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Outline 

1.  Local invariant features (C. Schmid) 

2.  Matching and recognition with local features (J. 
Sivic) 

3.  Efficient visual search (J. Sivic) 

4.  Very large scale visual indexing (C. Schmid) 
 
Practical session – Instance-level recognition and search 
  [Try your wifi network access.] 



Image matching and recognition with local features 

The goal: establish correspondence between two or more 
images 

 
 
 
 
 
 
 
 
 
Image points x and x’ are in correspondence if they are 

projections of the same 3D scene point X. 
Images courtesy A. Zisserman 
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Example I: Wide baseline matching and 3D reconstruction 
Establish correspondence between two (or more) images. 

[Schaffalitzky and Zisserman ECCV 2002] 
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[Agarwal, Snavely, Simon, Seitz, Szeliski, ICCV’09] – 
Building Rome in a Day 

57,845 downloaded images, 11,868 registered images. This video: 4,619 images.    



Example II: Object recognition 

[D. Lowe, 1999] 

Establish correspondence between the target image and 
(multiple) images in the model database. 

Target 
image 

Model 
database 
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Sony Aibo (Evolution Robotics) 

SIFT usage 
•  Recognize  

docking station 
•  Communicate  

with visual cards 

Other uses 
•  Place recognition 
•  Loop closure in SLAM 

Slide credit: David Lowe 



Find these landmarks  ...in these images and 1M more 

Example III: Visual search 

Given a query image, find images depicting the same place / 
object in a large unordered image collection. 



Establish correspondence between the query image and all 
images from the database depicting the same object / scene. 

Query image 

Database image(s) 



Bing visual scan 

Mobile visual search 

and others… Snaptell.com, Millpix.com 



Example 

Slide credit: I. Laptev 



Why is it difficult? 
Want to establish correspondence despite possibly large 
changes in scale, viewpoint, lighting and partial occlusion 

Viewpoint Scale 

Lighting Occlusion 

… and the image collection can be very large (e.g. 1M images) 



Approach 

Pre-processing (so far): 
•  Detect local features. 
•  Extract descriptor for each feature. 

Matching: 
1. Establish tentative (putative) correspondences based on 

local appearance of individual features (their descriptors).  
 
2. Verify matches based on semi-local / global geometric 

relations. 



Example I: Two images -“Where is the Graffiti?” 

object 



Step 1. Establish tentative correspondence 

Establish tentative correspondences between object model image and target 
image by nearest neighbour matching on SIFT vectors 

128D descriptor 
space 

Model (query) image  Target image  

Need to solve some variant of the “nearest neighbor problem” for all feature 
vectors,                     , in the query image: 
 
 
 
where,                      ,  are features in the target image. 

Can take a long time if many target images are considered (see later). 
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Step 1. Establish tentative correspondence 

Examine the distance to the 2nd nearest neighbour [Lowe, IJCV 2004] 

128D descriptor 
space 

Model (query) image  Target image  

If the 2nd nearest neighbour is much further than the 1st nearest neighbour 
Match is more “unique” or discriminative. 
 

Measure this by the ratio: r = d1NN / d2NN  
 
r is between 0 and 1 
r is small the match is more unique. 

See the practical later today for an example. 



Problem with matching on local descriptors alone 

•  too much individual invariance 

•  each region can affine deform independently (by different amounts) 

•  locally, appearance can be ambiguous 

 

Solution: use semi-local and global spatial relations to verify matches. 



Initial matches 

Nearest-neighbor 
search based on 
appearance descriptors 
alone. 

After spatial 
verification 

Example I: Two images -“Where is the Graffiti?” 



Step 2: Spatial verification 

1.  Semi-local constraints 
 Constraints on spatially close-by matches 

 
2. Global geometric relations 

 Require a consistent global relationship between all 
matches  



Semi-local constraints: Example I. – neighbourhood consensus 

[Schmid&Mohr, PAMI 1997] 



Semi-local constraints: 
Example I. – 
neighbourhood 
consensus 

[Schaffalitzky & 
Zisserman, CIVR 
2004] 

Original images 

Tentative matches 

After neighbourhood consensus 



Geometric verification with global constraints 

•  All matches must be consistent with a global geometric 
relation / transformation. 

•  Need to simultaneously: 
(i)  estimate the geometric transformation and  
(ii)  estimate the set of consistent matches 

Tentative matches Matches consistent with an affine 
transformation 



Examples of global constraints 

1 view and known 3D model. 
•  Consistency with a (known) 3D model. 

 
2 views 
•  Epipolar constraint 
•  2D transformations 

•  Similarity transformation 
•  Affine transformation 
•  Projective transformation 

N-views 
Are images consistent with a 3D model? 



