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Abstract. We consider the problem of revocation of identity in group
signatures. Group signatures are a very useful primitive in cryptography,
allowing a member of a group to sign messages anonymously on behalf
of the group. Such signatures must be anonymous and unlinkable, but a
group authority must be able to open them in case of dispute. Many con-
structions have been proposed, some of them are quite efficient. However,
a recurrent problem remains concerning revocation of group members.
When misusing anonymity, a cheating member must be revoked by the
authority, making him unable to sign in the future, but without sacrifying
the security of past group signatures. No satisfactory solution has been
given to completely solve this problem. In this paper, we provide the first
solution to achieve such action for the Camenish-Stadler [6] scheme. Our
solution is efficient provided the number of revoked members remains
small.

1 Introduction

1.1 Overview of group signatures

Digital signatures are becoming a fact of life. They are used in more and more
products and protocols and one can find a large amount of literature dealing
with their applications, variants and security [12,1,2]. Group signatures were
first introduced in 1991 by Chaum and Van Heyst [8]. This recent concept is
linked (at least originally) with applications to electronic cash. It tries to combine
security (no framing, no cheating) and privacy (anonymity, unlinkability). These
two constraints have recently motivated much work and many publications, to
make such protocols more realistic and efficient.

A digital group signature scheme deals with a group, possibly a dynamic one,
whose users are called players (or simply members) and most of the time a group
center (also called group leader), who is the authority with ability to “open” a
signature in case of later dispute, and to reveal the identity of the actual signer.
The underlying group structure is said to be dynamic if the number of users can
increase by registering and adding new members.

1.2 Previous work

The concept of group signatures was introduced in 1991 in [8]. That paper pro-
posed four different group signature schemes. The first one provided uncondi-
tional anonymity, and the others provided computational anonymity only. How-
ever, adding new members was not always possible, and in some schemes, the



leader needed to contact group members in order to open a group signature. See
[8] and [13] for a comparison of these schemes.

At Eurocrypt’94, Chen and Pedersen proposed two new schemes, based on
undeniable signatures [9]. They used proofs of knowledge of discrete logarithm
to build group signatures: proving the knowledge of a discrete logarithm within
a collection, without revealing which one is known, corresponds to the require-
ments of a group signature: proving membership without revealing individual’s
identity.

Unfortunately, all the above schemes were relatively inefficient due to a
growth of the signature size linear with respect to the number of group members.
A solution has been proposed by Camenish and Stadler in 1997 [6]. Their scheme
provides a constant-size signature a well as a constant-size group public key. The
tools they used to build such a scheme are an ordinary digital signature scheme,
a probabilistic semantically secure encryption scheme and a one-way function.
We recall the description and the functioning on this scheme in section 3.

1.3 Functioning and Security

We now give a more formal definition of a group signature scheme, as well as

the related security requirements.

A group signature scheme allows members to sign on behalf of the group.
That is, any user (not necessarily a member) should be able to verify that the
message has been signed by an authorized member of the group (i.e. a registered
member). However, the verifier should learn no information on which member
actually signed the message. Moreover, the signatures must be unlinkable, that
is, deciding whether two different signatures have been produced by the same
person must be (computationaly) infeasible. In case of dispute, the verifier can
interact with the group leader to get the real identity of the actual signer.

More formally, a group signature scheme consists of the following algorithms:
e SETUP: a probabilistic algorithm initializing public parameters and providing

a secret key to the group leader.

JOIN: an interactive protocol between the group center and a user becoming
a group member. This protocol provides a secret key and a membership key
to the new member, and registers his identity.

SIGN: a probabilistic algorithm, computing from a message m and a member’s
secrets s a group signature o.

e VERIF: an algorithm, run by any user, which checks that a signature o has

been produced by an authorized signer.

e OPEN: an algorithm allowing the group leader to obtain the identity of the

member who actually signed a given message.

These algorithms are considered in the case of dynamic group. Otherwise,
there is no JOIN algorithm, and each member receives his keys in the SETUP
algorithm. Note that there exist many variants of group signatures (see [14,13,
15,5, 3]). Depending on what additional properties are proposed, we could find
corresponding variants in the algorithms.



