Learning with Structured

Inputs and Outputs

Christoph Lampert
Institute of Science and Technology Austria
Vienna (Klosterneuburg), Austria

INRIA Summer School 2010

|

NIUY AUSTRIA

Institute of Science and Technology

Learning with Structured Inputs and Outputs

Overview...
@ 15:30-16:30 Intro + Conditional Random Fields

@ 16:30-16:40 — mini-break —
@ 16:40-17:30 Structured Support Vector Machines

Slides and References: http://www.christoph-lampert.org

"Normal" Machine Learning:

f: X —=R.

e inputs X can be any kind of objects
e output ¥ is a real number
» classification, regression, density estimation, ...

Structured Output Learning:
f:X—=).

e inputs X can be any kind of objects
e outputs y € Y are complex (structured) objects
» images, text, audio, folds of a protein

What is structured data?

Ad hoc definition: data that consists of several parts, and not only
the parts themselves contain information, but also the way in which
the parts belong together.

Jemand musste Josef K. verleumdet haben, denn ohne dass er etwas
Boses getan hatte, wurde er eines Morgens verhaftet. »Wie ein
Hund! « sagte er, es war, als sollte die Scham ihn Uberleben. Als
Gregor Samsa eines Morgens aus unruhigen Trdumen erwachte,
fand er sich in seinem Bett zu einem ungeheueren Ungeziefer
verwandelt. Und es war ihnen wie eine Bestdtigung ihrer neuen
Tréaume und guten Absichten, als am Ziele ihrer Fahrt die Tochter als
erste sich erhob und ihren jungen Kérper dehnte. »Es ist ein
eigentimlicher Apparat«, sagte der Offizier zu dem
Forschungsreisenden und tberblickte mit einem gewissermaben

Text

.H./.
g B

Documents/Hyper Text

Source wikipadia.org

What is structured output prediction?

Ad hoc definition: predicting structured outputs from input data

(in contrast to predicting just a single number, like in classification or regression)

@ Natural Language Processing:
» Automatic Translation (output: sentences)
» Sentence Parsing (output: parse trees)

@ Bioinformatics:

» Secondary Structure Prediction (output: bipartite graphs)
» Enzyme Function Prediction (output: path in a tree)

@ Speech Processing:
» Automatic Transcription (output: sentences)
» Text-to-Speech (output: audio signal)

@ Robotics:
» Planning (output: sequence of actions)

This lecture: Structured Prediction in Computer Vision

Computer Vision Example: Semantic Image Segmentation

1 horse
H [background

‘input:“imag1es; | output: segmentation masks
@ input space X = {images} = [0,255]> M~

@ output space) = {segmentation masks} = {0, 1}V
@ (structured output) prediction function: f: X —)

f(z) := argmin E(z, y)
yeY

@ energy function E(z, y) = X, w] @u(i, i) + Xy wy0p(yi:)

Images: [M. Everingham et al. "The PASCAL Visual Object Classes (VOC) challenge", 1JCV 2010]

Computer Vision Example: Human Pose Estimation

ol

input: image bédy model output: model fit
@ input space X = {images}
@ output space)V = {positions/angle of K body parts} = R3K.
@ prediction function: f: X — Y

f(z) := argmin E(z, y)

yeY

o energy E(z,y) = X, w] pre(i, i) + X Wy Ppose(Yis Uj)

Images: [Ferrari, Marin-Jimenez, Zisserman: "Progressive Search Space Reduction for Human Pose Estimation", CVPR 2008.]

Computer Vision Example: Point Matching
E

input: image pairs

S 4
" —X
7 y
output: mapping y : z; <> y(z;) b e —— v —

@ prediction function: f: X — Y

f(z) := argmax F(z, y)
yeY

@ scoring function F(z,y) =
Zz’ wjgpsim(%’a y(xz)) + Zi,j w;jrgogeom<xiv Zj, y(%), y(xj))

[J. McAuley et al.: "Robust Near-Isometric Matching via Structured Learning of Graphical Models", NIPS, 2008]

Computer Vision Example: Object Localization

output:

object position
input: (left, top
image right, bottom)

@ input space X = {images}
@ output space) = R* bounding box coordinates

@ scoring function F(z,y) = w'p(z,y) where ¢(z,y) = h(zl,) is
a feature vector for an image region, e.g. bag-of-visual-words.

@ prediction function: f: X — Y

f(z) := argmax F(z, y)
yey

. Blaschko, C. Lampert: "Learning to Localize Objects with Structured Output Regression", ECCV, 2008]

Computer Vision Examples: Summary

Image Segmentation

y = argmin E(z,y) E(, Zw (i, yi) + 2wy oY, 4y)
ye{0,1}N ij

Pose Estimation

yzargﬂg;j(nE(x, y) Bz, Zw (i, yi) + 2wy o(Yi, vy)
ye 1]

Point Matching

y = argmax F(z,y) F(x, Zw (i, yi) + D wy o(Yir o)

y€ell,

7]

Object Localization

y = argmax F(z, y)
yER4

F(z,y) = w' o(z,y)

Unified Setup
Predict structured output by maximization

y = argmax F(z, y)
yeY

of a compatiblity function

F(ajv y) - <’LU, 90("57 y))

that is linear in a parameter vector w.