3D constraint: example 
•  Matches must be consistent with a 3D model 

[Lazebnik, Rothganger, Schmid, Ponce, CVPR’03] 

3 (out of 20) images 
used to build the 3D 

model 

Recovered 3D model 

Offline: Build a 3D model 



3D constraint: example 
•  Matches must be consistent with a 3D model 

[Lazebnik, Rothganger, Schmid, Ponce, CVPR’03] 

3 (out of 20) images 
used to build the 3D 

model 

Recovered 3D model 

Recovered pose Object recognized in a previously 
unseen pose 

Offline: Build a 3D model 

At test time: 



With a given 3D model (set of known 3D points X’s) and a set 
of measured 2D image points x, the goal is to find camera 
matrix P and a set of geometrically consistent 
correspondences  x    X. 

3D constraint: example 

x 

X 

P 

C 



2D transformation models 

Similarity 
(translation,  
scale, rotation) 
 
 

Affine 
 
 

Projective 
(homography) 
 

  



Points on the plane transform as  x’ = H x, where x and x’ 
are image points (in homogeneous coordinates), and H 
is a 3x3 matrix. 

Planes in the scene induce homographies 

H x 

x' 



Case II: Cameras rotating about their centre 

image plane 1 

image plane 2 

•  The two image planes are related by a homography H 

•  H depends only on the relation between the image 
planes and camera centre, C, not on the 3D structure  



Homography is often approximated well by 2D 
affine geometric transformation 

HA x 

x' 



Two images with similar camera viewpoint 

Tentative matches Matches consistent with an affine 
transformation 

Homography is often approximated well by 2D 
affine geometric transformation – Example II. 



Example: estimating 2D affine transformation 

•  Simple fitting procedure (linear least squares) 
•  Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras 
•  Can be used to initialize fitting for more complex models 
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Fitting an affine transformation 

Assume we know the correspondences, how do we get the 
transformation? 
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Fitting an affine transformation 

Linear system with six unknowns 
Each match gives us two linearly independent 

equations: need at least three to solve for the 
transformation parameters 
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Dealing with outliers 

The set of putative matches may contain a high percentage 
(e.g. 90%) of outliers 

 
 
 
 
 
How do we fit a geometric transformation to a small subset 

of all possible matches? 
 
Possible strategies: 

•  RANSAC 
•  Hough transform 



Example: Robust line estimation - RANSAC 

Fit a line to 2D data containing outliers 

There are two problems 

1.  a line fit which minimizes perpendicular distance 

2.  a classification into inliers (valid points)  and outliers 
Solution: use robust statistical estimation algorithm RANSAC 

(RANdom Sample Consensus) [Fishler & Bolles, 1981] 
Slide credit: A. Zisserman 



Repeat 
1.  Select random sample of 2 points 
2.  Compute the line through these points 
3.  Measure support (number of points within threshold 

distance of the line) 

Choose the line with the largest number of inliers 
•  Compute least squares fit of line to inliers (regression) 

RANSAC robust line estimation 

Slide credit: A. Zisserman 



Slide credit: O. Chum 
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Slide credit: O. Chum 



Repeat 
1.  Select 3 point to point correspondences 
2.  Compute H (2x2 matrix) + t (2x1) vector for translation  
3.  Measure support (number of inliers within threshold 

distance, i.e. d2
transfer < t) 

 

Choose the (H,t) with the largest number of inliers 

(Re-estimate (H,t) from all inliers) 

Algorithm summary – RANSAC robust estimation of 
2D affine transformation 



1. Depends on the proportion of outliers. 
2. Depends on the sample size “s” 

•  use simpler model (e.g. similarity instead of affine tnf.) 
•  use local information (e.g. a region to region 

correspondence is equivalent to (up to) 3 point to point 
correspondences). 

 
 
     

How many samples are needed? 

proportion of outliers e 
s 5% 10% 20% 30% 40% 50% 90% 
1 2 2 3 4 5 6 43 
2 2 3 5 7 11 17 458 
3 3 4 7 11 19 35 4603 
4 3 5 9 17 34 72 4.6e4 
5 4 6 12 26 57 146 4.6e5 
6 4 7 16 37 97 293 4.6e6 
7 4 8 20 54 163 588 4.6e7 
8 5 9 26 78 272 1177 4.6e8 

Number of samples N 

Region to region 
correspondence 



Example: restricted affine transform 
1. Test each correspondence 



2. Compute a (restricted) planar affine transformation (5 dof) 

Need just one correspondence 

Example: restricted affine transform 



3. Score by number of consistent matches 

Re-estimate full affine transformation (6 dof) 

Example: restricted affine transform 



Similarity transformation is specified by four parameters: 
scale factor s, rotation θ, and translations tx and ty. 

 
 
 
 
 
 
Recall, each SIFT detection has: position (xi, yi), scale si, 

and orientation θi. 
 
How many correspondences are needed to compute 

similarity transformation?  

Example II: (see practical later today) 



Compute similarity transformation from a single 
correspondence: 

 
 
 
 

Example II: (see practical later today) 

(xA, yA, sA,θA )↔ ( "xA, "yA, "sA, "θ A )

θ = !θA −θA

tx = !xA − xA
ty = !yA − yA
s = !sA / sA

24 CHAPTER 3. LOCAL FEATURES: DETECTION AND DESCRIPTION

Image gradients Keypoint descriptor

Figure 3.8: Visualization of the SIFT descriptor computation. For each (orientation-

normalized) scale invariant region, image gradients are sampled in a regular grid and are then

entered into a larger 4× 4 grid of local gradient orientation histograms (for visibility reasons,

only a 2× 2 grid is shown here). IMAGE SOURCE: DAVID LOWE.