The following conditions must hold for a group signature scheme:

e Correctness: Any signature generated by a registered group member is valid.

o Unforgeability: Only registered members are able to sign messages.

e Anonymity (or untraceability): Identifying the signer of a given signature is
computationally hard, except for the group manager.

e Unlinkability: Deciding whether two signatures were generated by the same
member is computationally hard.

e Traceability: Any fairly-generated signature can be opened by the group
leader in order to identify the actual signer.

e Exculpability (or unforgeability of tracing, or no framing): No coalition of
members nor the group leader can sign on behalf of other members, which
means that they cannot compute a signature that can be associated to an-
other group member.

¢ Coalition-resistance (or unavoidable traceability): No coalition of members
can prevent a group signature from being opened. A scheme offering provable
security against coalition resistance was proposed in [1]

One critical point in group signatures is the efficiency of the algorithms. In
particular, one wants to avoid the group public key or the signature size to be
linear in the number of group members. This is especially true in very large
group as well as very dynamic ones. Efficiency of SIGN and VERIF algorithms is
also important.

1.4 Motivation of our work

Revocation in group signatures is a very delicate problem. In a paper by Ate-
niese and Tsudik [3], some critical points are put forth: coalition-resistance and
member deletion. In this paper, we concentrate on the second one.

In some cases, it can be useful to delete members from a group. This can be
necessary for many reasons (cheating from the said member, e.g.), and one does
not want to change the group public key as well. Revocation of a member should
prevent him from generating valid group signatures in the future. At the same
time, one generally wants to preserve his past signatures, that is, keeping them
indistinguishable from others signatures, unlinkable, openable, etc. The difficulty
encountered can be stated as follows. On the one hand, in order to preserve
anonymity, group signatures must not need to be opened when checking the
legitimity of the signer: verifying that the actual signer is not a revoked member
must be feasible by anybody, in a public manner and without the help of the
group leader. The verifier must learn nothing about the signer but the fact he
is not a deleted member. On the other hand, in order to preserve anonymity
and unlinkability of past signatures, we require that no private information
(who could help somebody to link signatures) concerning revoked members be
published. Of course, the guarantee of opening signatures in case of conflict
remains.

Our paper is organized as follows. In section 2, we describe the basic tools
used in the Camenish/Stadler scheme, this later being exposed in section 3.



In section 4, we explain our technique to achieve revocation of members in that
scheme. We propose a solution efficient if the number of deleted member is small,
the size of the group signature growing linearly with that number. Finally, we
discuss the security of the scheme and conclude.

2 Signatures of knowledge

Many group signature schemes use the notion of signature of knowledge. This
cryptographic tool allows one party to prove the knowledge of a secret value,
without revealing any information on it. Such tools are zero-knowledge proofs of
knowledge and minimum-disclosure proofs. The notion of signature of knowledge
is based (originally) on the Schnorr digital signature scheme [16]. We call them
signature of knowledge instead of proofs of knowledge to avoid confusion with
zero-knowledge proofs while reminding the fact they are based on signature
schemes (being message-dependent). Let us review the most important signa-
tures of knowledge one can find in the area of group signatures.

In the following sections, we will denote by Greek letters the values whose
knowledge is proven and by Latin or any other symbol the elements that are
publicly known. We consider a cyclic group G, of order n (where n is an RSA
modulus) and a random element g generating G. We consider also a hash function
H from {0,1}* to {0,1}* (k being typically equal to 160). All security notions
are considered in the Random Oracle model [4].

2.1 Knowledge of a discrete logarithm

Given an element y € G, a signature of knowledge of the discrete logarithm of y
to the base g on the message m is a pair (c,s) € {0,1}* x Z satisfying:

¢ =H(mllyllgllg®y®)
This signature is denoted by:
SKLOG[a :y = g%|(m)

Suh a pair can be computed by a prover who knows the secret value  (such
that y = ¢g* holds) as follows: first choose a random value r € Z,, and compute
c as ¢ := H(ml|lyllg]lg"). Knowing z, it is possible to compute s := r — zc.