A generic structured prediction problem
e X' arbitrary input domain
@ Y: structured output domain, decompose y = (1, - .., Yx)
@ Prediction function f : X —) by

f(z) = argmax F(z,7)
yey

@ Compatiblity function (or negative of "energy")

F(z,y) = (w, ¢(z,y))

k
=" w ¢i(yi,) unary terms
=1

k
+ Z w;jr%'j(yi, Yj, T) binary terms
7,j=1

+ ... higher order terms (sometimes)

Example: Sequence Prediction — Handwriting Recognition
e X = b-letter word images , x = (m1, ..., 15), ; € {0,1}300%%0
e Y = ASCll translation , y = (y1,...,y5), y; € {A,..., Z}.

@ feature functions has only unary terms
oz, y) = (er(z), ps(@,35)).
o F(z,y) = (wi,p1(z, y1)) + -+ + (w, 5(2, y5))

Q Output
@ Input

Advantage: computing y* = argmax, I'(z, y) is easy.
We can find each y; independently, check 5 - 26 = 130 values.

Problem: only local information, we can't correct errors.

Example: Sequence Prediction — Handwriting Recognition
o X = 5-letter word images , © = (1. .., 15), ; € {0, 1}200x80
e Y = ASCll translation , y = (y1,...,ys), y; € {A,..., Z}.

@ one global feature function

yth pos.
o(z,y) =<{(0,...,0, ®(x),0,...,0) if y € D dictionary,
(0,...,0, 0 ,0,...,0) otherwise.

QUEST Output
|
QVEST Input

Advantage: access to global information, e.g. from dictionary D.

Problem: argmax,(w, ¢(z,y)) has to check 26° = 11881376 values.
We need separate training data for each word.

Example: Sequence Prediction — Handwriting Recognition
o X = b-letter word images , x = (w1, ..., 15), 7; € {0,1}300%%0
e Y = ASCll translation , y = (y1,...,ys), y; € {A,..., Z}.

@ feature function with unary and pairwise terms

o(z,y) = (1, 2), ealv2,2), . 0505, 2),
1201, Y2)5 -+, 994,5(1/4;?/5))

0 0) /D @ T) Output

Input

Compromise: computing y* is still efficient (Viterbi best path)
Compromise: neighbor information allows correction of local errors.

Example: Sequence Prediction — Handwriting Recognition
° o(z,y) = (L1(y1,2), -, ©5(Ys, T)s P12(Y1, Y2)s - -+, Pa5(Ya, Y5)).-
Q W= (wl,,...,w5,w172,...,w475)

o F(z,y) = (w,¢(z,y)) =
Fi(m,p) + -4 Fs(s,95) + Fio(y, v2) + - Fas(yas s)-

Fieen | Q U VO E Fy Fy F3
Q 00 09 0.1 01 Q|18 Q|02 Q|03
U 0.1 0.1 04 06 Uj|o02 Ullil U |02
\"/ 00 01 0.2 05 V|01 V|12 V|01
E 03 05 05 1.0 E 04 E | 03 E |18

Every y €) corresponds to a path. argmax,,, is best path.

F(VUQwT) - Fl(V7 '1:1) + FIZ(V7U) + FQ(Ua xQ) + F23(U7 Q) + F3(Q7'CE3)
=01+014+114+014+03=1.7

Maximal per-letter scores. Total: 1.8 +0.14+1.24+0.5+1.8=5.4

Best (=Viterbi) path. Total: 1.840.9+ 1.1+ 0.6 + 1.8 = 6.2

Many popular models have unary and pairwise terms.

Yesterday's lecture: how to evaluate argmax, F'(z, y).

chain m m tree

@ loop-free graphs: Viterbi decoding / dynamic programming

grid E ; ; é% ; arbitrary graph

@ loopy graphs: approximate inference (e.g. loopy BP)

Today: how to learn a good function F(z,y) from training data.

Parameter Learning in Structured Models

@ Given: parametric model (family): F(z,y) = (w, o(z,y))
@ Given: prediction method: f(z) = argmax,cy, F(z, y)
@ Not given: parameter vector w (high-dimensional)
Supervised Training:
@ Given: example pairs {(z!,9'),...,(z",y")} C X x V.
typical inputs with "the right" outputs for them.
@ Task: determine "good" w

o

@ Task: determine "good" w

Probabilistic Training

of Structured Models
(Conditional Random Fields)

Probabilistic Models for Structured Prediction

Establish a one-to-one correspondence between
@ compatibility function F(z,y) and
@ conditional probability distribution p(y|z),
such that

argmax F(z,y) = argmax p(y|z)
yey yeY

= maximize the posterior probability = Bayes optimal decision

Gibbs Distribution

1
p(ylr) = meF(m’y) with Z(z) = Z PRACE)

yeY

F(z,y)
argmax p(y|z) = argmax ¢ = argmax e/ (®%) = argmax F(z,y)
yey ey Z(z) yey yey

v

Probabilistic Models for Structured Prediction

For learning, we make the dependence on w explicit:
F(z,y,w) = (w,¢(z,y))

Parametrized Gibbs Distribution — Loglinear Model

1
p(ylz, w) = 700) ef'@vw) with Z(z, w) yGZyeF(”“’

Probabilistic Models for Structured Prediction

Supervised training:
@ Given: i.i.d. example pairs D = {(z', y"),..., (z", y™)}.
@ Task: determine w.
@ Idea: Maximize the posterior probability p(w|D)

