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Slides available on my home page

http://www.ist.ac.at/~chl

More details on Max-Margin / Kernel Methods

Foundations and Trends in Computer
Graphics and Vision,

www.nowpublishers.com/

Also as PDFs on my homepage
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Computer Vision: Long term goal

Automatic systems that analyzes and interprets visual data

→ →

‘‘Three men sit

at a table in a

pub, drinking

beer. One

of them talks

while the other

listen.’’

Image Understanding
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Computer Vision: Short/medium term goal

Automatic systems that analyzes some aspects of visual data

→ → I indoors

I in a pub

Scene Classification
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Computer Vision: Short/medium term goal

Automatic systems that analyzes some aspects of visual data

→ → I drinking

Action Classification
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Computer Vision: Short/medium term goal

Automatic systems that analyzes some aspects of visual data

→ →
I three people

I one table

I three glasses

Object Recognition
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Computer Vision: Short/medium term goal

Automatic systems that analyzes some aspects of visual data

→ →
Joint positions/
angles: θ1, . . . , θK

Pose Estimation
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A Machine Learning View on Computer Vision Problems

Classification/
Regression

today



• Scene Classification

• Action Classification

• Object Recognition

• Face Detection

• Sign Language Recognition

Structured Prediction
today/Wednesday


• Pose Estimation

• Stereo Reconstruction

• Image Denoising

• Semantic Image Segmentation

Outlier Detection

{
• Anomaly Detection in Videos

• Video Summarization

Clustering
{
• Image Duplicate Detection
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A Machine Learning View on Computer Vision Problems

Classification


• ...

• Optical Character Recognition

• ...

I It’s difficult to program a solution to this.

if (I[0,5]<128) & (I[0,6] > 192) & (I[0,7] < 128):

return ’A’

elif (I[7,7]<50) & (I[6,3]) != 0:

return ’Q’

else:

print "I don’t know this letter."

I With Machine Learning, we can avoid this:
I We don’t program a solution to the specific problem.
I We program a generic classification program.
I We solve the problem by training the classifier with examples.
I When a new font occurs: re-train, don’t re-program
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A Machine Learning View on Computer Vision Problems

Classification


• ...

• Object Category Recognition

• ...

I It’s ����difficult impossible to program a solution to this.

if ???

I With Machine Learning, we can avoid this:
I We don’t program a solution to the specific problem.
I We re-use our previous classifier.
I We solve the problem by training the classifier with examples.
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Classification
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Example – RoboCup

Goal: blue Floor: green/white Ball: red
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Example – RoboCup

Goal: blue

Floor: green

Ball: red
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Example – RoboCup

goal floor ball

New object: → ball

New object: → floor

New object: → goal

New object: → floor
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Bayesian Decision Theory

Notation...

I data: x ∈ X = Rd, (here: colors, d = 3)

I labels: y ∈ Y = {goal, floor, ball}, (here: object classes)

I goal: classification rule g : X → Y.

Histograms: class-conditional probability densities p(x|y). For any y ∈ Y

∀x ∈ X : p(x|y) ≥ 0
∑

x∈X p(x|y) = 1

p(x|y = goal) p(x|y = floor) p(x|y = ball)

Maximum Likehood Rule: g(x) = argmaxy∈Y p(x|y)
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Bayesian Decision Theory

Assume: fourth class: sun, but occurs only outdoors

p(x|y = goal) p(x|y = floor) p(x|y = ball) p(x|y = sun)

Maximum Likehood (ML) Rule: g(x) = argmaxy∈Y p(x|y)

New object: → ball

New object: → floor

New object: → goal

New object: → sun

We must take into account how likely it is to see a class at all!
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Bayesian Decision Theory

Notation:

I class conditional densities: p(x|y) for all y ∈ Y
I class priors: p(y) for all y ∈ Y
I goal: decision rule g : X → Y that results in fewest mistakes

For any input x ∈ X :

p(mistake|x) =
∑
y∈Y

p(y|x)Jg(x) 6= yK JP K =

{
1 if P = true

0 otherwise

p(no mistake|x) =
∑
y∈Y

p(y|x)Jg(x) = yK = p( g(x)|x )

Optimal decision rule: g(x) = argmaxy∈Y p(y|x) ”Bayes classifier”
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Bayesian Decision Theory

How to get ”class posterior” p(y|x)?

p(y|x) =
p(x|y)p(y)

p(x)
(Bayes’ rule)

I p(x|y): class conditional density (here: histograms)

I p(y): class priors, e.g. for indoor RoboCup
p(floor) = 0.6, p(goal) = 0.3, p(ball) = 0.1, p(sun) = 0

I p(x): probability of seeing data x

Equivalent rules:

g(x) = argmax
y∈Y

p(y|x) = argmax
y∈Y

p(x|y)p(y)

p(x)

= argmax
y∈Y

p(x|y)p(y)

= argmax
y∈Y

p(x, y)
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Bayesian Decision Theory

Special case: binary classification, Y = {−1,+1}

argmax
y∈Y

p(y|x) =

{
+1 if p(+1|x) > p(−1|x),

−1 if p(+1|x) ≤ p(−1|x).

