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Computer Vision: Long term goal

Automatic systems that analyzes and interprets visual data

¢ ‘Three men sit
at a table in a
pub, drinking
beer. One

of them talks
while the other
listen.’’

Image Understanding




Computer Vision: Short/medium term goal

Automatic systems that analyzes some aspects of visual data

» indoors

» in a pub

Scene Classification




Computer Vision: Short/medium term goal

Automatic systems that analyzes some aspects of visual data

» drinking

Action Classification




Computer Vision: Short/medium term goal

Automatic systems that analyzes some aspects of visual data

» three people
> one table

» three glasses

Object Recognition




Computer Vision: Short/medium term goal

Automatic systems that analyzes some aspects of visual data

Joint positions/
angles: 6y,...,0x

Pose Estimation




A Machine Learning View on Computer Vision Problems

Classification/
Regression
today

Structured Prediction
today/Wednesday

Outlier Detection {

Clustering{

e Scene Classification

e Action Classification
e Object Recognition

e Face Detection

e Sign Language Recognition

e Pose Estimation

e Stereo Reconstruction

e Image Denoising

e Semantic Image Segmentation

e Anomaly Detection in Videos

e Video Summarization

e Image Duplicate Detection



A Machine Learning View on Computer Vision Problems

Classification e Optical Character Recognition

» It's difficult to program a solution to this.

if (I[0,5]1<128) & (I[0,6] > 192) & (I[0,7] < 128):
return ’A’

elif (I[7,7]1<50) & (I[6,3]) != O:
return ’Q’

else:
print "I don’t know this letter."



A Machine Learning View on Computer Vision Problems

Classification e Optical Character Recognition

» It's difficult to program a solution to this.

if (I[0,5]1<128) & (I[0,6] > 192) & (I[0,7] < 128):
return ’A’

elif (I[7,7]1<50) & (I[6,3]) != 0:
return ’Q’

else:
print "I don’t know this letter."

» With Machine Learning, we can avoid this:
» We don't program a solution to the specific problem.
» We program a generic classification program.
» We solve the problem by training the classifier with examples.
» When a new font occurs: re-train, don't re-program



A Machine Learning View on Computer Vision Problems

o ...
Classification e Object Category Recognition

» It's diffictlt impossible to program a solution to this.

if 777

» With Machine Learning, we can avoid this:

» We don't program a solution to the specific problem.
» We re-use our previous classifier.
» We solve the problem by training the classifier with examples.
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Classification
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Example — RoboCup

Goal: blue Floor: green/white Ball: red




Example — RoboCup

Goal: blue
Floor: green —A_

Ball: red
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Example — RoboCup

goal floor ball

L
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L

New object: .
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goal floor ball

L

New object: . — ball

New object: — floor
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Bayesian Decision Theory

Notation...
» data: € X = R¢, (here: colors, d = 3)
> labels: y € Y = {goal, floor, ball}, (here: object classes)

» goal: classification rule g : X — ).

Histograms: class-conditional probability densities p(z|y ) Foranyy € Y

Vz e X :p(xly) >0 Seex D(zly) =1
x|y = goal) p(z|y = floor) p(z|y = ball)

Maximum Likehood Rule: g(r) = argmax, ¢y p(z|y)

15/90



Bayesian Decision Theory

Assume: fourth class: sun, but occurs only outdoors

L.:__A__:J_zg_

x|y = goal) p(z|y = floor) p(z|y = ball) p(z|y = sun)

Maximum Likehood (ML) Rule: g(z) = argmax, ¢y p(z|y)
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Bayesian Decision Theory

Assume: fourth class: sun, but occurs only outdoors

L.I__A__:J_:&

x|y = goal) p(z|y = floor) p(z|y = ball) p(z|y = sun)

Maximum Likehood (ML) Rule: g(z) = argmax, ¢y p(z|y)

New object: . — ball

New object: — floor
New object: — goal
New object: — sun

We must take into account how likely it is to see a class at all!
16 /90



Bayesian Decision Theory

Notation:

» class conditional densities: p(z|y) for all y € Y
» class priors: p(y) forally € Y
» goal: decision rule g : X — ) that results in fewest mistakes

For any input x € X:

p(mistake|lz) =Y p(yla)[g(x) # y] [F] =

yey

1 if P=+true
0 otherwise

p(no mistakelx) =~ p(ylz)[g(z) = y] = p(g(z)|z)
yey
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Bayesian Decision Theory

Notation:

» class conditional densities: p(z|y) for all y € Y
» class priors: p(y) forally € Y
» goal: decision rule g : X — ) that results in fewest mistakes

For any input x € X:

p(mistake|z) = > " p(yla)[g(x) # y] [Pl =

{1 if P=true
yey

0 otherwise

p(no mistakelx) =~ p(ylz)[g(z) = y] = p(g(z)|z)
yey

Optimal decision rule:  g(7) = argmax, ¢y p(y|r) " Bayes classifier”
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Bayesian Decision Theory

How to get "class posterior” p(y|x)?

p(xly)p(y)

() (Bayes' rule)

p(ylz) =
x|y): class conditional density (here: histograms)

(]

(y): class priors, e.g. for indoor RoboCup

(floor) = 0.6, p(goal) =0.3, p(ball)=0.1, p(sun) =0
(

Equivalent rules:

g(x) = argmax p(y|z) = argmaxw
yey yey p(x)

= argmax p(z|y)p(y)
yey

= argmax p(z, y)
yey

18 /90



Bayesian Decision Theory

Special case: binary classification, Y = {—1,+1}

argmax p(y|z) =

+1 if p(+1|x) > p(—1]x),
yey

-1 if p(+1|z) < p(-1l2).