Use Bayes' rule to infer posterior distribution for w:

p(w|D) = p(Dlw)p(w) _ p((=',y"), .., (=" y")|w)p(w)

»(D) »(D)
ii.d. nop(a y fw) _ oy |x w)p(*|w)
<o) [17,00 5 =pw T

assuming z does not depend on w: p(z|w) = p(zx)

— p(w) ﬁ p(y'lz", w)

1 p(ytlat)

Posterior probability:

Prior Data Term (loglinear)

Typical Prior choice:

. _ 1 2
e Gaussian p(w) := const. - ¢ 22"l
» Gaussianity is often a good guess if you know nothing else
» easy to handle, analytically und numerically

Less common:
e Laplacian p(w) := const. - e~ vl
» if we expect sparsity in w
» but: properties of the optimization problem change

Learning w from D = Maximizing posterior probability for w

w* = argmax p(w|D) = argmin [— log p(w|D)}

weR4 weR4

—log p(w|D) = —log [p(w) 11 W}

i p(ylz?)
= —log p(w Zlogpylx w +Zlogpy|$)
_feF(ﬂ Lyt ,w) =t
indep. of w

2 n
— ||2w||2 Z {F(azz y' w) —log Z(z', w)} + const.
g 1

: |
= |2w||2 Z [w, p(a',y%)) —log 6<“”“0(“1’y)>} + c.
o -

yeY

=:L(w)

Commercial Break: Objective Functions

Why is everything an optimization problem?

Why all the formulas?

Why not simply teach algorithms?

Because...
@ we want to separate between:
» what is our ideal goal?
= objective function
» (how) do we achieve it?
= optimization method
@ defining a goal helps in
understanding the problem
@ mathematical formulation allows
re-using existing algorithms
(developed for different tasks)

*T TINK Nou SHOULD 8L MORE
EXPLIAT HEZE N STEP Two,

(Negative) (Regularized) Conditional Log-Likelihood (of D)

1 z - Z,
L(w) = 5 wl® = 3 [(w,o(a’, 7)) ~log 3 ee0)]

=1 yeY

Probabilistic parameter estimation or training means solving

w* = argmin £(w).
weRd

Same optimization problem as for multi-class logistic regression.

1 n
Liogreg(w) = 72”1””2 - Z <wy i, (")) —log Z (e
20

i=1 yey

with w = (wy, ..., wk) for K classes.

Negative Conditional Log-Likelihood for w € R*:

negative log likelihood ¢* =0.01

negative log likelihood o =0.10

%
2 2 %
%
: \
1 1
0 0
-1 =1
-3 -2 -1 0 1 2 3 5 -3 -2 -1 0 1 2 3 5
negative log likelihood o* =1.00 negative log likelihood o2 - 0o
\| 2
2.0
15
s
$
1.0 &
s
03 5 SISB V5T
&
ST ET W R
0.0 A SAAS
-0.5
-1.0
-15
-2
5 -3 -2 -1 0 1 2 3 4

\\

&
SRV N
$STESTE

w* = argmin £(w).
weRd

w € R? continuous (not discrete)

w € R* high-dimensional (often d > 1000) ®©

optimization has no side-constraints

L(w) differentiable — can apply gradient descent
L(w) convex! — g.d. will find global optimum

Steepest Descent Minimization — minimize £(w)

@ require: tolerance € > (

@ Wey 0

@ repeat
v+ =V L(weyr) descent direction
1 < argmin, cg L(Weur + 10) stepsize
Weyr $— Weur + NV update

o until ||v|| <e

@ return wg,,

Alternatives:
@ L-BFGS (second-order descent without explicit Hessian)
@ Conjugate Gradient

Summary |: Probabilistic Training (Conditional Random Fields)

Well-defined probabilistic setting.

p(y|z, w) log-linear in w € RY,

Training: maximize p(w|D) for data set D.
Differentiable, convex optimization,

Same structure as logistic regression.
= gradient descent will find global optimum.

For logistic regression: this is where the textbook ends. We're done.

For conditional random fields: the worst lies still ahead of us!

Problem: Computing V,£(wc,,) and evaluating L(we,, + nv):

Vi L(w) = 012"/1 - an {@(xi, v = > pyle’, w)e(s, y)}
=1 yey
L(w) = inH2 — an [(w, p(at, 5)) +log 3 eleon]

2
20 i=1 yey

@) typically is very (exponentially) large:
> N parts, each with label from a set V: |Y| = |Y|V,
binary image segmentation: || = 2640%480 ~ 1092475,

> ranking N images: |V| = N!, e.g. N = 1000: || ~ 10256,

Without structure in), we're lost.

vﬂ} ‘C(w> = 7221) - Z {90(3717 yl) - Eywp(y\mf,w)gp(x) y)}

o i—1

Computing the Gradient (naive): O(K"nd)

=log Z(z%,w)
1 n o -
L(w) = = [lw]> =3 [(w,e(a", y7)) + log 3 el)]
20 =1 yeY

Line Search (naive): O(K " nd) per evaluation of £

@ n: number of samples

@ d: dimension of feature space

@ M: number of output nodes =~ 10s to 1,000,000s

@ K: number of possible labels of each output nodes = 2 to 100s

How Does Structure in) Help?