Equivalent rules:

g(x) = argmax
y∈Y

p(y|x)

= sign
(
p(+1|x)− p(−1|x)

)
= sign log

p(+1|x)

p(−1|x)

With sign(t) :=

{
+1 if t > 0,

−1 otherwise.
.
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Loss Functions

Not all mistakes are equally bad:

I mistake opponent goal as your goal:
You don’t shoot, missed opportunity to score: bad

I mistake your goal as opponent goal:
You shoot, score own-goal: much worse!

Formally:

I loss function, ∆ : Y × Y → R
I ∆(y, ȳ) = cost of predicting ȳ if y is correct.

∆goals:

y \ ȳ opponent own

opponent 0 2

own 10 0

I Convention: ∆(y, y) = 0 for all y ∈ Y (correct decision has 0 loss)
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Loss Functions

Reminder: ∆(y, ȳ) = cost of predicting ȳ if y is correct.

Optimal decision: choose g : X → Y to minimize the expected loss

L∆(y;x) =
∑
ȳ 6=y

p(ȳ|x)∆(ȳ, y) =
∑
ȳ∈Y

p(ȳ|x)∆(ȳ, y) (∆(y, y) = 0)

g(x) = argmin
y∈Y

L∆(y;x) pick label of smallest expected loss

Special case: ∆(y, ȳ) = Jy 6= yK. E.g.

0 1 1

1 0 1

1 1 0

(for 3 labels)

g∆(x) = argmin
y∈Y

L∆(y) = argmin
y∈Y

∑
ȳ 6=y

p(y|x)Jy 6= yK

= argmax
y∈Y

p(y|x)

(→ Bayes classifier)
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Learning Paradigms

Given: training data {(x1, y1), . . . , (xn, yn)} ⊂ X × Y

Approach 1) Generative Probabilistic Models

1) Use training data to obtain an estimate p(x|y) for any y ∈ Y
2) Compute p(y|x) ∝ p(x|y)p(y)

3) Predict using g(x) = argminy
∑

ȳ p(ȳ|x)∆(ȳ, y).

Approach 2) Discriminative Probabilistic Models

1) Use training data to estimate p(y|x) directly.

2) Predict using g(x) = argminy
∑

ȳ p(ȳ|x)∆(ȳ, y).

Approach 3) Loss-minimizing Parameter Estimation

1) Use training data to search for best g : X → Y directly.
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Generative Probabilistic Models

This is what we did in the RoboCup example!

I Training data X = {x1, . . . , xn}, Y = {y1, . . . , xn}. X ×Y ⊂ X ×Y
I For each y ∈ Y, build model for p(x|y) of Xy := {xi ∈ X : yi = y}

I Histogram: if x can have only few discrete values.

I Kernel Density Estimator: p(x|y) ∝
∑

xi∈Xy

k(xi, x)

I Gaussian: p(x|y) = G(x;µy,Σy) ∝ exp(− 1
2 (x− µy)>Σ−1y (x− µy))

I Mixture of Gaussians: p(x|y) =
∑K

k=1 π
k
yG(x;µk

y ,Σ
k
y)

4 3 2 1 0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5
p(x|+1)

p(x|−1)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
p( +1|x)
p(−1|x)

class conditional densities (Gaussian) class posteriors for p(+1) = p(−1) = 1
2
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Generative Probabilistic Models

This is what we did in the RoboCup example!

I Training data X = {x1, . . . , xn}, Y = {y1, . . . , xn}. X ×Y ⊂ X ×Y
I For each y ∈ Y, build model for p(x|y) of Xy := {xi ∈ X : yi = y}

I Histogram: if x can have only few discrete values.

I Kernel Density Estimator: p(x|y) ∝
∑

xi∈Xy

k(xi, x)

I Gaussian: p(x|y) = G(x;µy,Σy) ∝ exp(− 1
2 (x− µy)>Σ−1y (x− µy))

I Mixture of Gaussians: p(x|y) =
∑K

k=1 π
k
yG(x;µk

y ,Σ
k
y)

Typically: Y small, i.e. few possible labels,

X low-dimensional, e.g. RGB colors, X = R3

But: large Y is possible with right tools → ”Intro to graphical models”
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Discriminative Probabilistic Models

Most popular: Logistic Regression

I Training data X = {x1, . . . , xn}, Y = {y1, . . . , yn}. X × Y ⊂ X × Y
I To simplify notation: assume X = Rd, Y = {±1}
I Parametric model:

p(y|x) =
1

1 + exp(−y w>x)
with free parameter w ∈ Rd

30
20

10
0

10
20

30
40

20

0

20
40

0.2

0.0

0.2

0.4

0.6

0.8

1.0
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Discriminative Probabilistic Models

Most popular: Logistic Regression

I Training data X = {x1, . . . , xn}, Y = {y1, . . . , yn}. X × Y ⊂ X × Y
I To simplify notation: assume X = Rd, Y = {±1}
I Parametric model:

p(y|x) =
1

1 + exp(−y w>x)
with free parameter w ∈ Rd

I Find w by maximizing the conditional data likelihood

w = argmax
w∈Rd

n∏
i=1

p(yi|xi)

= argmin
w∈Rd

n∑
i=1

log
(
1 + exp(−yiw>xi)

)

Extensions to very large Y → ”Structured Outputs (Wednesday)”
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Loss-minimizing Parameter Estimation

I Training data X = {x1, . . . , xn}, Y = {y1, . . . , xn}. X × Y ⊂ X × Y
I Simplify: X = Rd, Y = {±1}, ∆(y, ȳ) = Jy 6= ȳK
I Choose hypothesis class: (which classifiers do we consider?)