Harris-Laplacian and Hessian-Laplacian detectors. Finally, we can further generalize
those detectors to affine covariant region extraction, resulting in the Harris-Affine and
Hessian-Affine detectors. The affine covariant region detectors are complemented by the
MSER detector, which is based on maximally stable segmentation regions. All of those
detectors have been used in practical applications. Detailed experimental comparisons
can be found in (Mikolajczyk & Schmid 2004, Tuytelaars & Mikolajczyk 2007).

3.3 LOCAL DESCRIPTORS

Once a set of interest regions has been extracted from an image, their content needs
to be encoded in a descriptor that is suitable for discriminative matching. The most
popular choice for this step is the SIFT descriptor (Lowe 2004), which we present in
detail in the following.

3.3.1 THE SIFT DESCRIPTOR
The Scale Invariant Feature Transform (SIFT) was originally introduced by Lowe as
combination of a DoG interest region detector and a corresponding feature descriptor
(Lowe 1999, 2004). However, both components have since then also been used in isola-
tion. In particular, a series of studies has confirmed that the SIFT descriptor is suitable
for combination with all of the above-mentioned region detectors and that it achieves
generally good performance (Mikolajczyk & Schmid 2005).
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Figure
3.8: Visualization

of the SIFT
descriptor computation. For each

(orientation-

normalized) scale invariant region, image gradients are sampled in a regular grid and are then

entered into a larger 4× 4 grid of local gradient orientation histograms (for visibility reasons,

only a 2× 2 grid is shown here). IMAGE SOURCE: DAVID LOWE.

Harris-Laplacian and Hessian-Laplacian detectors. Finally, we can further generalize

those detectors to affine covariant region extraction, resulting in the Harris-Affine and

Hessian-Affine detectors. The affine covariant region detectors are complemented by the

MSER detector, which is based on maximally stable segmentation regions. All of those

detectors have been used in practical applications. Detailed experimental comparisons

can be found in (Mikolajczyk & Schmid 2004, Tuytelaars & Mikolajczyk 2007).

3.3
LOCAL DESCRIPTORS

Once a set of interest regions has been extracted from an image, their content needs

to be encoded in a descriptor that is suitable for discriminative matching. The most

popular choice for this step is the SIFT descriptor (Lowe 2004), which we present in

detail in the following.
3.3.1

THE SIFT DESCRIPTOR

The Scale Invariant Feature Transform
(SIFT) was originally introduced by Lowe as

combination of a DoG interest region detector and a corresponding feature descriptor

(Lowe 1999, 2004). However, both components have since then also been used in isola-

tion. In particular, a series of studies has confirmed that the SIFT descriptor is suitable

for combination with all of the above-mentioned region detectors and that it achieves

generally good performance (Mikolajczyk & Schmid 2005).



RANSAC (references) 

M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting 
with Applications to Image Analysis and Automated Cartography,” Comm. ACM, 1981 

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed., 2004. 

 

Extensions: 

B. Tordoff and D. Murray, “Guided Sampling and Consensus for Motion Estimation, 
ECCV’03 

D. Nister, “Preemptive RANSAC for Live Structure and Motion Estimation, ICCV’03  

Chum, O.; Matas, J. and Obdrzalek, S.: Enhancing RANSAC by Generalized Model 
Optimization, ACCV’04 

Chum, O.; and Matas, J.: Matching with PROSAC - Progressive Sample Consensus , 
CVPR 2005 

Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A.: Object retrieval with large 
vocabularies and fast spatial matching, CVPR’07 

Chum, O. and Matas. J.: Optimal Randomized RANSAC, PAMI’08 

Lebeda, Matas, Chum: Fixing the locally optimized RANSAC, BMVC’12 (code available). 

 

 

 
 
 

 
 



Geometric verification for visual search (references) 

Schmid and Mohr, Local gray-value invariants for image retrieval, PAMI 1997 
 
 
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large 

vocabularies and fast spatial matching. CVPR (2007) 
Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for large 

scale object retrieval. CVPR (2009) 
Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web 

image search. In: CVPR (2009) 
Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image 

search. IJCV 87(3), 316–336 (2010) 
Lin, Z., Brandt, J.: A local bag-of-features model for large-scale object retrieval. ECCV 

2010) 
Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry preserving visual phrases. In: 

CVPR (2011) 
Tolias, G., Avrithis, Y.: Speeded-up, relaxed spatial matching. In: ICCV (2011) 
Shen, X., Lin, Z., Brandt, J., Avidan, S., Wu, Y.: Object retrieval and localization with 

spatially-constrained similarity measure and k-nn re-ranking. In: CVPR. IEEE (2012) 
H. Stewénius, S. Gunderson, J. Pilet. Size matters: exhaustive geometric verification for 

image retrieval, ECCV 2012. 
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