Computing

Z(z,w) = Z elwe(z,y))

yeY

with ¢ and w decomposing over the factors

o(w.y) = (prlarue), . and w=(wp),
Z(Ia w) = Z 62F6F<MF"PF(5UF71/F)>
yey
— Z H elwrpr(zr,yr))
YEVFEF —wp(yp)

A lot of research goes into analyzing this expression.

Case |I: only unary factors
F = {{371 yl {J/’M yM}

Z = Z H Vr(yr)

yey FeF

yey =1

=2 2 2 W) Ya(yw)

Yy1€Y ey yy€eY

= > Ui(y) D Ualya) -+ > Yulym)

%ﬁy\lfl(yl)] : ze:y‘%(yz)]w{ XE:Y\PM(QM)}

Case I: O(KMnd) — O(MKnd)

Case IlI: chain/tree with
unary and pairwise factors

F =) (b (o, G)

2= T vrr) = ¥ T 0 sz i)

yeY FeF yey i=1
= > U Y U0y - > Uy Uy Y, Uy Py
yney ey ym—1€Y ymM€eY
¢
O Oo0O0dao oooOoa oood O
. O gddd googad Oooogaod O
- O gdodd gdoogad Oooogd O
O Ooddd gdoogad [R O

Case IlI: O(MKQTLd) independent was O(MKnd), naive O(KM nd)

Message Passing in Trees

Rephrase matrix multiplication as sending
messages from node to node:
Belief Propagation (BP)

Can also computate expectations: E,p(yjz,uw)@ (%, ¥)-

Message Passing in Loopy Graphs

For loopy graph, send the same messages and
iterate: Loopy Belief Propagation (LBP)

Results only in approximation to Z(z,w), Eyp(y|z,w) P (T ¥).
No converge guarantee, but often used in practice.

@ Carsten’s lecture yesterday (Wednesday)

More: @ Pawan Kumar's thesis "Combinatorial and Convex Optimization for Probabilistic
Models in Computer Vision" http://ai.stanford.edu/~pawan/kumar-thesis.pdf

http://ai.stanford.edu/~pawan/kumar-thesis.pdf

1 - i i
vw £(w) = ﬁw - Z {90(37 Y) - Epr(y\xi,w)SO(x) y)}
i=1
Computing the Gradient: O1#FY47d), O(MK?*nd) (if BP is possible):

1 " o
L(w) = 55llwl® =3 [(w,o(a’,y)) +log 3 el)]

2
2 =1 yeY

Line Search: O#F4nd), O(MK?*nd) per evaluation of £

@ n: number of samples &~ 1,000s to 1,000,000s
@ d: dimension of feature space
@ M: number of output nodes

@ K: number of possible labels of each output nodes

What, if our training set D is too large (e.g. millions of examples)?

Switch to Simpler Classifier

@ Train independent per-node classifiers

We lose all label dependences ®. Still slow ®.

Subsampling
@ Create random subset D' C D
@ Perform gradient descent to maximize p(w|D’)

lgnores all information in D\ D'. ®

Parallelize
@ Train several smaller models on different computers.
@ Merge the models.

Follows "multi-core" trend £). Unclear how to merge models ®
Doesn't reduce computation, just distributes it ®.

What, if our training set D is too large (e.g. millions of examples)?

Stochastic Gradient Descent (SGD)

@ Keep maximizing p(w|D).
@ In each gradient descent step:

Create random subset D' C D, < often just 1-3 elements!
Follow approximate gradient

Vo £(w) = —w— Y [p(a" 4') = Eyup(ylei (2’ 9)]
(zf,y")eD’

@ Line search no longer possible. Extra parameter: stepsize 1
@ SGD converges to argmin,, p(w|D)! (with 1 chosen right)
@ SGD needs more iterations, but each one is much faster

more: see L. Bottou, O. Bousquet: "The Tradeoffs of Large Scale Learning", NIPS 2008.
also: http://leon.bottou.org/research/largescale

http://leon.bottou.org/research/largescale

1 - i i
vw £(w) = ;w - Z {QO(.’I? Y) - Epr(y\xi,w)SO(x) y)}
i=1
Computing the Gradient: O1FY47d), O(MK?*nd) (if BP is possible):

1 " o
L(w) = 55llwl® =3 [(w,o(a’,y)) +log 3 el)]

2
2 =1 yeY

Line Search: O#F4nd), O(MK?*nd) per evaluation of £

@ n: number of samples
@ d: dimension of feature space: ~ ¢;; 1-10s, ¢;: 100s to 10000s
@ M: number of output nodes

@ K: number of possible labels of each output nodes

Typical feature functions in image segmentation:

@ ¢;(y;, z) € R¥0%0: Jocal image features, e.g. bag-of-words
— {wy, pi(y;, x)): local classifier (like logistic-regression)

® . i(yi,y) = [yi = y)] € R': test for same label
— (wy, vi(yi, y5)): penalizer for label changes (if w; > 0)

@ combined: argmax, p(y|z) is smoothed version of local cues

original local classification local + smoothness

Typical feature functions in handwriting recognition:

©i(y:, ©) € R¥109: image representation (pixels, gradients)
— {wy, pi(y;, x)): local classifier if z; is letter y;

® vy yj) = ey ® e, € R0 letter/letter indicator
— (wy, p4(ys, y;)): encourage/suppress letter combinations

@ combined: argmax, p(y|z) is "corrected" version of local cues

i E i iou"pm (O—W)—E)—)>—1) output
@ Input @ m @ 6 0 Input

local classification local + "correction"

Typical feature functions in pose estimation:

@ ¢;(y;, z) € R¥0%0: Jocal image representation, e.g. HoG
— {wy, pi(y;, x)): local confidence map

o . i(yi, y;) = good_fit(y;, y;) € R': test for geometric fit
— (wy, v (ys, y;)): penalizer for unrealistic poses

e together: argmax, p(y|r) is sanitized version of local cues

original local classification local + geometry

Images: [Ferrari, Marin-Jimenez, Zisserman: "Progressive Search Space Reduction for Human Pose Estimation", CVPR 2008.]