H = {g : X → Y} (e.g. all linear classifiers)

I Expected loss of a classifier h : X → Y on a sample x

L(g, x) =
∑
y∈Y

p(y|x)∆( y, g(x) )

I Expected overall loss of a classifier:

L(g) =
∑
x∈X

p(x)L(g, x)

=
∑
x∈X

∑
y∈Y

p(x, y)∆( y, g(x) ) = Ex,y∆(y, g(x))

I Task: find ”best” g in H, i.e. g := argming∈H L(g)

Note: for simplicity, we always write
∑

x. When X is infinite (i.e. almost always), read this as
∫
X dx 25 / 90



Rest of this Lecture

Part II:
H = {linear classifiers}

Part III:
H = {nonlinear classifiers}

Part IV (if there’s time):
Multi-class Classification
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Notation...

I data points X = {x1, . . . , xn}, xi ∈ Rd, (think: feature vectors)

I class labels Y = {y1, . . . , yn}, yi ∈ {+1,−1}, (think: cat or no cat)

I goal: classification rule g : Rd → {−1,+1}.

I parameterize g(x) = sign f(x) with f : Rd → R:

f(x) = a1x1 + a2x2 + · · ·+ anxn + a0

simplify notation: x̂ = (1, x), ŵ = (a0, . . . , an):

f(x) = 〈ŵ, x̂〉 (inner/scalar product in Rd+1)

(also: ŵ · x̂ or ŵ>x̂)

I out of lazyness, we just write f(x) = 〈w, x〉 with x,w ∈ Rd.
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Linear Classification – the classical view

Given X = {x1, . . . , xn}, Y = {y1, . . . , yn}.

Any w partitions the data
space into two half-spaces by means of f(x) = 〈w, x〉.

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

“What’s the best w?”
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Criteria for Linear Classification

What properties should an optimal w have?

Given X = {x1, . . . , xn}, Y = {y1, . . . , yn}.

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

Are these the best? No, they misclassify many examples.

Criterion 1: Enforce sign〈w, xi〉 = yi for i = 1, . . . , n.
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Criteria for Linear Classification

What properties should an optimal w have?

Given X = {x1, . . . , xn}, Y = {y1, . . . , yn}. What’s the best w?

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

Are these the best? No, they would be “risky” for future samples.

Criterion 2: Ensure sign〈w, x〉 = y for future (x, y) as well.
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Criteria for Linear Classification

Given X = {x1, . . . , xn}, Y = {y1, . . . , yn}. Assume that future samples
are similar to current ones. What’s the best w?

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ ρ

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

margin

region
ρ

Maximize “robustness”: use w such that we can maximally perturb the
input samples without introducing misclassifications.

Central quantity:
margin(x) = distance of x to decision hyperplane = 〈 w

‖w‖ , x〉

31 / 90



Criteria for Linear Classification

Given X = {x1, . . . , xn}, Y = {y1, . . . , yn}. Assume that future samples
are similar to current ones. What’s the best w?

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ ρ

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

margin

region
ρ

Maximize “robustness”: use w such that we can maximally perturb the
input samples without introducing misclassifications.

Central quantity:
margin(x) = distance of x to decision hyperplane = 〈 w

‖w‖ , x〉
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Maximum Margin Classification

Maximum-margin solution is determined by a maximization problem:

max
w∈Rd,γ∈R+

γ

subject to

sign〈w, xi〉 = yi for i = 1, . . . n.∣∣∣∣〈 w‖w‖ , xi〉
∣∣∣∣ ≥ γ for i = 1, . . . n.

Classify new samples using f(x) = 〈w, x〉.
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Maximum Margin Classification

We can rewrite this as a minimization problem:

min
w∈Rd

‖w‖2

subject to

yi〈w, xi〉 ≥ 1 for i = 1, . . . n.

Classify new samples using f(x) = 〈w, x〉.

Maximum Margin Classifier (MMC)
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Maximum Margin Classification

From the view of optimization theory

min
w∈Rd

‖w‖2

subject to

yi〈w, xi〉 ≥ 1 for i = 1, . . . n

is rather easy:

I The objective function is differentiable and convex.

I The constraints are all linear.

We can find the globally optimal w in O(d3) (usually much faster).

I There are no local minima.

I We have a definite stopping criterion.
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Linear Separability

What is the best w for this dataset?

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0
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Linear Separability

What is the best w for this dataset?

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ
margin

ξ i
margin vio

lation

xi

Possibly this one, even though one sample is misclassified.
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Linear Separability

What is the best w for this dataset?

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0
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Linear Separability

What is the best w for this dataset?

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

Maybe not this one, even though all points are classified correctly.
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Linear Separability

What is the best w for this dataset?

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ
margin

ξ i

Trade-off: large margin vs. few mistakes on training set
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Soft-Margin Classification

Mathematically, we formulate the trade-off by slack-variables ξi:

min
w∈Rd,ξi∈R+

‖w‖2 +
C

n

n∑
i=1

ξi

subject to
yi〈w, xi〉 ≥ 1 − ξi for i = 1, . . . n,

ξi ≥ 0 for i = 1, . . . , n.

Linear Support Vector Machine (linear SVM)

I We can fulfill every constraint by choosing ξi large enough.