2.2 Knowledge of a representation

Consider another element h € G whose discrete logarithm to the base g is
unknown. Given an element y € G, a signature of knowledge of a representation
of y to the bases g and h on the message m is a tuple (c, s1,52) € {0,1}* x Z*2
satisfying:

¢ = H(mllyllgllRllg® h**y©)



Such a tuple is denoted by:
SKREP]a,:y = g*hP](m)

A prover who knows a representation (z1,z2) of y to the bases g and h can
compute an accepting tuple as follows: at first, choose two random numbers
r; € Lp, i=1,2 and compute ¢ = H(m|y||g||h|lg"*h">). Then, the values s;
can be constructed as s; = r; — x;¢, 4=1,2. This construction can easily be
extended to more than one element and two bases [6].

2.3 Knowledge of roots of representation

Such signatures are used to prove that one knows the e-th root of a part of a
representation. That is, given an element y € G, one wants to prove knowledge
of a pair (a, 3) such that the equation y = h*g®" holds. Such proofs have been
proposed by Camenish and Stadler in [6]. They can be used to improve efficiency
of signature of knowledge for double discrete logarithm and roots of discrete
logarithms, these proofs being bit-to-bit process and then quite inefficient. See [6]
for further details.

Given an element y € G and an small integer e, a signature of knowl-
edge of the e-th root of the g-part of the representation of y to the bases g
and h on the message m, consists in an (e —1)-tuple (y1,...,%._1) € G¢!
and a signature of knowledge of representation of (y,...,%.—1,¥) to the bases
{h,g},{h,y1},...,{h,ye—1} respectively. More precisely, the latter signature of
knowledge is:

SKREP[y1,...,Ye,0 :y1 = h“g‘; AN Y= h”y‘ls A
A Yeor =By, Ay =hyd ](m)

where A is a conjunction’s symbol. This means that all relations specified within
square brakets [..] are proven. Note that there exist proofs of knowledge for
disjunctive relations or more complicated statements.

Knowing secret values a and b such that y = h®g®", one can efficiently com-
pute the desired signature. With randomly chosen numbers r;, fori = 1,...,e—1,
first calculate the (e—1)-tuple: y; := h"™ g"". According to the above equations,
by identifying the representations of each y; to the bases h and y;_1, we actually
have: vy =7, vy =r;—briy fori=2,...,e—1,v =a—br._; and § =b. The
sub-signature of representation is as follows: ¢ is computed as

= Hmllglhllysll - - llye-1In* g? W2y || - [|n*v_y)

where t1,...,t.,d are random numbers in Z,. Then “answers” are computed as
usual:

s1 =t —cn

Sy =13 — Y2



Se =te — CYe
sg=d—cd

This signature of knowledge of a representation of (y1,ya, .. .,Ye—1,¥) to the re-
spective bases {h,g},{h,y1},...,{h,ye—1} consists in the tuple (¢, s1,..., S¢, S4)
and is checked by verifying the following equation:

c=H(ml|gllhllys]l - |ye—1llysh™ g* = lysh2yi || - - - [ly°h®eyls )

The global signature is denoted by:
SKROOTREP[a, :y = h®g?"|(m)

The following equations show what is checked by the verifier:

y1 = hg?
Ya = h'YZyis = h72+716g62
Y3 = h’y3yg = h’)’3+’}’25+’}’152g63

_ en 0 _ oot 6e—2 5e—1 ¢
y = hY Yo, = RYet +2 +m g

Hence, y is actually of the form h®g®", where a and 3 are proven to be known
by the signer.

2.4 Knowledge of roots of discrete logarithms

We can use the previous tool to construct efficient signature of knowledge of
roots of discrete logarithm. Given an element y € GG, an small integer e and two
generators g and h of G (such that the discrete logarithm of h to the base g is
unknown), a signature of knowledge of the e-th root of the discrete logarithm of
y to the base g on the message m consists of two signatures:

SKREP[§:y=g°l(m) and SKROOTREP|a,f:y=h%g""|(m)

Such a proof is checked by verifying the correctness of the two underlying sig-
natures. Since the prover can know at most one representation of y to the bases
g and h (otherwise, he would be able to compute log, h), it follows that: a = 0
(mod n) and § = B¢ (mod n). Hence the verifier must be convinced that the
prover knows a e-th root of the discrete logarithm of y to the base g.