Typical feature functions for CRFs in Computer Vision:

@ ;(y;, x): local representation, high-dimensional
— {wy, 9i(y;, x)): local classifier

@ ©; i(yi, y;): prior knowledge, low-dimensional
— (wy, pii(yi, y;)): penalize outliers

@ learning adjusts parameters:

» unary w;: learn local classifiers and their importance
> pairwise wy: learn importance of smoothing/penalization

@ argmax, p(y|z) is cleaned up version of local prediction

Idea: split learning of unary potentials into two parts:
@ local classifiers,
@ their importance.

Two-Stage Training
@ pre-train f¥(z) = log p(y;|x)
o use p;(y;, z) := f(z) € RX (low-dimensional)
o keep ¢;i(yi, y;) are before
@ perform CRF learning with ¢; and ¢;;

Advantage:
@ CRF feature space much lower dimensional — faster training
e fY(x) can be stronger classifiers, e.g. non-linear SVMs
Disadvantage:
o if local classifiers are really bad, CRF training cannot fix that.

Summary Il — Numeric Training

(All?) Current CRF training methods rely on gradient descent.

Vo llw) = 5= 2 e o) - ISP«)|

The faster we can do it, the better (more realistic) models we can use.

A lot of research on speeding up CRF training:

problem "solution"’ method(s)
| V| too large exploit structure (loopy) belief propagation
smart sampling contrastive divergence
n too large mini-batches stochastic gradient descent
- discriminative @;nary two-stage training

Conditional Random Fields Summary

CRFs model conditional probability distribution p(y|z) = % elw#(®v)),
e z € X is arbitrary input

» we need a feature function p: X x Y — R%,

» we don't need to know/estimate p(z)!
@ y € Y is (almost arbitrary) output

» we need structure in) to make training/inference feasible

> e.g. graph labeling: local properties plus neighborhood relations
e w € R? is parameter vector

» CRF training is solving w = argmax,, p(w|D) for training set D.

e after learning, we can predict: f(z) := argmax, p(y|z).

Many many many more details in Machine Learning literature, e.g.:

e [M. Wainwright, M. Jordan: "Graphical Models, Exponential Families, and Variational
Inference", now publishers, 2008]. Free PDF at http://www.nowpublishers.com

o [D. Koller, N. Friedman: "Probabilistic Graphical Models", MIT Press, 2010]
60 EUR (i.e. less than 5 cents per page)

http://www.nowpublishers.com

Maximum Margin Training

of Structured Models
(Structure Output SVMs)

Example: Object Localization

Learn a localization function:

f: X =Y with X ={images}, Y ={bounding boxes}.

Compatibility function:
F:XxY—=R with F(z,y) = (w,p(z,v))
with ¢(z,y), e.g., the BoW histogram of the region y in z.

f(z) = argmax F(z, y)
yeY

Learn a localization function:

f(z) = argmax F(z,y) with F(z,y) = (w, (2, 7))
yey
©(z,y) = BoW histogram of region y = [left,top,right,bottom| in z.

left top

image

right bottom

Pyl w) = Zexp ({w o)) with 2= 3 exp ((w, o(r,4')

y' ey

We can't train probabilistically: ¢ doesn’'t decompose, Z too hard.
We can do MAP prediction: sliding window or branch-and-bound.

Can we learn structured prediction functions without "Z"?7

Reminder: general form of regularized learning

Find w for decision function f = (w, ¢(z, y)) by

min AP+ gjayﬂf(xf))

weRd

Regularization + Error on data

Probabilistic Training: logistic loss

y', f(z") :=log > exp ((w, oz, 1)) — (w, (2, y)))

yey

Maximum-Margin Training: Hinge-loss

Uy’ f(2')) i= max {0, ma A(y',y) + (w, 9",) = (w, o',)

v

A(y,y') > 0 with A(y, y) = 0 is loss function between outputs.

Structured Output Support Vector Machine

Conditional Random Fields:

[wl®

weRd 202

+ log Z exp ((w, QO(xi, y)) — (w, go(xi, yl)>>

yey

Unconstrained optimization, convex, differentiable objective.

Structured Output Support Vector Machine:

n ol + 5 [ma Al o) + (w0l 9)) — (e, y0)
min —jw — max w X — (W X
min o o 2 [ALY co(z'y celat)]
where []+ := max{0, t}.

Unconstrained optimization, convex, non-differentiable objective.