I The larger ξi, the larger the objective (that we try to minimize).
I C is a regularization/trade-off parameter:

I small C → constraints are easily ignored
I large C → constraints are hard to ignore
I C =∞ → hard margin case → no errors on training set

I Note: The problem is still convex and efficiently solvable.
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Solving for Soft-Margin Solution

Reformulate:

min
w∈Rd,ξi∈R+

‖w‖2 +
C

n

n∑
i=1

ξi

subject to yi〈w, xi〉 ≥ 1 − ξi for i = 1, . . . n,

ξi ≥ 0 for i = 1, . . . , n.

We can read off the optimal values ξi = max{0, 1− yi〈w, xi〉
}

.

Equivalent optimization problem (with λ = 1/C):

min
w∈Rd

λ‖w‖2 +
1

n

n∑
i=1

max{0, 1− yi〈w, xi〉
}

I Now unconstrained optimization, but non-differentiable
I Solve efficiently, e.g., by subgradient method

→ ”Large-scale visual recognition” (Thursday)
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Linear SVMs in Practice

Efficient software packages:

I liblinear: http://www.csie.ntu.edu.tw/∼cjlin/liblinear/

I SVMperf: http://www.cs.cornell.edu/People/tj/svm light/svm perf.html

I see also: Pegasos:, http://www.cs.huji.ac.il/∼shais/code/

I see also: sgd:, http://leon.bottou.org/projects/sgd

Training time:

I approximately linear in data dimensionality

I approximately linear in number of training examples,

Evaluation time (per test example):

I linear in data dimensionality

I independent of number of training examples

Linear SVMs are currently the most frequently used classifiers in
Computer Vision.
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Linear Classification – the modern view

Geometric intuition is nice, but are there any guarantees?

I SVM solution is g(x) = sign f(x) for f(x) = 〈w, x〉 with

w = argmin
w∈Rd

λ‖w‖2 +
1

n

n∑
i=1

max{0, 1− yi〈w, xi〉
}

I What we really wanted to minimized is expected loss:

g = argmin
h∈H

Ex,y ∆(y, g(x))

with H = { g(x) = sign f(x) | f(x) = 〈w, x〉 for w ∈ Rd}.

What’s the relation?
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Linear Classification – the modern view

SVM training is an example of Regularized Risk Minimization.

General form:

min
f∈F

Ω(f)︸ ︷︷ ︸
regularizer

+
1

n

n∑
i=1

`(yi, f(xi))︸ ︷︷ ︸
loss on training set: ’risk’

Support Vector Machine:

min
w∈Rd

λ‖w‖2 +
1

n

n∑
i=1

max{0, 1− yi〈w, xi〉
}

I F = {f(x) = 〈w, x〉|w ∈ Rd}
I Ω(f) = ‖w‖2 for any f(x) = 〈w, x〉
I `(y, f(x)) = max{0, 1− yf(x)} (Hinge loss)
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Linear Classification – the modern view: the loss term

Observation 1: The empirical loss approximates the expected loss.
For i.i.d. training examples (x1, y1), . . . , (xn, yn):

Ex,y
(
∆(y, g(x))

)
=
∑
x∈X

∑
y∈Y

p(x, y)∆(y, g(x)) ≈ 1

n

n∑
i=1

∆( yi, g(xi) )

Observation 2: The Hinge loss upper bounds the 0/1-loss.
For ∆(y, ȳ) = Jy 6= ȳK and g(x) = sign〈w, x〉 one has

∆( y, g(x) ) = Jy〈w, x〉 < 0K ≤ max{0, 1− y〈w, x〉}
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Observation 1: The empirical loss approximates the expected loss.
For i.i.d. training examples (x1, y1), . . . , (xn, yn):

Ex,y
(
∆(y, g(x))

)
=
∑
x∈X

∑
y∈Y

p(x, y)∆(y, g(x)) ≈ 1

n

n∑
i=1

∆( yi, g(xi) )

Observation 2: The Hinge loss upper bounds the 0/1-loss.
For ∆(y, ȳ) = Jy 6= ȳK and g(x) = sign〈w, x〉 one has

∆( y, g(x) ) = Jy〈w, x〉 < 0K ≤ max{0, 1− y〈w, x〉}

Combination:

Ex,y
(
∆(y, g(x))

)
.

1

n

∑
i

max{0, 1− yi〈w, xi〉}

Intuition: small ”risk” term in SVM → few mistakes in the future
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Linear Classification – the modern view: the regularizer

Observation 3: Only minimizing the loss term can lead to overfitting.

We want classifiers that have small loss, but are simple enough to
generalize.
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Linear Classification – the modern view: the regularizer

Ad-hoc definition: a function f : Rd → R is simple, if it not very sensitive
to the exact input

dx

dy

dx

dy

sensitivity is measured by slope: f ′

For linear f(x) = 〈w, x〉, slope is ‖∇xf‖ = ‖w‖:

Minimizing ‖w‖2 encourages ”simple” functions

Formal results, including proper bounds on the generalization error: e.g.

