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 Main concepts 
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 Point tracking 
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 Online learning  

 Descriptive 

 Discriminative 
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Outline 

7/29/2013 



 On-line or off-line inference, from a mono- or multi-view image 

sequence, of state trajectories that characterize, either in image plane 

or in real world, some aspects of one or several target objects   

 All sorts of “targets” 

 Interest points 

 Manually selected objects 

 Specific known objet 

 Cars, faces, people, etc. 

 Moving cars, walking people, talking heads 

 Appearance/dynamical models and inference machineries 

 Depend on task and setting 

 Heavily influenced by CV/ML trends 
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What? 

7/29/2013 
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With 2D (dynamic) shape prior 
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http://vision.ucsd.edu/~kbranson/research/cvpr2005.html 

http://www2.imm.dtu.dk/~aam/tracking/ 

http://vision.ucsd.edu/~kbranson/research/cvpr2005.html
http://www2.imm.dtu.dk/~aam/tracking/
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With 3D (cinematic) shape prior 
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http://cvlab.epfl.ch/research/completed/realtime_tracking/ 

http://www.cs.brown.edu/~black/3Dtracking.html 

http://cvlab.epfl.ch/research/completed/realtime_tracking/
http://www.cs.brown.edu/~black/3Dtracking.html


 “Detect-before-tracking” 
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With appearance prior 
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http://www.cs.washington.edu/homes/xren/research/cvpr2008_casablanca/ 

http://www.cs.washington.edu/homes/xren/research/cvpr2008_casablanca/


 Tracking bounding box from user selection 
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With no appearance prior 
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http://info.ee.surrey.ac.uk/Personal/Z.Kalal/ 

http://info.ee.surrey.ac.uk/Personal/Z.Kalal/


 Tracking bounding box from user selection (query expansion) 
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With no appearance prior 
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http://www.robots.ox.ac.uk/~vgg/research/vgoogle/ 

http://www.robots.ox.ac.uk/~vgg/research/vgoogle/


 Tracking bounding box from user selection, and using context 
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With no appearance prior 
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http://server.cs.ucf.edu/~vision/projects/sali/CrowdTracking/index.html 

http://server.cs.ucf.edu/~vision/projects/sali/CrowdTracking/index.html


 Tracking bounding box and segmentation from user selection 
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With no appearance prior 

7/29/2013 

http://www.robots.ox.ac.uk/~cbibby/index.shtml 

http://www.robots.ox.ac.uk/~cbibby/index.shtml


Elementary or principal tool for multiple CV systems 

 

 Other sciences (neuroscience, ethology, biomechanics, sport, medicine, 

biology, fluid mechanics, meteorology, oceanography) 

 Defense, surveillance, safety, monitoring, control, assistance 

 Robotics, Human-Computer Interfaces 

 

 

 Video content production and post-production (compositing, augmented 

reality, editing, re-purposing, stereo3D authoring, motion capture for 

animation, clickable hyper videos, etc.) 

 Video content management (indexing, annotation, search, browsing)   
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Why? 
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Disposable video (camera as a sensor) 

Valuable video 



More than yet another search/matching/detection problem  

 

 Specific issues 

 Drastic appearance variability through time 

 Non planar, deformable or articulated objects  

 More image quality problems: low resolution, motion blur 

 Speed/memory/causality constraints 

 

 But … 

 Sequential image ordering is key 

 Temporal continuity of appearance 

 Temporal continuity of object state 
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A specific problem? 
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Image-based “measurements”:  

 Raw or filtered images (intensities, colors, texture) 

 Low-level features (edgels, corners, blobs, optical flow) 

 High-level detections (e.g., face bounding boxes) 

 

Single target “state”:  

 Bounding box parameters (up to 6 DoF) 

 3D rigid pose (6 DoF) 

 2D/3D articulated pose (up to 30 DoF) 

 2D/3D principal deformations 

 Discrete pixel-wise labels (segmentation) 