Equivalent rules:

g(x) = argmax p(y|x)

yeY
= sign (p(+1]z) —p(-1]x))
' p(+1|z)
= 51gn log
p(—1]z)
1 ift>0
With sign(t) := {J_rl I()therwi;e '

19/90



Loss Functions

Not all mistakes are equally bad:
» mistake opponent goal as your goal:

You don't shoot, missed opportunity to score: bad

» mistake your goal as opponent goal.:
You shoot, score own-goal: much worse!

Formally:
» loss function, A: Y xY — R
» A(y,y) = cost of predicting 7 if y is correct.

y \ ¥ | opponent | own
Agoals: opponent 0 2
own 10 0

» Convention: A(y,y) =0 for all y € Y (correct decision has 0 loss)

20 /90



Loss Functions
Reminder: A(y,y) = cost of predicting 7 if y is correct.

Optimal decision: choose g : X — ) to minimize the expected loss

La(y;z) =Y p@le)A@y) =) p@En)AGy)  (Aly,y) =0)

(e yey
g(z) = argmin La(y; x) pick label of smallest expected loss
yeY
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Loss Functions
Reminder: A(y,y) = cost of predicting 7 if y is correct.

Optimal decision: choose g : X — ) to minimize the expected loss

La(y;z) =Y p@le)A@y) =) p@En)AGy)  (Aly,y) =0)

y#y yey
g(z) = argmin La(y; x) pick label of smallest expected loss
yeY
0j1]1
Special case: A(y,y) = [y # vy]- Eg. 1 1 (for 3 labels)
11110

ga(x) = argmin L (y) = argmin > p(yla)[y # y]
yey yey gy

— argmaxp(yl2)
yey

(— Bayes classifier)
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Learning Paradigms

Given: training data {(x1,91),..., (Tn,yn)} C X XY
Approach 1) Generative Probabilistic Models

1) Use training data to obtain an estimate p(z|y) for any y € )

2) Compute p(yl|z) o p(z|y)p(y)
3) Predict using g(z) = argmin, >, p(ylz)A(Y, y).

Approach 2) Discriminative Probabilistic Models

1) Use training data to estimate p(y|z) directly.

2) Predict using g(z) = argmin, . p(y|lz)A(Y, y).
Approach 3) Loss-minimizing Parameter Estimation

1) Use training data to search for best g : X — ) directly.



Generative Probabilistic Models

This is what we did in the RoboCup example!
» Trainingdata X = {z1,...,z,}, Y ={y1,...,zn}. X XY CA XY
» For each y € Y, build model for p(z|y) of X, :={z; € X : y; =y}
» Histogram: if = can have only few discrete values.

» Kernel Density Estimator: p(z|y) < > k(x;,x)
T €Xy

> Gaussian: p(aly) = G(x: 1, Z,) x exp(~ (@ — 1) TSy ( — )

» Mixture of Gaussians: p(z]y) = Y r_, TG (w5l B0
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» Kernel Density Estimator: p(z|y) < > k(x;,x)
T €Xy

> Gaussian: p(aly) = G(x: 1, Z,) x exp(~ (@ — 1) TSy ( — )

» Mixture of Gaussians: p(z]y) = Y r_, TG (w5l B0

05 : : , ,
p(z|+1) p(+1z)
0.4} i |
m— p(x|-1) = p(-1lz)
03f
0.2}
01f
0.0 L n 9
~a2 -3 -2 -1 o 1 2 3 4 2 4
iti iti i _1
class conditional densities (Gaussian) p(—1) =3
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Generative Probabilistic Models

This is what we did in the RoboCup example!
» Trainingdata X = {x1,...,2,}, Y ={y1,...,2n}. X XY CA XY
» For each y € Y, build model for p(z|y) of X, :={z; € X : y; = y}
» Histogram: if = can have only few discrete values.

» Kernel Density Estimator: p(zly) < Y. k(z;, )
T, €Xy

+ Gaussian: p(rly) = G(r: iy, Sy) o exp(— (& — ) TS5 (@ — )
» Mixture of Gaussians: p(z]y) = Y1, TG (5l B0

Typically: Y small, i.e. few possible labels,
X low-dimensional, e.g. RGB colors, X = R?

But: large ) is possible with right tools — "Intro to graphical models”
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Discriminative Probabilistic Models

Most popular: Logistic Regression

» Training data X = {x1,..., 2.}, Y ={y1,...,yn}. X XY CA XY
» To simplify notation: assume X = R%, Y = {+1}
» Parametric model:

1

p(ylz) = e E— with free parameter w € R?

24 /90
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Discriminative Probabilistic Models

Most popular: Logistic Regression

» Training data X = {x1,...,2,}, Y ={y1,...,yn}. X XY CA XY
» To simplify notation: assume X = R%, Y = {£1}
» Parametric model:

1

ith free parameter w € R?
1+ exp(—yw'x) " P v

p(ylz) =

» Find w by maximizing the conditional data likelihood

n
w = argmax H p(yi|x:)
weR? i=1

n

= argmin Zlog (1 + exp(—y; wai))
wERd i=1

Extensions to very large ) — "Structured Outputs (Wednesday)”

24 /90



Loss-minimizing Parameter Estimation

>

Training data X = {z1,...,2,}, Y ={y1,...,z,}. X XY CAX XY
Simplify: X =R?, Y = {£1}, A(y,5) = [y # 7]
Choose hypothesis class: (which classifiers do we consider?)

v

v

H={g: X =YV} (e.g. all linear classifiers)

v

Expected loss of a classifier h : X — ) on a sample x
L(g.x) = > plylz)A(y, g(x))
yey
Expected overall loss of a classifier:

L(g) =Y _plx)L(g,x)

v

zeX
=Y p(z,9)A(y, g(x)) = By Aly, g(x))
reX yey
» Task: find "best” g in H, ie. g:=argmingy L(g)

Note: for simplicity, we always write >_ . When X is infinite (i.e. almost always), read this as [, dx 25 /90



Rest of this Lecture

Part Il
H = {linear classifiers}

Part IlI:
H = {nonlinear classifiers}

Part IV (if there's time):
Multi-class Classification

26 /90



» data points X = {x1,...,2,}, 2; € R?, (think: feature vectors)
» class labels Y = {y1,...,yn}, yi € {+1,—1}, (think: cat or no cat)
» goal: classification rule g : R — {—1, +1}.