S-SVM Objective Function for w € R?:

S-SVM objective C'=0.01 S-SVM objective C'=0.10

Structured Output SVM (equivalent formulation):

_ 1,y Cn .,
min P+ 3

d
weR ,feRi

subject to, for i =1,...,n,

max |A(y'y) + (w, ¢(a',y)) = (w, (s’ y)) | < €

n non-linear contraints, convex, differentiable objective.

Structured Output SVM (also equivalent formulation):

. 1L, oy C&n
min - llul 4 e

weRd,geRi
subject to, for i =1,...,n,
Ay’ y) + (w0, y)) — (w,p(a’, ") <&, forallyed

|V|n linear constraints, convex, differentiable objective.

Example: A "True" Multiclass SVM

o Y={12... K}, Alyy)= {1 fory 7 v,
0 otherwise.
o p(o.9) = (I = 112G, [y =210(), ... [y = KI0(x))
= ®(z)e, with e,=y-th unit vector
Solve:

:]‘ 2 C = 7
min o] +g;§
subject to, for i =1,...,n,

(w, o', y")) — (w, (', y)) >1—=¢ forall ye Y\ {y'}.

Classification: MAP f(z) = argmax (w, p(z, y))

yeY

Crammer-Singer Multiclass SVM

Hierarchical Multiclass Classification

|

|cat]|dog] |car]||bus]|

Loss function can reflect hierarchy:

1
Ay, y) == §(distance in tree)
A(cat,cat) =0, A(cat,dog) =1, A(cat,bus)=2, etc.

Solve:
1 s O
J— w JR—
min o flwl|” + n;&
subject to, for i =1,...,n,

(w, o', y")) — (w, o', y)) > A(y',y) =& forall ye Y\ {y'}.

Numeric Solution: Solving an S-SVM like a CRF.

How to solve?

1 2, OF i i i,
min, Slhull? + 3 [ma A) + (ol) — (w0l)]

with [t]4 := max{0, t}.

Unconstrained, convex, non-differentiable:
@ unconstrained ©
@ convex ®

@ non-differentiable ® — we can't use gradient descent directly.

Idea: use sub-gradient descent.

Sub-Gradients

Definition: Let f : R — R be a convex function. A vector v € R?
is called a sub-gradient of [at wy, if

f(w) > f(wp) + (v, w—wp) for all w.

Computing a subgradient:
min gl + 5 3 (w)
with ¢*(w) = max{0, max, ¢} (w)}, and
Co(w) = Ay, y) + (w, (2", y)) — (w, (2", y))

Z(w)A

s

W

Subgradient of ¢’ at wy: find maximal (active) y, use v = Vi (up).

Subgradient Descent S-SVM Training

input training pairs {(z', y'),..., (2", y")} C X x Y,

input feature map ¢(z,y), loss function A(y,y’), regularizer C,
input number of iterations T, stepsizes n; for t =1,..., T

1. w < 6

2: for t=1,..., T do
3: fori=1,...,ndo
4 @<_ argmax'yey A(yz7 Z/) + <w7 (’0(3}'1’ Z/)>
5 (R Qo(xl7 @) — Qo(xl7 yz)

6: end for

nowew—n(w—£5v)

8: end for

output prediction function f(z) = argmax, .y (w, (7, y)).

Obs: each update of w needs 1 MAP-like prediction per example.

We can use the same tricks as for CRFs, e.g. stochastic updates:

Stochastic Subgradient Descent S-SVM Training

input training pairs {(z', y'),..., (2", y")} C X x Y,

input feature map ¢(z,y), loss function A(y,y’), regularizer C,
input number of iterations T, stepsizes n; for t =1,..., T

10w 6

2: fort=1,..., T do

3. (2%, y") < randomly chosen training example pair
4§ < argmax,cy Ay, y) + (w, o(2", y))

5 (A @(xzv @) o 90<IZ'7 yl>

6: w< w—n(w— Cv')

7: end for

output prediction function f(z) = argmax, ¢y, (w, p(7,y)).

Obs: each update of w needs only 1 MAP-like prediction
(but we'll need more iterations until convergence)

Numeric Solution: Solving an S-SVM like a linear SVM.

Other, equivalent, S-SVM formulation was

| C&
min_ ol + ~ 3¢
=1

weRd EERT
subject to, for i =1,...n

(w, (2", y") —(w, (2", y)) = Ay, y) — &, forallye Y\ {y'}.
With feature vectors dp(z’, y', y) := @(z%, y*) — (2, y), this is
2 ¢

subject to, for i = 1,...n, for all y € Y\ {¢*},

(w,0p(z", 9", y)) > Ay',y) — €

min || w||2
weR?EERY

:\Q

Solve

O
minul® + Y€ (@P)
=1

weR?ECRY
subject to, for i =1,...n, forall y € Y\ {y'},

(w,dp(z’, y", y)) = Ay’ y) — &

This has the same structure as an ordinary SVM!
@ quadratic objective ®

@ linear constraints ®

Question: Can't we use a ordinary QP solver to solve this?

Answer: Almost! We could, if there weren't n(|))| — 1) constraints.
@ E.g. 100 binary 16 x 16 images: 10™ constraints ®

Solution: working set training

@ It's enough if we enforce the active constraints.
The others will be fulfilled automatically.

@ We don't know which ones are active for the optimal solution.

@ Butit's ||ke|y to be onIy a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:
@ Start with working set S = (no contraints)
@ Repeat until convergence:

» Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set

* if no: we found the optimal solution, terminate.
* if yes: add most violated constraints to S, iterate.