 Discrete indices (activity, visibility, expression) 
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Formalizing tracking 
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 Given past and current measurements 

 Output an estimate of current hidden state 

 

Deterministic tracking  

 Optimization of ad-hoc objective function 

 

 

 or minimization of function      “around” 

Probabilistic tracking  

 Computation of the filtering pdf  , and point estimate: 
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Formalizing tracking 
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 Pros: transports full distribution knowledge 

 Takes uncertainty into account (helps with clutter, occlusions, weak model) 

 Provides some confidence assessment  

 

 Cons 

 More computations 

 Curse of dimensionality   
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Probabilistic tracking 
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Hidden Markov chain/dynamic state space model  

 Evolution model (dynamics), typically 1st-order Markov chain 

 

 

 Observation model 

 

 

 Joint distribution  
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Probabilistic tracking 
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Associated graphical model 

 

 

 

 

 

 Tree: exact inference with two-pass belief propagation (in theory) 

 Conditional independence properties:  past ⊥ future | present state 
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Probabilistic tracking 
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 Chapman-Kolmogorov recursion 

 

 

 One step prediction 

 

 

 Predictive likelihood 

 

 

 

 At each step: two integrals or summations (depends on state-space)   
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Bayesian filtering 

7/29/2013 



 Finite state space: matrix vector products classic in Markov chains 

 

 Linear Gaussian model: close-formed solution (Kalman Filter) 

 

 Continuous state space with mono-modal pdf: Gaussian approximations 

(extended Kalman Filter [EKF],unscented Kalman Filter [UKF]) 

propagating the two  first moments 

 

 General continuous case 

 Still Gaussian approximation (e.g, PDAF) 

 Monte Carlo approximation: particle filter  
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Bayesian filtering 
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 Strong limitations on observations model 

 Measurements must be of same nature as (part of) state, e.g. detected 

object position 

 Measurement of interest must be identified (data association problem) 

 

 In visual tracking, especially difficult 

 State specifies which part of data is concerned (actual measurement depends 

on hypothesized state) 

 Clutter is frequent 

 

 Variants of KF (extended KF, unscented KF) can help, to some extent 

20 

Limitation of KF and variants 
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 Monte Carlo based on sequential importance sampling (SIS) 

 

 History 

 Gordon 1993,  Novel approach to non-linear/non-Gaussian Bayesian state 
estimation  

 Kitagawa 1996,  Monte Carlo filter and smoother for non-Gaussian nonlinear 
state space models  

 Isard et Blake 1996, CONDENSATION: CONditional DENSity propagATION for 
visual tracking 

 

 Reasons of success in CV 

 Visual tracking often implies multimodal filtering distributions 

 PF maintains multiple hypotheses: good for robustness 

 Easy to implement and little restrictions on model ingredients 
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Particle filtering 

7/29/2013 



 Aim: approximate  posterior pdfs                         with weighted samples 

(‘particles’) 

 

 

 Use: for any function     on   

 

 

 

 In particular, approximate filtering distributions and its expectation 
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Particle filtering 
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 Problem: sampling target pdf                 is     not possible 

 One tool: importance sampling 

 Target distribution  

 Instrumental proposal distribution        (supp(p) ⊂ supp(q)) 

 

 

 

 Importance weighted samples 
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Importance sampling 
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 Target distribution 

 

 

 Factored proposal  

 

 

 Sequential sampling and weighting 
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Sequential importance sampling 
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 But sample pool degenerates 

 Re-sampling 

 Selection mechanism (weakest samples are eliminated, strongest are 

duplicated) with reweighting, which preserves asymptotic properties 

 A simple  method: sampling discrete distribution   

 When? 