27 /90



» data points X = {x1,...,2,}, 2; € R?, (think: feature vectors)
> class labels Y = {y1,...,yn}, vi € {+1,—1}, (think: cat or no cat)
» goal: classification rule g : R — {—1,+1}.

> parameterize _ with f : R — R:
flx) =a'z' +a?2® + -+ a"z" +a°
0

simplify notation: Z = (1,z), w = (a”,...,a"):

flz) = (w, ) (inner/scalar product in R%1)

(also: - & or ' %)
» out of lazyness, we just write _ with z,w € R%.

27 /90



Linear Classification — the classical view

Given X ={z1,...,z.}, Y ={y1,...,yn}.

2.0 A
1.0} . ¢
R
/S
S
S
0.0t >

—1.0 0.0 1.0 2.0 3.0
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Linear Classification — the classical view

Given X = {z1,...,z,}, Y ={y1,...,yn}. Any w partitions the data
space into two half-spaces by means of f(x) = (w, ).

2.0¢ A flz)>0

f(z) <0
1O w . ¢

o o
 J
L 4
L 2

0.0t »

—1.0 0.0 1.0 2.0 3.0
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Linear Classification — the classical view

Given X = {z1,...,z,}, Y ={y1,...,yn}. Any w partitions the data
space into two half-spaces by means of f(x) = (w, ).

2.0 A f(x) >0

flz) <0
LOIWR w . ¢

& o
.
*
*

0.0} >
—1.0 0.0 1.0 2.0 3.0

“What's the best w?”

28 /90



Criteria for Linear Classification

What properties should an optimal w have?

Given X ={z1,...,z.}, Y ={y1,...,yn}.

2.0¢ 2.0t
Lo} Lo} o'

o o

o 8-
0.07 0.07
—1.0 0.0 1.0 2.0 3.0 -—1.0 0.0 1.0 2.0 3.0
Are these the best? No, they misclassify many examples.
M.

‘Criterion 1: Enforce sign{w, z;) = y; fori=1,...

29/90



Criteria for Linear Classification

What properties should an optimal w have?

Given X = {z1,...,2,}, Y ={y1,...,yn}. What's the best w?

2.0} {20}
1.0t 1.0 .’
& * &
R o B o
° °
0.0f > 0.0f >
—1.0 0.0 1.0 2.0 30 —10 0.0 1.0 2.0 3.0

Are these the best? No, they would be “risky” for future samples.

Criterion 2: Ensure sign(w, z) = y for future (x,y) as well. ‘

30/90



Criteria for Linear Classification

Given X ={z1,...,z,}, Y ={y1,...,yn}. Assume that future samples
are similar to current ones. What's the best w?

2.0r
N Q0
1.0t :
S
&
R of
*
0.0F >
—1.0 0.0 1.0 2.0 3.0

Maximize “robustness”: use w such that we can maximally perturb the
input samples without introducing misclassifications.

31/90



Criteria for Linear Classification

Given X ={z1,...,z,}, Y ={y1,...,yn}. Assume that future samples
are similar to current ones. What's the best w?

2.0 2.0 ‘.'.;.-;\{\
QNN
\ X
| L -
1.0 1.0 -4
.3 R of
* o 2
0.0f > 0.0f - >

—1.0 0.0 1.0 2.0 30 —1.0 0.0 1.0 2.0 3.0

Maximize “robustness”: use w such that we can maximally perturb the
input samples without introducing misclassifications.

Central quantity:
margin(x) = distance of x to decision hyperplane = (r, )
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Maximum Margin Classification

Maximum-margin solution is determined by a maximization problem:

max
wERE,yeR+
subject to
sign(w, z;) = y; fori=1,...n.
<i7$i> >~ fori=1,...n.
[l

Classify new samples using f(z) = (w, x).

32/90



Maximum Margin Classification

Maximum-margin solution is determined by a maximization problem:

max
weR?, ||w||=1
vER

subject to

yi(w,z;) >y fori=1,...n.

Classify new samples using f(z) = (w, x).
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Maximum Margin Classification

We can rewrite this as a minimization problem:

min  ||w|?
wERA
subject to

yilw,z;) >1  fori=1,...n.

Classify new samples using f(z) = (w, x).

Maximum Margin Classifier (MMC)

34 /90



Maximum Margin Classification

From the view of optimization theory

min Hw||2
weR4

subject to
yilw, z;) > 1 fori=1,...n

is rather easy:
> The objective function is differentiable and convex.

» The constraints are all linear.

We can find the globally optimal w in O(d?) (usually much faster).

» There are no local minima.

» We have a definite stopping criterion.
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Linear Separability

What is the best w for this dataset?

2.0/ A
, .
1.0 .
S e
* 3
.
0.0l >

—1.0 0.0 1.0 2.0 3.0
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Linear Separability

What is the best w for this dataset?

2.00 A
g
((\fb. 4\0\"%\}?“
) @S
-
R o
0.0f . >
10 00 1.0 2.0 3.0

Possibly this one, even though one sample is misclassified.
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Linear Separability

What is the best w for this dataset?

2.0/ A
1.0
,0’ .
*
.
.
0.0l >

—1.0 0.0 1.0 2.0 3.0
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Linear Separability

What is the best w for this dataset?