[Shawe-Taylor, Cristianini: ”Kernel Methods for Pattern Analysis”, Cambridge U Press, 2004]
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Other classifiers based on Regularized Risk Minimization

There are many other RRM-based classifiers, including variants of SVM:

L1-regularized Linear SVM

min
w∈Rd

λ‖w‖L1 +
1

n

n∑
i=1

max{0, 1− yi〈w, xi〉
}

‖w‖L1 =
∑d

j=1 |wj | encourages sparsity

I learned weight vector w will have many zero entries

I acts as feature selector

I evaluation f(x) = 〈w, x〉 becomes more efficient

Use if you have prior knowledge that optimal classifier should be sparse.
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Other classifiers based on Regularized Risk Minimization

SVM with squared slacks / squared Hinge loss

min
w∈Rd

λ‖w‖2 +
1

n

n∑
i=1

ξ2
i

subject to yi〈w, xi〉 ≥ 1− ξi and ξi ≥ 0.

Equivalently:

min
w∈Rd

λ‖w‖L1 +
1

n

n∑
i=1

(max{0, 1− yi〈w, xi〉
}

)2

Also has a max-margin interpretation, but objective is once differentiable.
50 / 90



Other classifiers based on Regularized Risk Minimization

Least-Squares SVM aka Ridge Regression

min
w∈Rd

λ‖w‖2 +
1

n

n∑
i=1

(1− yi〈w, xi〉)2

Loss function: `(y, f(x)) = (y − f(x))2 ”squared loss”

I Easier to optimize than regular SVM: closed-form solution for w

w = y>(λId +XX>)−1X>

I But: loss does not really reflect classification:
`(y, f(x)) can be big, even if sign f(x) = y
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Other classifiers based on Regularized Risk Minimization

Regularized Logistic Regression

min
w∈Rd

λ‖w‖2 +
1

n

n∑
i=1

log(1 + exp( −yi〈w, xi〉 ))

Loss function: `( y, f(x) ) = log(1 + exp( −yi〈w, xi〉)) ”logistic loss”

I Smooth (C∞-differentiable) objective

I Often similar results to SVM
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Summary – Linear Classifiers

(Linear) Support Vector Machines

I geometric intuition: maximum margin classifier

I well understood theory: regularized risk minimization

Many variants of losses and regularizers

I first: try Ω(·) = ‖ · ‖2

I encourage sparsity: Ω(·) = ‖ · ‖L1

I differentiable losses:
easier numeric optimization

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0--1 loss
Hinge Loss
Squared Hinge Loss
Squared Loss
Logistic Loss

Fun fact: different losses often have similar empirical performance

I don’t blindly believe claims ”My classifier is the best.”
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Nonlinear Classification
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Nonlinear Classification

What is the best linear classifier for this dataset?

−2.0 −1.0 0.0 1.0 2.0
−1.5

−0.5

0.5

1.5

x

y

None. We need something nonlinear!
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Nonlinear Classification

Idea 1) Combine multiple linear classifiers into nonlinear classifier

σ(f5(x))

σ(f1(x)) σ(f2(x))

σ(f3(x)) σ(f4(x))
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Nonlinear Classification: Boosting

Boosting

Situation:
I we have many simple classifiers (typically linear),
h1, . . . , hk : X → {±1}

I none of them is particularly good

Method:
I construct stronger nonlinear classifier:

g(x) = sign
∑

j
αjhj(x) with αj ∈ R

I typically: iterative construction for finding α1, α2, . . .

Advantage:
I very easy to implement

Disadvantage:
I computationally expensive to train
I finding base classifiers can be hard

[Freund, Schapire ”A Decision-Theoretic Generalization of online Learning and an Application to Boosting”, 1997]
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Nonlinear Classification: Decision Tree

Decision Trees
x

f1(x)

>0
<0

f2(x)
>0

<0

f3(x)
>0

<0

1 2 3 1y:

Advantage:
I easy to interpret
I handles multi-class situation

Disadvantage:
I by themselves typically worse results than other modern methods

[Breiman, Friedman, Olshen, Stone, ”Classification and regression trees”, 1984] 58 / 90



Nonlinear Classification: Random Forest

Random Forest

x

f1(x)

>0
<0

f2(x)
>0

<0

f3(x)
>0

<0

1 2 3 1y:

x

f1(x)

>0
<0

f2(x)
>0

<0

f3(x)
>0

<0

1 2 3 1y:

x

f1(x)

>0
<0

f2(x)
>0

<0

f3(x)
>0

<0

1 2 3 1y:

. . .

x

f1(x)

>0
<0

f2(x)
>0

<0

f3(x)
>0

<0

1 2 3 1y:

Method:
I construct many decision trees randomly (under some constraints)
I classify using majority vote

Advantage:
I conceptually easy
I works surprisingly well

Disadvantage:
I computationally expensive to train
I expensive at test time if forest has many trees

[Breiman, ”Random Forests”, 2001] 59 / 90



Nonlinear Classification: Neural Networks

Artificial Neural Network / Multilayer Perceptron / Deep Learning

Multi-layer architecture:

I first layer: inputs x

I each layer k evaluates fk1 , . . . , f
k
m

feeds output to next layer

I last layer: output y

σ  nonlinear

σ(f5(x))

σ(f1(x)) σ(f2(x)) σ(f3(x)) σ(f4(x))

fi(x)=<wi,x>

Advantage:
I biologically inspired → easy to explain to non-experts
I efficient at evaluation time

Disadvantage:
I non-convex optimization problem
I many design parameters, few theoretic results

→ ”Deep Learning” (Tuesday)

[Rumelhart, Hinton, Williams, ”Learning Internal Representations by Error Propagation”, 1986]
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Nonlinearity: Data Preprocessing

Idea 2) Preprocess the data

This dataset is not
linearly separable: x

y

This one is separable:
r

θ

But: both are the same dataset!

