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Category recognition

Image classification: assigning a class label to the image

Category recognition

• Image classification: assigning a class label to the image

Car: present
Cow: present
Bike: not present
Horse: not presentHorse: not present
…



TasksCategory recognition

Image classification: assigning a class label to the image

TasksCategory recognition

• Image classification: assigning a class label to the image

Car: present
Cow: present
Bike: not present
Horse: not presentHorse: not present
…

• Object localization: define the location and the categoryObject localization: define the location and the category

L ti

Car Cow
Location

CategoryCategory



Difficulties: within object variationsDifficulties: within object variations

Variability: Camera position, Illumination,Internal parameters

Within-object variations



Difficulties: within class variationsDifficulties: within class variations



Image classificationImage classification
• GivenGiven 

Positive training images containing an object class

Negative training images that don’t

Classify
A test image as to whether it contains the object class or not

• Classify  

?



Bag-of-features – Origin: texture recognitionBag of features Origin: texture recognition

Texture is characterized by the repetition of basic elements• Texture is characterized by the repetition of basic elements 
or textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Bag-of-features – Origin: texture recognitionBag of features Origin: texture recognition

histogram

Universal texton dictionary

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Bag-of-features – Origin: bag-of-words (text)Bag of features Origin: bag of words (text)

• Orderless document representation: frequencies of wordsOrderless document representation: frequencies of words 
from a dictionary

• Classification to determine document categoriesClassification to determine document categories

Common 2 0 1 3

Bag-of-words
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Bag-of-features for image classificationBag of features for image classification

SVMSVM

ClassificationExtract regions Compute Find clusters Compute distance ClassificationExtract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

[Csurka et al., ECCV Workshop’04], [Nowak,Jurie&Triggs,ECCV’06],  
[Zhang,Marszalek,Lazebnik&Schmid,IJCV’07]



Bag-of-features for image classificationBag of features for image classification

SVMSVM

ClassificationExtract regions Compute Find clusters Compute distance ClassificationExtract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3



Step 1: feature extractionStep 1: feature extraction

Scale invariant image regions + SIFT (see previous lecture)• Scale-invariant image regions + SIFT (see previous lecture)
– Affine invariant regions give “too” much invariance
– Rotation invariance for many realistic collections “too” muchRotation invariance for many realistic collections too  much 

invariance

• Dense descriptors 
– Improve results in the context of categories (for most categories)

I t t i t d t il t “ ll” f t– Interest points do not necessarily capture “all” features

• Color based descriptors• Color-based descriptors

• Shape based descriptors• Shape-based descriptors 



Dense featuresDense features 

- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
-Computation of the SIFT descriptor for each grid cellsComputation of  the SIFT descriptor  for each grid cells
-Exp.: Horizontal/vertical step size 3 pixel, scaling factor of 1.2 per level



Bag-of-features for image classificationBag of features for image classification

SVMSVM

ClassificationExtract regions Compute Find clusters Compute distance ClassificationExtract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3



Step 2: Quantization

Visual vocabularyVisual vocabulary

ClusteringClustering



Examples for visual wordsp

AirplanesAirplanes

Motorbikes

Faces

Wild Cats

Leaves

People

Bikes



Step 2: QuantizationStep 2: Quantization

Cluster descriptors• Cluster descriptors
– K-means 
– Gaussian mixture modelGaussian mixture model

• Assign each visual word to a clusterg
– Hard or soft assignment 

• Build frequency histogram



K-means clusteringK means clustering
• Minimizing sum of squared Euclidean distances g q

between points xi and their nearest cluster centers

• Algorithm: 
– Randomly initialize K cluster centersy
– Iterate until convergence:

• Assign each data point to the nearest center
R t h l t t th f ll i t• Recompute each cluster center as the mean of all points 
assigned to it

• Local minimum, solution dependent on initialization

• Initialization important, run several times, select best 



Gaussian mixture model (GMM)Gaussian mixture model (GMM)

• Mixture of Gaussians: weighted sum of Gaussians• Mixture of Gaussians: weighted sum of Gaussians 

wheree e



Hard or soft assignmentHard or soft assignment

K means hard assignment• K-means  hard assignment 
– Assign to the closest cluster center 
– Count number of descriptors assigned to a centerCount number of descriptors assigned to a center