 Systematic resampling 

 Adaptive resampling based on “efficient” size as degeneracy measure 
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Resampling 
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 Optimal density (rarely accessible) 

 

 

 

  

 Bootstrap filter: classic for its simplicity 

 

 

 

 In-between: try and use current data for better efficiency 
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Proposal density  
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 Given 

 One step proposal 

 

 Weights update 

 

 

 Resampling 

 If 

 

 

 Otherwise 

 

 Monte Carlo approximation 
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Generic synopsis 
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 State: active shape model (ASM) 

with autoregressive dynamics 

 Observation model: based on edgels 

near hypothesized silhouette 

 Bootstrap filter: proposal and 

dynamics coincide 
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“CONDENSATION” 
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[Isard and Blake, ECCV 1996] 



 Based on color histogram similarities 

 Bootstrap filter and data model  
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Color-based PF 
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[Pérez et al. ECCV’02] 
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PF with multiple cues 
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[Badrinarayanan et al. ICCV’07] 

[Wu and Huang, ICCV’01] 

[Gatica-Perez et al., 2003] 



 Track “key points” (Harris and the like),  

or random patches, as long as possible 

 Input: detected/sampled/chosen patches 

 Output: tracklets of various life-spans  

 

 

 

 

 

 

 

 

 

 

 

 

Tracking (small) fragments 

[Sand and Teller CVPR 2006] [Rubinstein et al. BMVC12] 
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 Structure-from-motion and camera pose tracking 

 Video segmentation into objects 

 Video indexing and copy detection 

 Action synchronization and recognition  

 Fragment-based object grouping and tracking   
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Use of tracklets 
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[Fradet et al. CVMP’09] 
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Point tracking 
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Point tracking 
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 Assuming small displacement: 1st-order Taylor expansion inside SSD 

 

 

 

 

For good conditioning, patch must be textured/structured enough: 

 Uniform patch: no information 

 Contour element: aperture problem (one dimensional information) 

 Corners, blobs and texture: best estimate  

KLT (Kanade-Lucas-Tomasi) 

7/29/2013 

[Lucas and Kanade 1981][Tomasi and Shi, CVPR’94] 
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 Translation is usually sufficient for small fragments, but: 

 Perspective transforms and occlusions cause drift and loss 

 Two complementary options 

 Kill tracklets when minimum SSD too large 

 Compare as well with initial patch under affine transform (warp) assumption 
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Monitoring quality 
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 Track in next frame fragments from current bounding box  

 Terminate weak tracklets 

 Infer global motion of bounding box  

 Select new points if necessary 

 In effect: part-based adaptive appearance model 
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Larger fragment as collection  
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 Can work really well and fast 

 

 

 

 

 

 

 Until 

 It drifts (due to partial occlusion, out-of-plane rotation)  

 It breaks down (diverging drift, total occlusion)  
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Larger fragment as collection  
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 Detect objects of interest in each frame 

 Connect instances traversed by sufficient fraction of tracklets 

 Yet another detect-before-track approach 
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Linking detections with tracklets 
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http://www.robots.ox.ac.uk/~vgg/research/nface/ 

http://www.robots.ox.ac.uk/~vgg/research/nface/


 Extend point tracking to whole region 

 Assume a reference image template is available 

 Search for best wrap of reference image template 

 

 

 

 Multi-scale Gauss-Newton around previous wrap 
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Holistic tracking of arbitrary “objects”  
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 Two extreme choices 

 Short term memory: reference = last object instance 

  

 

 Same pros and cons as point tracking 

 Long term memory: reference = initial object instance 

  

 

 Even with affine, often not robust enough to illumination/pose changes…  
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Reference template 
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 Two extreme choices 

 Short term memory: reference = last object instance 

  

 

 Same pros and cons as point tracking 

 Long term memory: reference = initial object instance 

  

 

 Even with affine, often not robust enough to illumination/pose changes…   
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Reference template 
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 Enrich the holistic model and update on-line 

 

 

 

 

 

 Looser appearance modeling via spatial aggregation 

 No (or loose) layout information 

 Color or texture statistics  

 Adaptation might not be necessary 

 “Mean-shift” tracker [Comaniciu et al. 2001]   

 Color histogram 

 Spatial kernel 

 Again: iterative Gauss-Newton descent 
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Toward improved robustness 
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? 