Top: Cartesian coordinates. Bottom: polar coordinates
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Nonlinearity: Data Preprocessing

Idea 2) Preprocess the data

Nonlinear separation: x

y

Linear Separation
r

θ

Linear classifier in polar space acts nonlinearly in Cartesian space.
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Generalized Linear Classifier

Given

I X = {x1, . . . , xn}, Y = {y1, . . . , yn}.
I Given any (nonlinear) feature map φ : Rk → Rm.

Solve the minimization for φ(x1), . . . , φ(xn) instead of x1, . . . , xn:

min
w∈Rm,ξi∈R+

‖w‖2 +
C

n

n∑
i=1

ξi

subject to

yi〈w, φ(xi)〉 ≥ 1− ξi for i = 1, . . . n.

I The weight vector w now comes from the target space Rm.

I Distances/angles are measure by the inner product 〈. , .〉 in Rm.

I Classifier f(x) = 〈w, φ(x)〉 is linear in w, but nonlinear in x.
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Example Feature Mappings

I Polar coordinates:

φ :

(
x
y

)
7→
(√

x2 + y2

∠(x, y)

)

I d-th degree polynomials:

φ :
(
x1, . . . , xn

)
7→
(
1, x1, . . . , xn, x

2
1, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n

)

I Distance map:

φ : ~x 7→
(
‖~x− ~pi‖, . . . , ‖~x− ~pN‖

)
for a set of N prototype vectors ~pi, i = 1, . . . , N .
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Representer Theorem

Solve the soft-margin minimization for φ(x1), . . . , φ(xn) ∈ Rm:

min
w∈Rm,ξi∈R+

‖w‖2 +
C

n

n∑
i=1

ξi (1)

subject to

yi〈w, φ(xi)〉 ≥ 1− ξi for i = 1, . . . n.

For large m, won’t solving for w ∈ Rm become impossible?

No!

Theorem (Representer Theorem)

The minimizing solution w to problem (1) can always be written as

w =
n∑
j=1

αjφ(xj) for coefficients α1, . . . , αn ∈ R.

[Schölkopf, Smola, ”Learning with Kernels”, 2001]
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Kernel Trick

Rewrite the optimization using the representer theorem:

I insert w =
∑n

j=1 αjφ(xj) everywhere,

I minimize over αi instead of w.

min
w∈Rm,ξi∈R+

‖w‖2 +
C

n

n∑
i=1

ξi

subject to

yi〈w, φ(xi)〉 ≥ 1− ξi for i = 1, . . . n.
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Kernel Trick

Rewrite the optimization using the representer theorem:

I insert w =
∑n

j=1 αjφ(xj) everywhere,

I minimize over αi instead of w.

min
αi∈R,ξi∈R+

‖
n∑
j=1

αjφ(xj)‖2 +
C

n

n∑
i=1

ξi

subject to

yi〈
n∑
j=1

αjφ(xj), φ(xi)〉 ≥ 1− ξi for i = 1, . . . n.

The former m-dimensional optimization is now n-dimensional.
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Kernel Trick

Rewrite the optimization using the representer theorem:

I insert w =
∑n

j=1 αjφ(xj) everywhere,

I minimize over αi instead of w.

min
αi∈R,ξi∈R+

n∑
j,k=1

αjαk〈φ(xj), φ(xk)〉+
C

n

n∑
i=1

ξi

subject to

yi

n∑
j=1

αj〈φ(xj), φ(xi)〉 ≥ 1− ξi for i = 1, . . . n.
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Kernel Trick

Rewrite the optimization using the representer theorem:

I insert w =
∑n

j=1 αjφ(xj) everywhere,

I minimize over αi instead of w.

min
αi∈R,ξi∈R+

n∑
j,k=1

αjαk〈φ(xj), φ(xk)〉+
C

n

n∑
i=1

ξi

subject to

yi

n∑
j=1

αj〈φ(xj), φ(xi)〉 ≥ 1− ξi for i = 1, . . . n.

Note: φ only occurs in 〈φ(.), φ(.)〉 pairs.
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Kernel Trick

Set 〈φ(x), φ(x′)〉 =: k(x, x′), called kernel function.

min
αi∈R,ξi∈R+

n∑
j,k=1

αjαkk(xj , xk) +
C

n

n∑
i=1

ξi

subject to

yi

n∑
j=1

αjk(xj , xi) ≥ 1− ξi for i = 1, . . . n.

To train, we only need to know the kernel matrix K ∈ Rn×n

Kij := k(xi, xj)

To evaluate on new data x, we need values k(x1, x), . . . , k(xn, x):

f(x) = 〈w, φ(x)〉 =
n∑
i=1

αik(xi, x)
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Kernel Trick

Set 〈φ(x), φ(x′)〉 =: k(x, x′), called kernel function.

min
αi∈R,ξi∈R+

n∑
j,k=1

αjαkk(xj , xk) +
C

n

n∑
i=1

ξi

subject to

yi
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Dualization

More elegant: dualize using Lagrangian multipliers

max
αi∈R+

− 1

2

n∑
i,j=1

αiαjyiyjk(xi, xj) +

n∑
i=1

αi

subject to

0 ≤ αi ≤
C

n
for i = 1, . . . , n

Support-Vector Machine (SVM)

Optimization be solved numerically by any quadratic program (QP)
solver but specialized software packages are more efficient.
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Why use k(x, x′) instead of 〈φ(x), φ(x′)〉?