2.0! A
LW @
S A
*
0.0f  —=¥ >
1.0 0.0 1.0 2.0 3.0

Maybe not this one, even though all points are classified correctly.
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Linear Separability

What is the best w for this dataset?

2.0! A
D
o
R
1.0}
& .
2 e
o ’
0.0f . >
_1.0 0.0 1.0 2.0 3.0

Trade-off: large margin vs. few mistakes on training set

40 /90



Soft-Margin Classification

Mathematically, we formulate the trade-off by slack-variables &;:

j o Z
min w
weR £ R lell”+ S

subject to yilw,z) >1 — & fori=1,...n

§& >0 fori=1,...,n.

Linear Support Vector Machine (linear SVM)

41/90



Soft-Margin Classification

Mathematically, we formulate the trade-off by slack-variables &;:

C n
min ol + =3¢
=1

’wERd,&;ERJr
subject to yilw,z;) > 1 — & fori=1,...n,
§& >0 fori=1,...,n.
Linear Support Vector Machine (linear SVM) ‘
» We can fulfill every constraint by choosing &; large enough.

v

The larger &;, the larger the objective (that we try to minimize).
C'is a regularization/trade-off parameter:

» small C' — constraints are easily ignored

> large C' — constraints are hard to ignore

» C' = 0o — hard margin case — no errors on training set

v

v

Note: The problem is still convex and efficiently solvable.
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Solving for Soft-Margin Solution

Reformulate:

C n
min  |w|? + EZ@
=1

wERY & cR+

subject to yilw,z;) >1 - & fori=1,...n,
& >0 fori=1,...,n.

We can read off the optimal values & = max{0, 1 — y;{w,z;)}.

Equivalent optimization problem (with A = 1/C):
1 n
min A||w|?+ = max{0, 1 —y;(w,x;
i Nl 4 3 ma(0. 1= o)}

» Now unconstrained optimization, but non-differentiable
» Solve efficiently, e.g., by subgradient method

— "Large-scale visual recognition” (Thursday)
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Linear SVMs in Practice

Efficient software packages:
» liblinear: http://www.csie.ntu.edu.tw/~cjlin/liblinear/
> SVMperf: http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html
> see also: Pegasos:, http://www.cs.huji.ac.il/~shais/code/

> see also: sgd:, http://leon.bottou.org/projects/sgd

Training time:
> approximately linear in data dimensionality

» approximately linear in number of training examples,

Evaluation time (per test example):
» linear in data dimensionality

» independent of number of training examples

Linear SVMs are currently the most frequently used classifiers in
Computer Vision.
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Linear Classification — the modern view

Geometric intuition is nice, but are there any guarantees?

» SVM solution is g(z) =sign f(x) for f(x) = (w,z) with

1 n
w = argmin A||Jw|* + = Zmax{o, 1 —yi{w, ;) }
weRd n i=1

» What we really wanted to minimized is expected loss:

g = argmin ]:Ex7y A(ya g(l‘))
heH

with H = { g(z) = sign f(z) | f(z) = (w,z) for w € R?}.

What'’s the relation?
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with H = { g(z) = sign f(z) | f(z) = (w,z) for w € R?}.

What'’s the relation?
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Linear Classification — the modern view

‘ SVM training is an example of Regularized Risk Minimization. ‘

General form:

fer N

regularizer

min Q)+l f)
i=1

loss on training set: 'risk’

Support Vector Machine:

min  Awl® o+ > max{0,1- yiw,wi)}
we n i=1

> F = {f(z) = (w,z)|w € RY}

> Q(f) = ||lw|]® for any f(x) = (w,z)

> Uy, f(x)) = max{0,1 — yf(x)}  (Hinge loss)
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Linear Classification — the modern view: the loss term

Observation 1: The empirical loss approximates the expected loss.
For i.i.d. training examples (z1,41), ..., (Tn, Yn):

n

Eay (Bl 9(0) = 30 3 ple 9) Ay, g@) = - > Ay glar))

reX yey =1
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Linear Classification — the modern view: the loss term

Observation 1: The empirical loss approximates the expected loss.
For i.i.d. training examples (z1,41), ..., (Tn, Yn):

n

Eay (Bl 9(0) = 30 3 ple 9) Ay, g@) = - > Ay glar))

reX yey =1

Observation 2: The Hinge loss upper bounds the 0/1-loss.
For A(y,y) = [y # 9] and g(x) = sign(w, x) one has

Ay, g(x)) = [y{w,z) <0] < max{0,1 —y{w,z)}
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Linear Classification — the modern view: the loss term

Observation 1: The empirical loss approximates the expected loss.

For i.i.d. training examples (z1,41), ..., (Tn, Yn):
1 n
Eoy(Ay,9(x) = > pla,y)Aly, g(x)) ~ - > Alyi,g(=i))
zeEX yey i=1

Observation 2: The Hinge loss upper bounds the 0/1-loss.
For A(y,y) = [y # y] and g(z) = sign{w, x) one has

Ay, g(x)) = [y(w,z) <0] < max{0,1 —y(w,z)}

Combination:

Boy (A g@) S = Y max{0,1- yiw,m)

Intuition:  small "risk” term in SVM — few mistakes in the future
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Linear Classification — the modern view: the regularizer

Observation 3: Only minimizing the loss term can lead to overfitting.

W Ve
¢
0w’
W oo
L)
¢ty
| "

We want classifiers that have small loss, but are simple enough to
generalize.
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Linear Classification — the modern view: the regularizer

Ad-hoc definition: a function f : R? — R is simple, if it not very sensitive
to the exact input

1
S~ 1.0
038 dy
0.5
0.6 [ dy
0.0
04
X
02 ~0.5)
0. =1
4 -3 -z -1 0 1 F] 3 4 %o 15 10 05 00 05 10 15 20

sensitivity is measured by slope: f’

For linear f(x) = (w,z), slope is ||V f| = |lw]:

Minimizing ||w||?> encourages "simple” functions

Formal results, including proper bounds on the generalization error: e.g.