 Global description of tracked region: color histogram 

 Reference histogram with B bins 

 

 set at track initialization 

 Candidate histogram at current instant 

 

 gathered in region          of current 

 image. 

 At each instant 

 

 

 searched around      

 iterative search initialized with       : meanshift-like iteration  
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Color-based tracking 
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 Global description of tracked region: color histogram 

 Reference histogram with B bins 

 

 set at track initialization 

 Candidate histogram at current instant 

 

 gathered in region          of current 

 image. 

 At each instant 

 

 

 searched around      

 iterative search initialized with       : meanshift-like iteration  
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Color-based tracking 
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 Color histogram weighted by a kernel 

 Kernel elliptic support sits on the object 

 Central pixels contribute more 

 Makes differentiation possible 

 

 

 

 H: “bandwidth” sym. def. pos. matrix, related to 

 bounding box dimensions 

 k: “profile” of kernel (Gaussian or Epanechnikov) 

 Histogram dissimilarity measure 

  Battacharyya measure 

 Symmetric, bounded, null only for equality 

 1 - dot product on positive quadrant of unitary hyper-sphere 
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Color distributions and similarity 
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 Non quadratic minimization: iterative ascent with linearizations 

 

 

 

 

 Setting move to (g=-h’) 

 

 

 

 

 yields a simple algorithm…  
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Iterative ascent 
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In frame t+1 

 Start search at 

 Until stop 

 Compute candidate histogram 

 Weight pixels inside kernel support 

 

 

 Move kernel 

 

 

 Check overshooting 

 until 

 

 If             stop, else 

      
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Meanshift tracker 

7/29/2013 
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Examples 

7/29/2013 

http://comaniciu.net/ 

 

http://comaniciu.net/


 Low computational cost (easily faster than real-time) 

 Surprisingly robust  

 Invariant to pose and viewpoint   

 Often no need to update reference color model 

 

 Invariance comes at a price 

 Position estimate prone to fluctuation 

 Scale and orientation not well captured 

 Sensitive to color clutter (e.g., teammates in team sports)   

 

 Deterministic local search challenged by 

 abrupt moves 

 occlusions 
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Pros and cons 
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 When tracking arbitrary “objects”, appearance model is key 

 Initialized and kept fixed: requires simple modeling for robustness at cost of 

discriminative power 

 Obtained at previous instant:  works very well until it drifts and fails  

 All sorts of mixes of these two 

 

 Even with strong prior 

 Need for appearance model personalization, esp. for multi-object tracking 

 

 More classic: online parameter estimation of generative model  

 More recent trend: on-line learning (of appearance) 
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On-line adaptation 
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 Use current data to adapt model and infer new position 

 Descriptive modeling: compact model of pixel-wise appearance, plugged into 

deterministic or probabilistic tracking   

 Discriminative modeling (tracking-by-detection): learn and apply a detector 

or predictor that discriminates object from background around previous 

position 

 

 Challenges 

 What are training data? Are they labeled? How? 

 How to avoid drift and to circumvent occlusions? 

 How to control complexity over time?  

 

 

52 

On-line learning 
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 Exploit tracking results to describe appearance 

 

 

 

 

 Marginal pixel modeling: one intensity pdf per pixel 

 

 

 Joint modeling: some compact model (quantized, thin or sparse) 

 

 

 Update model 
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On-line descriptive learning 
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approximation 

reconst. error 

? 