Such a signature is denoted:

SKROOTLOG[y : y = g" |(m)



3 Group signatures by Camenish and Stadler

3.1 System overview

The system parameters are chosen as follows by the group manager during the
setup procedure:

n is an RSA modulus; e; and ey are two public RSA exponents (and thus
relatively prime to ¢(n)).

- G = {g) is a cyclic group generated by g of order n.

- h € G is an element whose discrete logarithm to the base g is unknown.

- f1 and f, are two elements in Z,\{0,1}.

- R = h", for a randomly chosen w € Z,, is the manager’s public key.

The group leader should keep secret the factorization of n as well as the value
of w. All others parameters are public and consitute the group’s public key.

Security hypothesis. System parameters should be chosen in such a way that
the following conditions hold (see in 5 the proof of security).

— Computing discrete logarithm to the base g should be infeasible in G. This
can be achieved by choosing for G a subgroup of Zj, where p is a prime
number and n|(p — 1).

— The discrete logarithm of h to the base g is unknown (and hard to compute).

— Both e;-th and es-th roots of f; as well as those of f» are unknown (and
hard to compute without the factorization of n).

3.2 Member registration

Consider a user Alice who wants to become a member of the group. She first
has to compute her membership key: she chooses a random number z € Zj.
Let y = z¢* (mod n). Alice keeps y and z secret as the private parts of her
membership key. Then Alice computes z = g¥ and publishes it together with her
identity. This is the public part of her membership key.

Alice must then register these values to the group manager in order to get a
membership certificate. She cannot send y to the group manager, otherwise he
could forge Alice’s signatures as he wants. Thus she sends z, a blinded value of
y and a proof that this value actually blinds a well-formed membership key. In
order to do that, Alice computes:

r(fiy+f2) (modn) for rerZy
:= SKROOTLOG[o: z = g°™"](* ?)
.= SKROOTLOG|B : g% = (251¢7)7"*( )

<Q<¢z

and sends z,§,U,V to the manager. If both U and V are correct, the latter
should be convinced that § actually blinds a correct membership key, contained



in the value z (a and 3 proving indeed the knowledge of = and r respectively).
Then the manager computes a blinded version of the membership certificate as:

7:=¢'°  (mod n)
The (unblinded) membership certificate is

v="0/r=(fiy+ f2)'/*

A possible choice for parameters is suggested in [6]: e; = 5,e2 =3, f1 =1, fo
is such that 3rd root is hard to compute. It seems to be difficult to find some
tuples (z,v) such that v2 = fiz°! + f5 holds, without knowing the factorisation
of n. This assumption is used in the proof of security of our scheme 5.1.

3.3 Signing messages

To sign a message m, Alice basically computes, dependent on m, signatures of
knowledge proving that she is a registered member (this allows the signature to
be verified). At the same time, she encrypts her membership key z with respect
to the group manager’s public key (this allows the signature to be opened). To
this aim, Alice chooses a random number r € Z} and sends the following five
elements as the signature of m:

Z:=h"g¥

d:=R"
Vi := SKROOTREP|a, 3 : 2 = h*g?™"](m)
Vo := SKROOTREP[,6 : 71 g% = h7¢°7](m)
Vs := SKREP[e,(:d=R* A 7= h‘g‘](m)

The correctness of the group signature is the conjunction of the correctness of
V1, Vs and V3. Indeed, considering V; together with V5, and assuming that Alice
can know at most one representation of 2/1¢#2 to the bases g and h, the verifier
is convinced that:

vy=aft (modn) and 6% =fi8"+ fo (modn)

The second equation proves that Alice knows a valid membership certificate
v = § whose related secret membership key is + = 3. Now considering V3,
it proves that the same random number is used in the computation of Z and
d. Therefore (d, %) is an El-Gamal encryption of z = g¥ with respect to the
leader’s public key (h, R) (the secret key being actually 1/w rather than w). If
V3 is correct, the encryption is well-formed, ensuring that the signature can be
opened if necessary.



3.4 Opening signatures

As just said, the opening of signature consists of the decryption of (d,Zz) as
an ElGamal ciphertext. By computing 2 = Z/d'/*, the group center obtains
the public membership key z of the actual signer. To prove such a fact, he
can produce a signature of knowledge of the representation of Z, h to the bases
{#,d},{R} respectively, that is:

SKREP[w:z2=2d° A h=R"](*)

where w holds for 1/w.