1) Memory usage:
I Storing φ(x1), . . . , φ(xn) requires O(nm) memory.
I Storing k(x1, x1), . . . , k(xn, xn) requires O(n2) memory.

2) Speed:
I We might find an expression for k(xi, xj) that is faster to calculate

than forming φ(xi) and then 〈φ(xi), φ(xj)〉.

Example: comparing angles (x ∈ [0, 2π])

φ : x 7→ (cos(x), sin(x)) ∈ R2

〈φ(xi), φ(xj)〉 = 〈 (cos(xi), sin(xi)), (cos(xj), sin(xj)) 〉
= cos(xi) cos(xj) + sin(xi) sin(xj)

= cos(xi − xj)

Equivalently, but faster, without φ:

k(xi, xj) : = cos(xi − xj)
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Why use k(x, x′) instead of 〈φ(x), φ(x′)〉?

3) Flexibility:

I One can think of kernels as measures of similarity.
I Any similarity measure k : X × X → R can be used, as long as it is

I symmetric: k(x′, x) = k(x, x′) for all x, x′ ∈ X
I positive definite: for any set of points x1, . . . , xn ∈ X

Kij = (k(xi, xj))i,j=1,...,n

is a positive (semi-)definite matrix, i.e. for all vectors t ∈ Rn:

n∑
i,j=1

tiKijtj ≥ 0.

I Using functional analysis one can show that for these k(x, x′), a
feature map φ : X → F exists, such that k(x, x′) = 〈φ(x), φ(x′)〉F
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Regularized Risk Minimization View

We can interpret the kernelized SVM as loss and regularizer:

min
αi∈R,ξi∈R+

n∑
j,k=1

αjαkk(xj , xk)︸ ︷︷ ︸
regularizer

+
C

n

n∑
i=1

max{0, 1− yi
n∑
j=1

αjk(xj , xi)}︸ ︷︷ ︸
Hinge loss

for

f(x) =

n∑
i=1

αik(xi, x)

Data dependent hypothesis class

H = {
n∑
i=1

αik(xi, x) : α ∈ Rn} for training set x1, . . . , xn.

Nonlinear functions, spanned by basis functions centered at training points.
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Kernels in Computer Vision

Popular kernel functions in Computer Vision

I ”Linear kernel”: identical solution as linear SVM

k(x, x′) = x>x′ =
∑d

i=1 xix
′
i

I ”Hellinger kernel”: less sensitive to extreme value in feature vector

k(x, x′) =
∑d

i=1

√
xi x′i for x = (x1, . . . , xd) ∈ Rd+

I ”Histogram intersection kernel”: very robust

k(x, x′) =
∑d

i=1 min(xi, x
′
i) for x ∈ Rd+

I ”χ2-distance kernel”: good empirical results

k(x, x′) = −χ2(x, x′) = −
∑d

i=1
(xi−x′i)2
xi+x′i

for x ∈ Rd+
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Kernels in Computer Vision

Popular kernel functions in Computer Vision

I ”Gaussian kernel”: overall most popular kernel in Machine Learning

k(x, x′) = exp(−λ‖x− x′‖2 )

I ”(Exponentiated) χ2-kernel”: best results in many benchmarks

k(x, x′) = exp(−λχ2(x, x′) ) for x ∈ Rd+

I ”Fisher kernel”: good results and allows for efficient training

k(x, x′) = [∇p(x; Θ)]>F−1[∇p(x′; Θ)]

I p(x; Θ) is generative model of the data, i.e. Gaussian Mixture Model
I ∇p is gradient of the density function w.r.t. the parameter Θ
I F is the Fisher Information Matrix

[Perronnin, Dance ”Fisher Kernels on Visual Vocabularies for Image Categorization”, 2007]
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Nonlinear Classification

SVMs with nonlinear kernel are commonly used for small to
medium sized Computer Vision problems.

I Software packages:
I libSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

I SVMlight: http://svmlight.joachims.org/

I Training time is
I typically cubic in number of training examples.

I Evaluation time:
I typically linear in number of training examples.

I Classification accuracy is typically higher than with linear SVMs.
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Nonlinear Classification

Observation 1: Linear SVMs are very fast in training and evaluation.

Observation 2: Nonlinear kernel SVMs give better results, but do not
scale well (with respect to number of training examples)

Can we combine the strengths of both approaches?

Yes! By (approximately) going back to explicit feature maps.

[Maji, Berg, Malik, ”Classification using intersection kernel support vector machines is efficient”, CVPR 2008]

[Rahimi, ”Random Features for Large-Scale Kernel Machines”, NIPS, 2008]
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(Approximate) Explicit Feature Maps

Core Facts

I For every positive definite kernel k : X × X → R, there exists
(implicit) φ : X → F such that

k(x, x′) = 〈φ(x), φ(x′)〉.

I In case that φ : X → RD, training a kernelized SVMs yields the same
prediction function as

I preprocessing the data: make every x into a φ(x),
I training a linear SVM on the new data.

Problem: φ is generally unknown, and dimF =∞ is possible

Idea: Find approximate φ̃ : X → RD such that

k(x, x′) ≈ 〈φ̃(x), φ̃(x′)〉
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Explicit Feature Maps

For some kernels, we can find an explicit feature map:

Example: Hellinger kernel

kH(x, x′) =

d∑
i=1

√
xix′i for x ∈ Rd+.