• Gaussian mixture model  soft assignmentg
– Estimate distance to all centers
– Sum over number of descriptors 

• Represent image by a frequency histogram 



Image representationImage representation
cy
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codewords

• each image is represented by a vector, typically 1000-4000 dimension,        
normalization with L1/L2 norm
• fine grained – represent model instancesfine grained represent model instances
• coarse grained – represent object categories



Bag-of-features for image classificationBag of features for image classification

SVMSVM

ClassificationExtract regions Compute Find clusters Compute distance ClassificationExtract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3



Step 3: Classification

• Learn a decision rule (classifier) assigning bag-of-Learn a decision rule (classifier) assigning bag of
features representations of images to different classes

Zebra

Non-zebra

Decision
boundary



Training data
Vectors are histograms, one from each training image

Training data

positive negative

Train classifier,e.g.SVM



Linear classifiersLinear classifiers
• Find linear function (hyperplane) to separate positive and 

i lnegative examples

0:positive  bii wxx
0:negative
0:positive




b
b

ii

ii

wxx
wxx

Which hyperplane
is best?



Linear classifiers - marginLinear classifiers margin

2x2x

G li ti i t

(color)
2x

(color)
2x

• Generalization is not 
good in this case:

)(roundness1x )(roundness1x

2x2x

• Better if a margin 
(color)

2x
(color)

2x

is introduced: b/| |w

)(roundness1x )(roundness1x



Nonlinear SVMs
• Datasets that are linearly separable work out great:

Nonlinear SVMs

0 x

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:
0 x

We can map it to a higher dimensional space:

x2

0 x



Nonlinear SVMsNonlinear SVMs

• General idea: the original input space can always beGeneral idea: the original input space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable:

Φ:  x→ φ(x)



Nonlinear SVMsNonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting 
transformation φ(x), define a kernel function K such that

K(xi,xjj) = φ(xi ) · φ(xj)

• This gives a nonlinear decision boundary in the original 
feature space:eatu e space

 bKy
i

iii  ),( xx



Kernels for bags of featuresKernels for bags of features
N
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Combining features

•SVM with multi-channel chi-square kernel 

● Channel c is a combination of detector, descriptor

● is the chi-square distance between histograms),( jic HHD
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● is the mean value of the distances between all training samplecA

i 12

● Extension: learning of the weights, for example with Multiple 
Kernel Learning (MKL)

[J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid. Local features and kernels for 
classification of texture and object categories: a comprehensive study, IJCV 2007]



Combining featuresCombining features

For linear SVMs• For linear SVMs
– Early fusion: concatenation the descriptors 
– Late fusion: learning weights to combine the classification scoresLate fusion: learning weights to combine the classification scores 

• Theoretically no clear winnery

• In practice late fusion give better results  p g
– In particular if different modalities are combined 



Multi-class SVMsMulti class SVMs

Various direct formulations exist but they are not widely• Various direct formulations exist, but they are not widely 
used in practice. It is more common to obtain multi-class 
SVMs by combining two-class SVMs in various waysSVMs by combining two class SVMs in various ways 

• One versus all:One versus all:  
– Training: learn an SVM for each class versus the others 
– Testing:  apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value

O• One versus one:
– Training: learn an SVM for each pair of classes 
– Testing: each learned SVM “votes” for a class to assign to the test– Testing: each learned SVM votes   for a class to assign to the test 

example 



Why does SVM learning work?Why does SVM learning work?

• Learns foreground and background visual words

foreground words high weightforeground words – high weight

background words – low weight



Illustration

Localization according to visual word probability

Illustration

Localization according to visual word probability
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IllustrationIllustration
A linear SVM trained from positive and negative window descriptors 

A few of the highest weighted descriptor vector dimensions (= 'PAS + tile')

+  lie on object boundary (= local shape structures common to many training exemplars)