 Three-fold mixture per pixel 

 [R]andom component: occlusion, unpredictable changes 

 [W]andering component: rapid changes 

 [S]table component: slow changes 

 On-line EM to update mixtures 

 Deterministic search for tracking 

 

 

 

 

 

Pixel-wise “RWS” model 

7/29/2013 

[Jepson et al. PAMI 25(10), 2003] 
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 Match to a catalogue of “exemplars” 

 

 

 PCA with mean      , basis            

 

 

 Sparse coding with dictionary of atoms 
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On-line joint model 
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 Constant time PCA update with new data, with learning  rate  ~ 0.02 

 “Robust” norm to account for background corruption 

 Tracking with particle filter 
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On-line subspace learning 
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[Ross et al. IJCV 2008] 



 Instead of learning appearance of object, learn how to discriminate it 

from the background: tracking-by-detection 

 Online supervised learning 
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On-line discriminative learning 
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[Grabner and Bischof CVPR 06] 



 Sub-image descriptor: 

 

 Online supervised learning 

 New positive example:  

 New negative examples: 

 Update classifier: 

 

 Next detection:   

 

 

 

 

 Problem: tracker inaccuracy ⇒ label noise ⇒  tracker drift 
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On-line supervised learning 

7/29/2013 

search window 

range window 



 Only initial examples labeled (‘prior’) 

 All other examples, unlabeled 
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On-line semi-supervised boosting 
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[Gragner et al. ECCV 08] 
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On-line semi-supervised boosting 
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[Gragner et al. ECCV 08] 



 Extend to tracking [Blascko and Lampert ECCV 08]  

 Closer to actual task: learn function                 such that 

 

 

 Kernelized structured output SVM:  

 

 

 

 

 Budgeting support vectors  
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STRUCK  [Hare et al. ICCV 11] 
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STRUCK 
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[Kalal et al., PAMI 2010] 

 Hybrid approach: short-term tracking and detection are distinct 

 Monitor both to 

 Output new estimated position (or declare loss) 

 Select new samples for detector update 
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Tracking-Learning-Detection 

7/29/2013 



 Leverage cutting-edge ML tools 

 sparse appearance modeling 

 discriminative learning 

 

 Exploitation of context  

 “supporters” and “distractors” 

 leveraging scene understanding 

 geometry 

 pixel-wise semantics 

 interaction between scene elements 

 Joint tracking/recognition (action, attributes, etc.) 
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Current trends 
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 Very high-dim tracking 

 Dense MOT 

 Highly articulated and/or deformable 

 Pixel-wise discrete/continuous variables  

 

 Online adaptation/learning 

 Caution: a double side sword 

 Complementary multiple cues: 

 Anchored parameter estimation 

 Co-training 
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Some bottlenecks and directions 
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Visual Tracker Benchmark (29 trackers, 50 recent sequences) ) [Wu et al. CVPR’13] 

http://cvlab.hanyang.ac.kr/wordpress/?page_id=14 

 

A new resource 
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Computer vision: a modern approach, Chapter 19, Forsyth and Ponce 

 

Object tracking: a survey, Yilmaz et al. 2006 

 http://vision.eecs.ucf.edu/papers/Object%20Tracking.pdf 

A review of visual tracking, Cannons, 2008 

 http://www.cse.yorku.ca/techreports/2008/CSE-2008-07.pdf 

Recent advances and trends in visual tracking: A review, Yang et al., 2011 
http://210.75.252.83/bitstream/344010/6218/1/110201.pdf 

 

Lucas-Kanade 20 years on: a unifying framework, Barker and Matthews, 2004 

 http://www.cs.cmu.edu/afs/cs/academic/class/15385-s12/www/lec_slides/Baker&Matthews.pdf 

A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, MS 

Arulampalam et al., 2002 

 http://www.dis.uniroma1.it/~visiope/Articoli/ParticleFilterTutorial.pdf 

On sequential Monte Carlo sampling methods for Bayesian filtering, Doucet et al. 2000 

 http://www-sigproc.eng.cam.ac.uk/~sjg/papers/99/statcomp_final.ps  

 

 

Reviews, tutorials 
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