Good practical performance and theoretic guarantees:

@ polynomial time convergence e-close to the global optimum

[Tsochantaridis et al. "Large Margin Methods for Structured and Interdependent Output Variables", JMLR, 2005.]

Working Set S-SVM Training

input training pairs {(z', y%),..., (z", y")} C X x),
input feature map p(x, y), loss function A(y, y'), regularizer C'

1. S+ 0
2: repeat
(w, §) < solution to QP only with constraints from S
for i=1,... ,ndo

§ < argmax,y, Ay, y) + (w, o(z, y))

if J# y' then

§ < Su{(',)}

end if
9: end for
10: until S doesn't change anymore.

@

CONE OO

output prediction function f(z) = argmax, .y (w, p(,y)).

Obs: each update of w needs 1 MAP-like prediction per example.
(but we solve globally for w, not locally)

Specialized modifications are possible: In object localization solving
~argmax (, (w)
’L:1,...,7L, yey

can be done much faster than by exhaustive evaluation of

argmax,cy (y(w),. .. argmax, (7 (w).

Single Element Working Set S-SVM Training
input ...
1. S« 0
2: repeat
30 (w, &) < solution to QP only with constraints from S
4 (3, 9) < argmax; , A(y', y) + (w, o(a", y))
5. if §# 3y then
6: S+ Su{(,9)}
7. end if
8: until S doesn't change anymore.

Obs: each update of w needs only 1 MAP-like prediction.

"One-Slack" Structured Output SVM:
(equivalent to ordinary S-SVM by & = L 37, ¢7)

il e
subject to

> A9+ (.l = (.t)] <
subject to, for all (§%,...,9") €Y x -+ x Y,

> AW) + (.l) - ola) <

|V|™ linear constraints, convex, differentiable objective.

We have blown up the constraint set even further:
@ 100 binary 16 x 16 images: 10'"" constraints (instead of 107).

Working Set One-Slack S-SVM Training

input training pairs {(z', y%),..., (z", y")} C X x),
input feature map p(z, y), loss function A(y, y'), regularizer C'

1. S« 10

2: repeat

30 (w, &) < solution to QP only with constraints from S
. fori=l,... ndo

4

5 §* argmax,cy A(y", y) + (w, o(2*, y))
6: end for

7 S%SU{<(x17"'7xn)7<@17""@n>)}

8:

until S doesn’t change anymore.

output prediction function f(r) = argmax, .y (w, ¢(z, y)).

Often faster convergence:
We add one strong constraint per iteration instead of n weak ones.

[Joachims, Finley, Yu: "Cutting-Plane Training of Structural SVMs", Machine Learning, 2009]

Training Times [ETTERISISNN v-r<-s N

Multi-C lass HMM CFG
1e+07 — —r 1e+07 — —r 1e+06 ~ —r
A
A
1e+06 | * < 1e+06 1 100000
r r‘
.’. P ¥
100000 .n” E 100000 ¢ 1 10000 F
wn 7 w s w
=l ! ’ © ' o
c c / c
S S S
8 10000 | ; $ 10000 | ~ 8 1000 |
w . w . w
=} > o >
o o . o
o (3] o »
1000 | E 1000 F 1 100 F v
& p
Ve 1 s)
100 F n-slack ~a- | 100 E n-slack —a- | 10 F / Eh-slack -a-
1-slack --= 1-slack - /7 1-slack - m-
1-slack (cache) & 1-slack (cache) —&- 1-skack (cache)
O(x) - Ofx) — a O(x)
10 10 1
1000 10000 100000 1e+06 100 1000 10000 100000 10 100 1000 10000
Number of Training Examples Number of Training Examples Number of Training Examples

Observation 1: One-slack training is usually faster than n-slack.
Observation 2: Training structured models is nevertheless slow.

Figure: [Joachims, Finley, Yu: "Cutting-Plane Training of Structural SVMs", Machine Learning, 2009]

Numeric Solution: Solving an S-SVM like a non-linear SVM.

Dual S-SVM problem

ALl Z O‘WA(y v) 9 Zazyazy <590(37 y', y), 0p(z 7?/il7?//)>

aeRY =1 URTASNY
yey i,i'=1,..,n
subject to, for i =1,...,n,

> ayy < o

yeY

Like ordinary SVMs, we can dualize the S-SVMs optimization:

@ min becomes max,
@ original (primal) variables w, ¢ disappear,
@ we get one dual variable o, for each primal constraint.

n linear contraints, convex, differentiable objective, n|)| variables.

Data appears only inside inner products: kernelize
@ Define joint kernel function £ : (X x V) x (X xY) — R

k((z,y), (@, 9) = (e(z,y), 02, ¥)).
@ & measure similarity between two (input,output)-pairs.

@ We can express the optimization in terms of k:

0z, y' y), sz’ y",)>

:<s0(y) (fv
<

Kernelized S-SVM problem:

max Z aly Z iy ity Kiit gy
OCERHD}‘ Y,y Ey
yE)/ i,i'=1,...,n
subject to, for i =1,...,n,
Z Qiy < —
yeY

@ too many variables: train with working set of «;,.

Kernelized prediction function:

f(z) = argmax Z gy k((2", y°), (2, 9))

yey iy’
Be careful in kernel design:

Evaluating f can easily become very slow / completely infeasible.