[Shawe-Taylor, Cristianini: " Kernel Methods for Pattern Analysis”, Cambridge U Press, 2004]
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Other classifiers based on Regularized Risk Minimization

There are many other RRM-based classifiers, including variants of SVM:

‘ L1-regularized Linear SVM

1 n
min Aljw + - max{0,1 — y;{w, z;
wERY H HLl n ; { ?Jl< z)}

lw| = Z?:l |w;| encourages sparsity
> learned weight vector w will have many zero entries
> acts as feature selector

» evaluation f(z) = (w,z) becomes more efficient

Use if you have prior knowledge that optimal classifier should be sparse.
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Other classifiers based on Regularized Risk Minimization

SVM with squared slacks / squared Hinge loss

1 n
min Mw|? + = 2
mn Al + 306
subject to yilw,x;) >1—=¢ and & >0.

Equivalently:

n

1
i A = 0,1 — yi(w,z;) })?
min lwlipe + ) (max{0, yi(w, ;) })

d
weR i—1

Also has a max-margin interpretation, but objective is once differentiable.
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Other classifiers based on Regularized Risk Minimization

Least-Squares SVM aka Ridge Regression

n

1
i Mwl> + =D (1= yilw, )’
min ] " ;:1( yilw, ;)
Loss function: £(y, f(x)) = (y — f(z))?  "squared loss”

» Easier to optimize than regular SVM: closed-form solution for w
w=y AMd+XXT)"1xT
» But: loss does not really reflect classification:

L(y, f(x)) can be big, even if sign f(z) =y
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Other classifiers based on Regularized Risk Minimization

Regularized Logistic Regression ‘

1 n
min Mwl? + = log(1 + exp( —y;(w, x;
mi Al? 2 o1+ el i) )

Loss function: £(y, f(x)) =log(1 + exp( —y;(w,z;)))  "logistic loss”

» Smooth (C*°-differentiable) objective

» Often similar results to SVM
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Summary — Linear Classifiers

(Linear) Support Vector Machines

» geometric intuition: maximum margin classifier

> well understood theory: regularized risk minimization

53 /90



Summary — Linear Classifiers
(Linear) Support Vector Machines

» geometric intuition: maximum margin classifier

> well understood theory: regularized risk minimization

Many variants of losses and regularizers

. m— 0--1 loss
> flrst: try Q() = || ° ||2 28 Hinge Loss
. 2.0 === Squared Hinge Loss ||
> encourage sparsity: ) = |+ TN\ T B
» differentiable losses: -

easier numeric optimization

.0 n L n
-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0
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Summary — Linear Classifiers
(Linear) Support Vector Machines

» geometric intuition: maximum margin classifier

> well understood theory: regularized risk minimization

Many variants of losses and regularizers

. w (--1 lOSS
> first: try Q(-) = |- ||? 25 Hinge Loss
. 2.0 === Squared Hinge Loss
> encourage sparsity: Q(-) = || - ||z 1_5\ — Lot Lome
» differentiable losses: L

0.5

easier numeric optimization
0.

.0 n L n
-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0

Fun fact: different losses often have similar empirical performance
» don't blindly believe claims "My classifier is the best.”
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Nonlinear Classification
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Nonlinear Classification

What is the best linear classifier for this dataset?

15
y
0.5}
X
>
”
—0.5
—1.5575 —1.0 0.0 1.0 2.0

None. We need something nonlinear!
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Nonlinear Classification

Idea 1) Combine multiple linear classifiers into nonlinear classifier

Q&
6
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Nonlinear Classification: Boosting

‘ Boosting

Situation:

» we have many simple classifiers (typically linear),
hi,...,hy : X — {j:l}
» none of them is particularly good

Method:
» construct stronger nonlinear classifier:
x) = sign ajhi(x) with a; €R
g9(z) g Zj ihi(@) J
» typically: iterative construction for finding aq, s, . ..
Advantage:
> very easy to implement

Disadvantage:
» computationally expensive to train
» finding base classifiers can be hard
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Nonlinear Classification: Decision Tree

| Decision Trees

X
\
f1(x)
<0 S0~
f2(x) f3(x)

VANYAS
y: 1 2 3 1
Advantage:

> easy to interpret
» handles multi-class situation

Disadvantage:
» by themselves typically worse results than other modern methods

[Breiman, Friedman, Olshen, Stone, " Classification and regression trees”, 1984] 58 /90



Nonlinear Classification: Random Forest

| Random Forest \

X X X X
' ' ' '

£<0 o= £<0 o= £<0 o= ~<0
,(x) 20 £,(x) IR ()

DAY AN AN AN AN AN N AN AN

3 1 y: 1 2 3 1 y: 1 2 3 1 y:i 1 2

Method:
» construct many decision trees randomly (under some constraints)
» classify using majority vote

Advantage:

» conceptually easy
» works surprisingly well

Disadvantage:
» computationally expensive to train
> expensive at test time if forest has many trees

[Breiman, "Random Forests”, 2001] 59/90



Nonlinear Classification: Neural Networks

Artificial Neural Network / Multilayer Perceptron / Deep Learning

. . =<w,X> o nonlinear
Multi-layer architecture: ‘
» first layer: inputs x @

> each layer k evaluates fF,..., f¥ /
feeds output to next layer @) @)
> last layer: output y T T T T
Advantage:

» biologically inspired — easy to explain to non-experts
» efficient at evaluation time

Disadvantage:
> non-convex optimization problem
» many design parameters, few theoretic results

— "Deep Learning” (Tuesday)

[Rumelhart, Hinton, Williams, " Learning Internal Representations by Error Propagation”, 1986]
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Nonlinearity: Data Preprocessing

Idea 2) Preprocess the data
O \ Y O
O

This dataset is not o S 2
linearly separable: O X

O© o

0©
)
O

This one is separable:

O
0C o

Y=

But: both are the same dataset!

