y LeC
ecun

[Farabet et al. ICML 2012, PAMI 2013]



Scene Parsing/Labeling 2 oy
| eLun

[Farabet et al. ICML 2012, PAMI 2013]



Scene Parsing/Labeling -
- eCun

[Farabet et al. ICML 2012, PAMI 2013]



Scene Parsing/Labeling oy
| eLun

# No post-processing
# Frame-by-frame
# ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

» But communicating the features over ethernet limits system
performance




Scene Pafsing/Labeling: Temporal Consistengy P
eCun

# Causal method for temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]




Temporal Cbnsistencyfi

@ Spatio-Temporal Super-Pixel segmentation
» [Couprie et al ICIP 2013]

» [Couprie et al JMLR under review]

» Majority vote over super-pixels

Temporally consistent segmentations S;(= S7), S2, and Sy
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NYU R'GB-Depth Indoor Scenes Dataset ﬁ \ -

@ 407024 RGB-D images of apartments
@ 1449 labeled frames, 894 object categories

S | —
- L

[Silberman et al. 2012]




NYU RGB-D Datasets

@ Captured with a Kinect on a steadycam

Laptop

/ﬁ:ﬂ Kinect N
[T

Infra-Red




Results
Class Multiscale MultiScl. Cnet
Occurrences | Convnet Acc. Farabet et al. (2013) | +depth Acc.

bed 4.4% 30.3 38.1
objects 7.1 % 10.9 8.7
chair 3.4% 44.4 34.1
furnit. 12.3% 28.5 42.4
ceiling 1.4% 33.2 62.6
floor 9.9% 68.0 87.3
deco. 3.4% 38.5 40.4
sofa 3.2% 25.8 24.6
table 3.7% 18.0 10.2
wall 24.5% 89.4 86.1
window 5.1% 37.8 15.9
books 2.9% 31.7 13.7
TV 1.0% 18.8 6.0
unkn. 17.8% - -

Avg. Class Acc. - 35.8 36.2
Pixel Accuracy (mean) - 51.0 52.4
Pixel Accuracy (median) : 51.7 52.9
Pixel Accuracy (std. dev.) - 15.2 15.2




@ Depth helps a bit

Results

» Helps a lot for floor and props

» Helps surprisingly little for structures, and hurts for furniture

Ground | Furniture | Props | Structure || Class || Pixel | Comput.

Acc. | Acc. | time (s)

silberman et al, (2012) | 68 0 | 42 | 39 |56 86| >3
Cadena and Kosecka (2013) | 87.9 | 641 | 310 | 778 | 652669 | 17
Multiscale convnet 68.1 | oLl [ 299 | 8.8 | 292 | 630 | 07
Multiscaletdepth convnet | 87.3 | 453 | 355 | 861 | 63.5 || 645 | 0.7

[C. Cadena, J. Kosecka “Semantic Parsing for Priming Object Detection in RGB-D Scenes”
Semantic Perception Mapping and Exploration (SPME), Karlsruhe 201 3]




- é Y LeCun

Architecture for indoor RGB-D Semanf&ic Segmeéntation

@ Similar to outdoors semantic segmentation method
» Convnet with 4 input channels

» Vote over superpixels

Input depth image

commnel

h-f.r\.‘ NI
it Rt imoge svEmeRiatin
I

labelmg
L(F, Ay




Scene Parsing/Labéting on RGB+Depth Images

Ground ruths _

|

[

Our results

mm wall mm books mm chair mm furniture mm sofa mm object mmTV
B bed mm ceiling mm floor pict./deco mw table ~~  mmwindow @ uknw

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 201 3]



mm wall mm books mm chair mm furniture mm sofa mm object mm TV
mm bed wm ceiling mm floor pict./deco mm table mm window mm uknw
S it nm i

Ground truths

Our results

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]



g

Labeling Videos

@ Temporal consistency

(a) Output of the Multiscale convnet trained using depth information - frame by frame

- 4 ' ' ‘ '

(h) Results smoothed temporally using Couprie et al. (2013a)

Couprie, Farabet, Najman, LeCun ICLR 201 3]
Couprie, Farabet, Najman, LeCun ICIP 2013]
Couprie, Farabet, Najman, LeCun submitted to JMLR]




Semantic Segmentation on RGB+D Image§ and Vvideos

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]



model

*.Building a-ConvNet Model:

-- stage 1

model:

model:
model:

model:

add(nn.

add(nn.
add (nn.

add(nn.

-- stage 2

model:

model:
model:

model:

add(nn.

add(nn.
add(nn.

add(nn.

-- stage 3

model:
model:
model:
model:

add(nn.
add(nn.
add(nn.
add(nn.

-

Examﬁle In To_..-ﬁ&h7

nn.Sequential ()

filter bank -> squashing -> L2 pooling -> normalization
SpatialConvolutionMM(nfeats, nstates[1l], filtsiz, filtsiz))

Tanh())
SpatiallLPPooling(nstates[1l],2,poolsiz,poolsiz,poolsiz,poolsiz))

SpatialSubtractiveNormalization(nstates[1l], normkernel))
filter bank -> squashing -> L2 pooling -> normalization
SpatialConvolutionMM(nstates[1l],nstates[2],filtsiz,filtsiz))

Tanh())
SpatiallLPPooling(nstates[2],2,poolsiz,poolsiz,poolsiz,poolsiz))

SpatialSubtractiveNormalization(nstates[2], normkernel))
2 fully-connected layers
Reshape(nstates[2]*filtsize*filtsize))
Linear(nstates[2]*filtsize*filtsize, nstates[3]))
Tanh())

Linear(nstates[3], noutputs))

- http://www.torch.ch (Torch7: Lua-based dev environment for ML, CV....)
— http://code.cogbits.com/wiki/doku.php (Torch7 tutorials/demos by C. Farabet)
- http://eblearn.sf.net (C++ Library with convnet support by P. Sermanet)



Backprop in Practiceia

#l Use RelLU non-linearities (tanh and logistic are falling out of favor)

@ Use cross-entropy loss for classification

@ Use Stochastic Gradient Descent on minibatches

@ Shuffle the training samples

@ Normalize the input variables (zero mean, unit variance)

# Schedule to decrease the learning rate

#l Use a bit of L1 or L2 regularization on the weights (or a combination)
» But it's best to turn it on after a couple of epochs

@ Use “dropout” for regularization
» Hinton et al 2012 http://arxiv.org/abs/1207.0580

# Lots more in [LeCun et al. “Efficient Backprop” 1998]

# Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Miiller (Springer)
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