What do "joint kernel functions" look like?

E((z,y), () = (e(z, y), (',).
Graphical Model: ¢ decomposes into components per factor:

o v(z,y) = (¢s(ay, ?Jf))fef

Kernel k& decomposes into sum over factors:

H((,9)s (@ 9)) = ((ortar), (er(ah),)

= fZ;(er(xr, yp)s o (T 4p))

= > ke((ar,99), (27, 9p))

feFr

We can define kernels for each factor (e.g. nonlinear).

Example: figure-ground segmentation with grid structure

= horse
[background

Typical kernels: arbirary in z, linear (or at least simple) w.r.t. y:
@ Unary factors:

kp((x7 yp)a (l’l, y;/)) = k('TN(p)) x;\/(p))[[yp - y;)]]

with % image kernel on local neighborhood N(p), e.g. x? or
histogram intersection

@ Pairwise factors:

Fpa ((Yp» Ya)> (Y ¥p) = [wp = ¥,] [Yq =]

More powerful than all-linear, and MAP prediction still possible.

Example: object localization

left top

image

right bottom

Only one factor that includes all z and y:

E((z,9), (2, 4)) = Kimage([y, 2'l)
With Kjmage image kernel and z|, is image region within box y.
MAP prediction is just object localization with kjpmge-SVM.

f(z) = argmax Z iy Kimage(2']yr, 2])
yeY Ly

Summary | — S-SVM Learning

Task: parameter learning

@ given training set {(z',y'),..., (z", y")} C X x Y, learn
parameters w for prediction function

F(z,y) = (w, (2, y)).
e predict f: X — YV by f(z) = argmax ¢y, F(z, y) (= MAP)

Solution from maximum-margin principle:

@ For each example, correct output must be better than all others:
" F(2h oyt > Ay y) + F(aty) forallye Y\ {y'}. 7

@ convex optimization problem (similar to multiclass SVM)
@ many equivalent formulations — different training algorithms
@ training calls MAP repeatedly, no probabilistic inference.

For what problems can we learn solution?

@ we need training data,
@ we need to be able to perform MAP/MAP-like prediction.

e.g. image
thresholding

difficulty
'

horrendously
difficult

good manual interesting & realistic
solutions

trivial / boring

For many interesting problems, we cannot do exact MAP prediction.

The Need for Approximate Inference

@ Image segmentation on pixel grid:

» two labels and positive pairwise weights: exact MAP doable
» more than two labels: MAP generally NP-hard

@ Stereo reconstruction (grid) #labels = #depth levels:

» convex penalization of disparities: exact MAP doable
» non-convex (truncated) penalization: NP-hard

@ Human Pose estimation

» limbs independent given torso: exact MAP doable
» limbs interact with each other: MAP NP-hard

Approximate inference §j ~ argmax,y, F'(7, y):
@ has been used for decades, e.g. for
» classical combinatorial problems: traveling salesman, knapsack
» energy minimization: Markov/Conditional Random Fields
@ often yield good (=almost perfect) solutions y
@ can have guarantees F(z,y*) < F(x,9) < (1 +€)F(z, y*)
@ typically much faster than exact inference

Can't we use that for S-SVM training? lterating it is problematic!

@ In each S-SVM training iteration

> we solve y* = argmax,[A(y", y) + F(z', y)],

» we use y* to update w,

» we stop, when there are no more violated constraints / updates.
o With § ~ argmax, [A(y’,y) + F(z', y)]

» errors can accumulate,

» we might stop too early.

Training S-SVMs with approximate MAP is active research question.

Summary — Learning for Structured Prediction
Task: Learn parameter w for a function f : X —)

f(z) = argmax (w, o(z, y))
yey

Regularized risk minimization framework:
@ loss function:

logistic loss — conditional random fields (CRF)
Hinge loss — structured support vector machine (S-SVM)

@ regularization:
L? norm of w < Gaussian prior

Neither guarantees better prediction accuracy than the other.

see e.g. [Nowozin et al., ECCV 2010]
Difference is in numeric optimization:

@ Use CRFs if you can do probabilistic inference.
@ Use S-SVMs if you can do loss-augmented MAP prediction.

Open Research in Structured Learning
@ Faster training

CRFs need many runs of probablistic inference,
SSVMs need many runs of MAP-like predictions.

@ Reduce amount of training data necessary
semi-supervised learning? transfer learning?

@ Understand competing training methods
when to use probabilistic training, when maximum margin?

@ Understand S-SVM with approximate inference

very often, exactly solving argmax, F(z, y) is infeasible.
can we guarantee convergence even with approximate inference?

Vacancies at |.S.T. Austria, Vienna

— PhD at I.S.T. Graduate School
@ 1(2) + 3 yr PhD program
@ full scholarship

o flexible starting dates

v.‘ nrr
U}””p ::;nnnzirr[EhHE
=L

— PostDoc in my group
b @ computer vision

» object/attribute prediction.
@ machine learning

» structured output learning.
@ curiosity driven basic research

» no project deadlines,
» no mandatory teaching, ...

— Professor / Assistant Professor

More info: www.ist.ac.at — Visiting Scientist
or chl@ist.ac.at. — Internships

	Title
	Overview
	Learning Structured Outputs
	Probabilistic Training
	Maximum Margin Training