Set φH(x) :=
(√
x1, . . . ,

√
xd
)
:

〈φH(x), φH(x′)〉Rd =
d∑
i=1

√
xi

√
x′i = kH(x, x′)

We can train a linear SVM on
√
x instead of a kernelized SVM with kH .
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Explicit Feature Maps

When there is no exact feature map, we can look for approximations:

Example: χ2-distance kernel

kχ2(x, x′) =

d∑
i=1

xix
′
i

xi + x′i

set φ(x) :=
(√
xi,
√

2πxi cos(log xi),
√

2πxi sin(log xi)
)
i=1,...,d

〈φ(x), φ(x′)〉R3d ≈ kχ2(x, x′)

Current state-of-the-art in large-scale nonlinear learning.

[A. Vedaldi, A. Zisserman, ”Efficient Additive Kernels via Explicit Feature Maps”, TPAMI 2011]
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Other Supervised Learning Methods
Multiclass SVMs
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Multiclass SVMs

What if Y = {1, . . . ,K} with K > 2?

Some classifiers works naturally also for multi-class

I Nearest Neigbhor, Random Forests, . . .

SVMs don’t. We need to modify them:

I Idea 1: decompose multi-class into several binary problems
I One-versus-Rest
I One-versus-One

I Idea 2: generalize SVM objective to multi-class situation
I Crammer-Singer SVM
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Reductions: Multiclass SVM to Binary SVMs

Most common: One-vs-Rest (OvR) training

I For each class y, train a separate binary SVM, fy : X → R.

I Positive examples: X+ = {xi : yi = y}
I Negative examples: X− = {xi : yi 6= y} (aka ”the rest”)

I Final decision: g(x) = argmaxy∈Y fy(x)

Advantage:

I easy to implement

I works well, if implemented correctly

Disadvantage:

I Training problems often unbalanced, |X−| � |X+|
I ranges of the fy are no calibrated to each other.
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Reductions: Multiclass SVM to Binary SVMs

Also popular: One-vs-One (OvO) training

I For each pair of classes y 6= y′, train a separate binary SVM,
fyy′ : X → R.

I Positive examples: X+ = {xi : yi = y}
I Negative examples: X− = {xi : yi = y′} (aka ”the rest”)

I Final decision: majority vote amongst all classifiers

Advantage:

I easy to implement

I training problems approximately balanced

Disadvantage:

I number of SVMs to train grows quadratically in |Y|
I less intuitive decision rule
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Multiclass SVMs

Crammer-Singer SVM

Standard setup:
I fy(x) = 〈w, x〉 (also works kernelized)
I decision rule: g(x) = argmaxy∈Y fy(x)
I 0/1-loss: ∆(y, ȳ) = Jy 6= ȳK

What’s a good multiclass loss function?

g(xi) = yi ⇔ yi = argmax
y∈Y

fy(x
i)

⇔ fyi(x
i) > max

y 6=yi
fy(x

i)

⇔ fyi(x
i)−max

y 6=yi
fy(x

i)︸ ︷︷ ︸
takes role of y〈w, x〉

> 0

`( yi, f1(xi), . . . , fK(xi) ) = max{0, 1−
(
fyi(x

i)−max
y 6=yi

fy(x
i)
)
}
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Multiclass SVMs – Crammer-Singer SVM

Regularizer: Ω(f1, . . . , fK) =

K∑
k=1

‖wk‖2

Together:

min
w1,...,wK∈Rd

K∑
k=1

‖wk‖2 +
C

n

n∑
i=1

max{0, 1−
(
fyi(x

i)−max
y 6=yi

fy(x
i)
)
}

Equivalently:

min
w1,...,wK∈Rd

ξ1,...,xin∈R+

K∑
k=1

‖wk‖2 +
C

n

n∑
i=1

ξi

subject to, for i = 1, . . . , n, fyi(x
i)−max

y 6=yi
fy(x

i) ≥ 1− ξi.

Interpretation:
I One-versus-Rest: correct class has margin at least 1 to origin.
I Cramer-Singer: correct class has margin at least 1 to all other classes
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Summary – Nonlinear Classification

I Many technique based on stacking:
I boosting, random forests, deep learning, . . .
I powerful, but sometimes hard to train (non-convex → local optima)

I Generalized linear classification with SVMs
I conceptually simple, but powerful by using kernels
I convex optimization, solvable to global optimality

I Kernelization is implicit application of a feature map
I the method can become nonlinear in the original data
I the method is still linear in parameter space

I Kernels are at the same time
I similarity measures between arbitrary objects
I inner products in a (hidden) feature space

I For large datasets, kernelized SVMs are inefficient
I construct explicit feature map (approximate if necessary)
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What did we not see?

We have skipped a large part of theory on kernel methods:

I Optimization
I Dualization

I Numerics
I Algorithms to train SVMs

I Statistical Interpretations
I What are our assumptions on the samples?

I Generalization Bounds
I Theoretic guarantees on what accuracy the classifier will have!

This and much more in standard references, e.g.

I Schölkopf, Smola: “Learning with Kernels”, MIT Press (50 EUR/60$)

I Shawe-Taylor, Cristianini: “Kernel Methods for Pattern Analysis”,
Cambridge University Press (60 EUR/75$)
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