Bag-of-features for image classificationBag of features for image classification

• Excellent results in the presence of background clutter• Excellent results in the presence of background clutter

bikes books building cars people phones trees



Examples for misclassified imagesExamples for misclassified images

Books- misclassified into faces, faces, buildings

Buildings- misclassified into faces, trees, trees

Cars- misclassified into buildings, phones, phones



Bag of visual words summaryBag of visual words summary 

• Advantages:
largely unaffected by position and orientation of object in image– largely unaffected by position and orientation of object in image

– fixed length vector irrespective of number of detections
– very successful in classifying images according to the objects they y y g g g j y

contain

• Disadvantages:
no explicit use of configuration of visual word positions– no explicit use of configuration of visual word positions

– no model of the object location 



Evaluation of image classificationEvaluation of image classification

• PASCAL VOC [05 12] datasets• PASCAL VOC  [05-12] datasets

PASCAL VOC 2007• PASCAL VOC 2007
– Training and test dataset available
– Used to report state-of-the-art resultsUsed to report state of the art results 
– Collected January 2007 from Flickr
– 500 000 images downloaded and random subset selected
– 20 classes
– Class labels per image + bounding boxes

5011 t i i i 4952 t t i– 5011 training images, 4952 test images 

• Evaluation measure: average precision• Evaluation measure: average precision 



PASCAL 2007 datasetPASCAL 2007 dataset



PASCAL 2007 datasetPASCAL 2007 dataset



EvaluationEvaluation



Precision/RecallPrecision/Recall

• Ranked list for category A :

A, C, B, A, B, C, C, A   ;  in total four images with category A



Results for PASCAL 2007Results for PASCAL 2007
• Winner of PASCAL 2007 [Marszalek et al.] : mAP 59.4[ ]

– Combination of several different channels (dense + interest 
points, SIFT + color descriptors, spatial grids)
N li SVM ith G i k l– Non-linear SVM with Gaussian kernel 

• Multiple kernel learning [Yang et al 2009] : mAP 62 2• Multiple kernel learning [Yang et al. 2009] : mAP 62.2
– Combination of several features
– Group-based MKL approachp pp

• Combining object localization and classification 
[Harzallah et al.’09] : mAP 63.5
– Use detection results to improve classification

• Adding objectness boxes [Sanchez at al.’12] : mAP 66.3 



Spatial pyramid matchingSpatial pyramid matching

Add spatial information to the bag of features• Add spatial information to the bag-of-features

P f t hi i 2D i• Perform matching in 2D image space

[Lazebnik, Schmid & Ponce, CVPR 2006]



Related workRelated work 
Similar approaches:Similar approaches:

Subblock description [Szummer & Picard, 1997]
SIFT [Lowe, 1999]

GistSIFT

GIST [Torralba et al., 2003]

GistSIFT

Szummer & Picard (1997) Lowe (1999 2004) Torralba et al (2003)Szummer & Picard (1997) Lowe (1999, 2004) Torralba et al. (2003)



Spatial pyramid representationSpatial pyramid representation

Locally orderless 
irepresentation at 

several levels of 
spatial resolution

level 0



Spatial pyramid representationSpatial pyramid representation

Locally orderless 
irepresentation at 

several levels of 
spatial resolution

level 0 level 1



Spatial pyramid representationSpatial pyramid representation

Locally orderless 
irepresentation at 

several levels of 
spatial resolution

level 0 level 1 level 2



Spatial pyramid matchingSpatial pyramid matching

Combination of spatial levels with pyramid match kernel• Combination of spatial levels with pyramid match kernel 
[Grauman & Darell’05]

• Intersect histograms, more weight to finer gridsIntersect histograms, more weight to finer grids



Scene dataset [Labzenik et al.’06]

Coast Forest Mountain Open country Highway Inside city Tall building Street

Suburb Bedroom Kitchen Living room Office

Store Industrial

4385 images
15 categories5 c ego es



Scene classificationScene classification

L Single-level PyramidL Single level Pyramid

0(1x1) 72.2±0.6
1(2x2) 77.9±0.6 79.0 ±0.5
2(4x4) 79.4±0.3 81.1 ±0.3
3(8x8) 77.2±0.4 80.7 ±0.3



Retrieval examplesRetrieval examples



Category classification – CalTech101Category classification CalTech101

L Single-level Pyramid

0(1x1) 41.2±1.2
1(2x2) 55.9±0.9 57.0 ±0.8
2(4x4) 63.6±0.9 64.6 ±0.8
3(8x8) 60 3±0 9 64 6 ±0 73(8x8) 60.3±0.9 64.6 ±0.7