Top: Cartesian coordinates. Bottom: polar coordinates
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Nonlinearity: Data Preprocessing

Idea 2) Preprocess the data

Nonlinear separation:

Linear Separation

.
.....

Linear classifier in polar space acts nonlinearly in Cartesian space

62 /90



Generalized Linear Classifier

Given

» X ={x1,...,en}, Y ={y1,. .., yn}
» Given any (nonlinear) feature map ¢ : R¥ — R™.

Solve the minimization for ¢(x1), ..., ¢(z,) instead of x1,..., xy:
. 2y
min w
vermin el + Z&

subject to
yilw,o(z;)) >1—-&  fori=1,...n

» The weight vector w now comes from the target space R™.
» Distances/angles are measure by the inner product (.,.) in R™.

» Classifier f(x) = (w, ¢(x)) is linear in w, but nonlinear in x.
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Example Feature Mappings

» Polar coordinates:

() ()

y L(z,y)

» d-th degree polynomials:

¢ : (wl,...,xn) — (l,ml,...,xn,x%,...,xj ...,a:cll,...,xd)

» Distance map:
gﬁ:f'—) (|’f_15;||77|’f_5N")

for a set of N prototype vectors p;, i = 1,..., N.
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Representer Theorem

Solve the soft-margin minimization for ¢(z1),...,¢(z,) € R™:
C n
. 2
min w||* + — ; 1
D I 1)
subject to

yi(w, p(x;)) >1—-¢& fori=1,...n.

For large m, won't solving for w € R" become impossible?
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Representer Theorem

Solve the soft-margin minimization for ¢(z1),...,¢(z,) € R™:
. 2y
1
werin o lwll® + Z& (1)
subject to

yi(w, p(x;)) >1—-¢ fori=1,...n

For large m, won't solving for w € R™ become impossible?  Nol

Theorem (Representer Theorem)

The minimizing solution w to problem (1) can always be written as

w = Z a;o(x;) for coefficients a, . .., o, € R.

[Schélkopf, Smola, " Learning with Kernels”, 2001]

65 /90



Kernel Trick

Rewrite the optimization using the representer theorem:
> insert w =3 7 | ajd(x;) everywhere,

» minimize over «; instead of w.

weR™ &R+

C n
min Hsz—i-ngi
i=1

subject to

yi{w, p(x;)) > 1-¢ fori=1,...n.
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Kernel Trick

Rewrite the optimization using the representer theorem:
> insert w =3 7 | ajp(x;) everywhere,

» minimize over ¢; instead of w.

oaieIIRiI,lgineR*' Hz%d’ ()] Zfz
subject to
i) oid(a;), o(xi) 21— & fori=1,...n
j=1

The former m-dimensional optimization is now n-dimensional.
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Kernel Trick

Rewrite the optimization using the representer theorem:
> insert w = 37| ajp(x;) everywhere,

» minimize over «; instead of w.

n C n
min Y aja(p(zs), oar) + . > &
k=1 i=1

a; €EREERT j

subject to

u> (b)), @) 21— &  fori=1,...n.
j=1

68 /90



Kernel Trick

Rewrite the optimization using the representer theorem:
> insert w = 37| ajp(x;) everywhere,

» minimize over «; instead of w.

n C n
min Y aja(p(zs), k) + . > &
k=1 i=1

a; €EREERT j

subject to
yy i (é(z),o(z) > 1-&  fori=1,..n.
=1

Note: ¢ only occurs in (¢(.), &(.)) pairs.
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Kernel Trick

Set (¢(x), p(a')) =: k(x,2’), called kernel function.

n C n

min E ajark(zj, vp) + — E &i

a;€EREERT n “
J,k=1 =1

subject to

n
inajk(mj,xi)Zl—& forizl,...n.
J=1
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Kernel Trick

Set (¢(x), p(a')) =: k(x,2’), called kernel function.

n C n

min E ajark(zj, vp) + — E &i

a;€EREERT n -
J,k=1 i=1

subject to
n
inajk(xj,xi)Zl—& forizl,...n.
j=1
To train, we only need to know the kernel matrix K € R"*"
Kij = k(xi,xj)

To evaluate on new data x, we need values k(z1,2), ..., k(zy,x):

f(x) = (w, p(x)) = Zaik(xi,x)
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Dualization

More elegant: dualize using Lagrangian multipliers

max - = E alozjyzyj xl,x] —I—E (67}
a; R+ ig=1

subject to

0<a; <

C
— fori=1,...,n
n

Support-Vector Machine (SVM) ‘

Optimization be solved numerically by any quadratic program (QP)
solver but specialized software packages are more efficient.
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Why use k(x, ") instead of (¢d(x), p(x'))?

1) Memory usage:
» Storing ¢(x1),...,¢(x,) requires O(nm) memory.
» Storing k(z1,21),...,k(xn, z,) requires O(n?) memory.
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Why use k(x, ') instead of (¢p(x), p(x'))?

1) Memory usage:
» Storing ¢(x1),...,¢(x,) requires O(nm) memory.
» Storing k(z1,21),...,k(xn, z,) requires O(n?) memory.

2) Speed:
» We might find an expression for k(x;,x;) that is faster to calculate
than forming ¢(x;) and then (¢(z;), ¢(z;)).