Evaluation BoF – spatialEvaluation BoF spatial 

Image classification results on PASCAL’07 train/val set

(SH, Lap, MSD) x (SIFT,SIFTC) AP

Image classification results on PASCAL 07 train/val set

spatial layout
1 0.53

2x2

3x1

1,2x2,3x1



Evaluation BoF – spatialEvaluation BoF spatial 

Image classification results on PASCAL’07 train/val set

(SH, Lap, MSD) x (SIFT,SIFTC) AP

Image classification results on PASCAL 07 train/val set

spatial layout
1 0.53

2x2 0.52

3x1 0.52

1,2x2,3x1 0.54

Spatial layout not dominant for PASCAL’07 dataset
C bi i i l i i i i fCombination improves average results, i.e., it is appropriate for 
some classes 



Evaluation BoF - spatialEvaluation BoF spatial

Image classification results on PASCAL’07 train/val set
for individual categories

1 3x1

g

Sheep 0.339 0.256

Bird 0.539 0.484

DiningTable 0.455 0.502

Train 0.724 0.745

Results are category dependent!g y p
 Combination helps somewhat



DiscussionDiscussion

• Summary
– Spatial pyramid representation: appearance of local image 

t h + l b l iti i f tipatches + coarse global position information
– Substantial improvement over bag of features

Depends on the similarity of image layout– Depends on the similarity of image layout

• Recent extensionsRecent extensions
– Flexible, object-centered grid 

• Shape masks [Marszalek’12] => additional annotations p [ ]
– Weakly supervised localization of objects

• [Russakovsky et al.’12]



Recent extensionsRecent extensions

• Efficient Additive Kernels via Explicit Feature Maps 
[Perronnin et al.’10, Maji and Berg’09, A. Vedaldi and Zisserman’10][Perronnin et al. 10, Maji and Berg 09,  A. Vedaldi and Zisserman 10]

• Recently improved aggregation schemesRecently improved aggregation schemes
– Fisher vector [Perronnin & Dance ‘07]

– VLAD descriptor [Jegou, Douze, Schmid, Perez ‘10]

– Supervector [Zhou et al. ‘10]

– Sparse coding [Wang et al. ’10, Boureau et al.’10]

• Improved performance + linear SVM 



Fisher vector

 Use a Gaussian Mixture Model as vocabulary 
 Statistical measure of the descriptors of the image w.r.t the GMM

D i ti f lik lih d t GMM t Derivative of likelihood w.r.t. GMM parameters

GMM parameters:

weight

mean

co-variance (diagonal)

Translated cluster →Translated cluster → 
large derivative on        for this 

component

[Perronnin & Dance 07]



Fisher vector

For image retrieval in our experiments:
l d i ti t di K*D [K b f G i D di f d i ]- only deviation wrt mean, dim: K*D [K number of Gaussians, D dim of descriptor] 

- variance does not improve for comparable vector length



Image classification with Fisher vectorImage classification with Fisher vector

Dense SIFT• Dense SIFT
• Fisher vector (k=32 to 1024, total dimension from approx. 

5000 to 160000)5000 to 160000)
• Normalization

– square-rooting– square-rooting
– L2 normalization
– [Perronnin’10], [Image categorization using Fisher kernels of non-iid 

image models, Cinbis, Verbeek, Schmid, CVPR’12]

• Classification approach
– Linear classifiers 

One ers s rest classifier– One versus rest classifier



Image classification with Fisher vectorImage classification with Fisher vector

Evaluation on PASCAL VOC’07 linear classifiers with• Evaluation on PASCAL VOC’07 linear classifiers with
– Fisher vector 
– Sqrt transformation of Fisher vectorSqrt transformation of Fisher vector
– Latent GMM of Fisher vector

• Sqrt transform + latent MOG 
models lead to improvementp

• State-of-the-art performance 
bt i d ith li l ifiobtained with linear classifier



Evaluation image descriptionEvaluation image description 

Fisher versus BOF vector + linear classifier on Pascal Voc’07Fisher versus BOF vector + linear classifier on Pascal Voc’07 