Example: comparing angles (z € [0, 27])

¢z (cos(z),sin(z)) € R?

(@(xi), d(x5)) = ( (cos(wi), sin(xi)), (cos(x;), sin(z;)) )

= cos(z;) cos(xj) + sin(z;) Sin(xj)
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Why use k(x, ') instead of (¢p(x), p(x'))?

1) Memory usage:

» Storing ¢(x1),...,¢(x,) requires O(nm) memory.
» Storing k(z1,21),...,k(xn, z,) requires O(n?) memory.
2) Speed:

» We might find an expression for k(x;,x;) that is faster to calculate
than forming ¢(x;) and then (¢(z;), ¢(z;)).

Example: comparing angles (z € [0, 27])
¢z (cos(z),sin(z)) € R?
(¢(xi), d(x;)) = ( (cos(x;), sin(z;)), (cos(x;),sin(x;)) )
= cos(z;) cos(z;) + sin(z;) sin(z;) = cos(z; — ;)
Equivalently, but faster, without ¢:
k(zi,2;) : = cos(z; — ;)
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Why use k(x, ') instead of (¢p(x), p(x'))?

3) Flexibility:
» One can think of kernels as measures of similarity.
» Any similarity measure k£ : X Xx X — R can be used, as long as it is
» symmetric: k(z',z) = k(z,2') for all z, 2’ € X
» positive definite: for any set of points z,...,2, € X

Kij = (k(xi, 7))

ij=1,...,n
is a positive (semi-)definite matrix, i.e. for all vectors t € R™:
n
> Kty > 0.
ij=1

» Using functional analysis one can show that for these k(z,z’), a
feature map ¢ : X — F exists, such that k(x,z’) = (¢(x), p(2')) 7
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Regularized Risk Minimization View

We can interpret the kernelized SVM as loss and regularizer:

n C n n
min Z ajopk(zy, o) +E Z max{0,1 — y; Z ajk(xj, x;)}
1 i=1 j=1

a;ER&ERT Py

regularizer Hinge loss

for

n

flw) = aik(z, )

=1

Data dependent hypothesis class
= {Z aik(x;,z) :a € R"} for training set x1, ..., 2.

Nonlinear functions, spanned by basis functions centered at training points.
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Kernels in Computer Vision

‘ Popular kernel functions in Computer Vision ‘

» ”Linear kernel”: identical solution as linear SVM
k(z,2')=2"2' = Z?Zl Tz

» "Hellinger kernel”: less sensitive to extreme value in feature vector
k(m,x’):Z?:“/xix; for z = (z1,...,2q4) € R

» " Histogram intersection kernel”: very robust
k(z, ') = % min(zy, 2)) for z € RL

» " x2-distance kernel”: good empirical results

k(z,2)) = —x2(z,2/) = =3¢ @ia)? for iz € R4

=1 zitw]
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Kernels in Computer Vision

‘ Popular kernel functions in Computer Vision ‘

» " Gaussian kernel”: overall most popular kernel in Machine Learning

k(x,2') = exp(=Allz —'[[?)

» " (Exponentiated) y2-kernel”: best results in many benchmarks

k(z,z'") = exp( —Ax%(z, ")) for z € RL

» "Fisher kernel”: good results and allows for efficient training
k(z,2') = [Vp(z;©)] T F~'[Vp(a'; ©)]
» p(z;O) is generative model of the data, i.e. Gaussian Mixture Model

» Vp is gradient of the density function w.r.t. the parameter ©
» Fis the Fisher Information Matrix

[Perronnin, Dance " Fisher Kernels on Visual Vocabularies for Image Categorization”, 2007]
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Nonlinear Classification

SVMs with nonlinear kernel are commonly used for small to
medium sized Computer Vision problems.

v

Software packages:

> libSVM: nttp://www.csie.ntu.edu.tw/~cjlin/libsvm/
» SVMlight: nttp://svmlight.joachims.org/

v

Training time is
» typically cubic in number of training examples.
Evaluation time:

v

> typically linear in number of training examples.

v

Classification accuracy is typically higher than with linear SVMs.
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Nonlinear Classification

Observation 1: Linear SVMs are very fast in training and evaluation.

Observation 2: Nonlinear kernel SVMs give better results, but do not
scale well (with respect to number of training examples)

‘ Can we combine the strengths of both approaches?
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Nonlinear Classification

Observation 1: Linear SVMs are very fast in training and evaluation.

Observation 2: Nonlinear kernel SVMs give better results, but do not
scale well (with respect to number of training examples)

‘ Can we combine the strengths of both approaches?

Yes! By (approximately) going back to explicit feature maps.

[Maji, Berg, Malik, " Classification using intersection kernel support vector machines is efficient”, CVPR 2008]
[Rahimi, ”"Random Features for Large-Scale Kernel Machines”, NIPS, 2008]
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(Approximate) Explicit Feature Maps

Core Facts

» For every positive definite kernel k£ : X x X — R, there exists
(implicit) ¢ : X — F such that

k(z,2') = (¢(2), p(2')).
> In case that ¢ : X — RP, training a kernelized SVMs vyields the same

prediction function as

» preprocessing the data: make every x into a ¢(z),
» training a linear SVM on the new data.

Problem: ¢ is generally unknown, and dim F = oo is possible

79 /90



(Approximate) Explicit Feature Maps

Core Facts

» For every positive definite kernel k£ : X x X — R, there exists
(implicit) ¢ : X — F such that

k(z,2") = (¢(x), $(2')).

> In case that ¢ : X — RP, training a kernelized SVMs vyields the same
prediction function as

» preprocessing the data: make every x into a ¢(z),
» training a linear SVM on the new data.