•Fisher improves over BOF
•Fisher comparable to BOF +p

non-linear classifier
•Limited gain due to SPM 
on PASCAL

•Sqrt helps for Fisher and BOF
•[Chatfield et al 2011]•[Chatfield et al. 2011] 



Large-scale image classificationLarge scale image classification
has 14M images from 22k classesg

Standard Subsets
I N t L S l Vi l R iti Ch ll 2010 (ILSVRC)– ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC)

• 1000 classes and 1.4M images
– ImageNet10K datasetImageNet10K dataset

• 10184 classes and ~ 9 M images



Large-scale image classificationLarge scale image classification

Classification approach• Classification approach
– One-versus-rest classifiers
– Stochastic gradient descent (SGD)Stochastic gradient descent  (SGD)
– At each step choose a sample at random and update the 

parameters using a sample-wise estimate of the regularized risk

• Data reweighting
Wh l i ifi tl l t d th th– When some classes are significantly more populated than others, 
rebalancing positive and negative examples

– Empirical risk with reweighting p g g

Natural rebalancing, same weight to positive and negatives



Importance of re-weightingImportance of re weighting

• Plain lines correspond to w-OVR, 
d h d t OVRdashed one to u-OVR

• ß is number of negatives samples 
for each positive, β=1 natural 
rebalancing

• Results for ILSVRC 2010

• Significant impact on accuracy
• For very high dimensions little impactFor very high dimensions little impact



Impact of the image signature sizeImpact of the image signature size
• Fisher vector (no SP) for varying number of Gaussians +Fisher vector (no SP) for varying number of Gaussians  

different classification methods, ILSVRC 2010

P f i f hi h di i l t• Performance improves for higher dimensional vectors



Experimental resultsExperimental results

• Features: dense SIFT reduced to 64 dim with PCA• Features: dense SIFT, reduced to 64 dim with PCA

• Fisher vectors• Fisher vectors
– 256 Gaussians, using mean and variance 
– Spatial pyramid with 4 regionsSpatial pyramid with 4 regions
– Approx. 130K dimensions (4x [2x64x256])
– Normalization: square-rooting and L2 norm

• BOF: dim 1024 + R=4 
– 4960 dimensions  
– Normalization: square-rooting and L2 norm



Experimental results for ILSVRC 2010Experimental results for ILSVRC 2010

F t d SIFT d d t 64 di ith PCA• Features : dense SIFT, reduced to 64 dim with PCA 

• 256 Gaussian Fisher vector using mean and variance +  SP 
(3x1) (4x [2x64x256] ~ 130k dim), square-root + L2 norm 

• BOF dim=1024 + SP (3x1) (dim 4000), square-root + L2 norm

• Different classification methods 



Large-scale experiment on ImageNet10kLarge scale experiment on ImageNet10k

16.7

Top-1 accuracy

• Significant gain by data re-weighting, even for high-
dimensional Fisher vectorsdimensional Fisher vectors 

• w-OVR > u-OVR 
Impro es o er state of the art 6 4% [Deng et al] and• Improves over state of the art: 6.4% [Deng et. al] and 
WAR [Weston et al.]



Large-scale experiment on ImageNet10kLarge scale experiment on ImageNet10k

Illustration of results obtained with w OVR and 130K dim• Illustration of results obtained with w-OVR and 130K-dim 
Fisher vectors, ImageNet10K top-1 accuracy  



ConclusionConclusion

Stochastic training: learning with SGD is well suited for• Stochastic training: learning with SGD is well-suited for 
large-scale datasets 

• One-versus-rest: a flexible option for large-scale image 
classificationclassification

• Class imbalance: optimize the imbalance parameter inClass imbalance: optimize the imbalance parameter in 
one-versus-rest strategy is a must for competitive 
performancep



ConclusionConclusion

• State-of-the-art performance for large-scale image 
classificationclassification

• Code on line available at http://lear inrialpes fr/software• Code on-line available at http://lear.inrialpes.fr/software

• Future work• Future work
– Beyond a single representation of the entire image
– Take into account the hierarchical structureTake into account the hierarchical structure