Problem: ¢ is generally unknown, and dim F = oo is possible
Idea: Find approximate ¢ : X — R such that

k(z,2) ~ (¢(x),p(x"))
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Explicit Feature Maps

For some kernels, we can find an explicit feature map:

Example: Hellinger kernel

d
kg (z,2') :z,/xi:c; for x € RL.
i=1
Set ¢ (x) = (\/x_,...,\/x_d):

(¢u(x), pr(2))ge = i\/;\/;i = kpg(z,2)

We can train a linear SVM on /x instead of a kernelized SVM with kp;.
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Explicit Feature Maps

When there is no exact feature map, we can look for approximations:

Example: y2-distance kernel

d /
’ _2 : TiT;
kXQ(x,.’I}) = L m
set ¢(x) := (,/xi, V27rx; cos(log x;), v/ 2mz; sin(log xi))z‘:l. F

gooog

(d(@), $())gsa = kye(2,2)

Current state-of-the-art in large-scale nonlinear learning.

[A. Vedaldi, A. Zisserman, "Efficient Additive Kernels via Explicit Feature Maps”, TPAMI 2011]
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Other Supervised Learning Methods

Multiclass SVMs
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Multiclass SVMs

What if ¥ = {1,..., K} with K > 27

Some classifiers works naturally also for multi-class
» Nearest Neigbhor, Random Forests, ...

SVMs don't. We need to modify them:

> |dea 1: decompose multi-class into several binary problems

» One-versus-Rest
» One-versus-One

> ldea 2: generalize SVM objective to multi-class situation
» Crammer-Singer SVM
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Reductions: Multiclass SVM to Binary SVMs

Most common: One-vs-Rest (OvR) training

» For each class y, train a separate binary SVM, f, : X — R.

» Positive examples: X, = {z; : y; = y}
> Negative examples: X_ = {z; : y; #y} (aka "the rest”)

> Final decision: g(z) = argmax,cy f,(z)

Advantage:
> easy to implement

» works well, if implemented correctly

Disadvantage:
» Training problems often unbalanced, | X_| > | X |

» ranges of the f; are no calibrated to each other.
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Reductions: Multiclass SVM to Binary SVMs

Also popular: One-vs-One (OvQ) training
» For each pair of classes y # 1/, train a separate binary SVM,
fyy/ . X — ]R

» Positive examples: X4 = {z; : y; = y}
> Negative examples: X_ = {xz; : y; =y'} (aka "the rest”)

» Final decision: majority vote amongst all classifiers

Advantage:
> easy to implement

> training problems approximately balanced

Disadvantage:
» number of SVMs to train grows quadratically in |Y)|

> less intuitive decision rule
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Multiclass SVMs

‘ Crammer-Singer SVM ‘

Standard setup:
> fy(x) = (w,z) (also works kernelized)
> decision rule: g(x) = argmax,cy f,(z)
> 0/1-loss: A(y,9) = [y # 4l

What's a good multiclass loss function?

g(wz) =y & ¢’ =argmax fy(azi)

yey
& fyi(@') > max f,(z")
y#Y*
& fy (z") — max f, (") > 0
y#Y*

takes role of y(w, z)

0y, f1(2h), ..., fr(z%)) = max{0,1 — (fyz(xl) — Iyr;g}f fy(xz))}



Multiclass SVMs — Crammer-Singer SVM

‘

Regularizer: Qft,..., fx) = Z |
k=1
Together:

min v Z l|wg || + -~ Zmax{(), 1-— (fyz(xl) maxfy( ))}

w1, wr €RT S im1 YAy

Equivalently:

Z g ]| + Z&
i=1

Wy, WK E]Rd
{1 I Q?’ln 6R+

subject to, fori =1,...,n, fi(@') — maxfy( N>1-¢.
y#Y'
Interpretation:
» One-versus-Rest: correct class has margin at least 1 to origin.

» Cramer-Singer: correct class has margin at least 1 to all other classes
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Summary — Nonlinear Classification

» Many technique based on stacking:
» boosting, random forests, deep learning, ...
» powerful, but sometimes hard to train (non-convex — local optima)

» Generalized linear classification with SVMs

» conceptually simple, but powerful by using kernels
» convex optimization, solvable to global optimality
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» Kernelization is implicit application of a feature map

» the method can become nonlinear in the original data
» the method is still linear in parameter space
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» Generalized linear classification with SVMs

» conceptually simple, but powerful by using kernels
» convex optimization, solvable to global optimality

» Kernelization is implicit application of a feature map
» the method can become nonlinear in the original data
» the method is still linear in parameter space

» Kernels are at the same time

> similarity measures between arbitrary objects
> inner products in a (hidden) feature space
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Summary — Nonlinear Classification

» Many technique based on stacking:
» boosting, random forests, deep learning, ...
» powerful, but sometimes hard to train (non-convex — local optima)

v

Generalized linear classification with SVMs
» conceptually simple, but powerful by using kernels
» convex optimization, solvable to global optimality

v

Kernelization is implicit application of a feature map
» the method can become nonlinear in the original data
» the method is still linear in parameter space

Kernels are at the same time

> similarity measures between arbitrary objects
> inner products in a (hidden) feature space

v

v

For large datasets, kernelized SVMs are inefficient
» construct explicit feature map (approximate if necessary)
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What did we not see?

We have skipped a large part of theory on kernel methods:

» Optimization
» Dualization

» Numerics
» Algorithms to train SVMs

» Statistical Interpretations
» What are our assumptions on the samples?

» Generalization Bounds
» Theoretic guarantees on what accuracy the classifier will have!

This and much more in standard references, e.g.

» Scholkopf, Smola: “Learning with Kernels”, MIT Press (50 EUR/60%)

» Shawe-Taylor, Cristianini: “Kernel Methods for Pattern Analysis”,
Cambridge University Press (60 EUR/75%)
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