4 Achieving revocation of identity

4.1 Introduction

Revocation of identities (or members deletion) is a very delicate problem. Ate-
niese and Tsudik [3] have suggested that Certificate Revocation Lists (CRLSs)
is not an appropriate method for group structures. They invoked the following
reasons: firstly, since group signatures are based on anonymous and unlinkable
mechanisms, the fact that a given signature was made (illegally) by a revoked
member can be only proven by the group manager, by opening the signature.
This is surely not practical. Secondly, if the group center reveals some infor-
mations or secret values concerning a revoked member, in order to immediately
detect possible further cheating, how can the anonymity and unlinkability of his
past signatures be preserved? Thirdly, decision of changing the group’s public-
key is clearly not desirable in very large groups, or in groups with frequent
membership changes.

4.2 Our approach

In this section, we propose a solution to delete members from a group without
leaking any information about their past signatures. In case of member deletion,
the group manager would issue a list of identities (public membership keys “z”)
and would certify them as being deleted (for instance by signing the list). Any
user could continue to sign if he is able to prove, in a zero-knowledge way, that
his membership key contained in the signature is not present in the revocation
list. It is clear that, while releasing only public informations, the process leaks
no extra information and thus does not compromise the past signatures of the
deleted members. The drawback is that signature size will grow linearly with
respect to the number of members deleted. Providing a constant-size revocation
mechanism remains an open and interesting challenge.



4.3 Proving a non-encryption of a given value

We show here how to prove that the encrypted value in an ElGamal ciphertext
is not equal to a particular one. More precisely, we can prove that the discrete
logarithm of the plaintext is known and that the plaintext differs form a par-
ticular value. Consider the ElGamal cryptosystem in a group H = (h) of order
a large prime number p, and let y = h* (mod p) be the public key associated
with the secret key z. A message m is encrypted by (A, B) = (h",y"m), where
r is a random number. Let 7 be a particular message. We now explain how the
sender can publicly prove that the encrypted message m is different from a value
m, in the case where m = g* (mod p).

We propose a technique using a “witness” value. The idea is quite similar to
that used by Canetti and Goldwasser. In [7], they propose a method to distribute
the Cramer-Shoup cryptosystem [10]. See [7] for more details. In the context of
group members revocation, we first note that the problem can be stated as
follows: the signer publishes a random power of m/m as a witness together with
a proof that this witness is well-constructed and that the plaintext equals the
numerator of that underlying fraction, that is m. The fact that the witness value
differs from 1 thus proves that the plaintext differs from . More formally, the
sender computes the following values, where r and 7’ are random:

(A,B) = (h",y"m) : the ciphertext
t = (m/m)"  :the witness
V =SKREP|wa,3,7,0: A= h® A B=y%"
AN AT=hT0 A t=(B/m)Ty)(")

What does this proof show? The first two equations simply prove that the
same value a is used to compute A and B, and thus that (A, B) is an encryption
of m = ¢P with respect to the public key y = h*. This guarantees the ciphertext
is fairly computed and that the discrete logarithm of the plaintext is known.
Now considering the first and third equations in the proof:

A=h% and AY=h"°,
we obtain, taking the discrete logarithm of A" to the base h:

d=—ay (modn)

Replacing this value in the last equation, we get:

= () =B Gy

Being convinced of this equality, the fact that ¢ # 1 proves that m # m.



4.4 Application to a revocation mechanism

In this paragraph, we use the previous technique to construct a revocation mech-
anism in the group signature scheme by Camenish and Stadler [6]. We first
consider the basic case, where only one member has been revoked.

Recall how the mechanism to open group signatures works. The signer (Alice)
encrypts her identity (z) according to the ElGamal scheme and with respect to
the group manager public key (h, R). Thus, the manager is able to reveal her
identity by decrypting this ciphertext. The signature of knowledge V3 is used to
publicly ensure that the encryption is well-formed: the ciphertext is (d, £) where
d= R" , 2 = zh"; V3 convinces any verifier that the same random number r is
used in d and Z.

Using the fact that the plaintext is Alice’s identity, and thus can be written
in the desired form g¥4, we can apply our technique to slightly modify the proof
V3 in order to convince the verifier of the group signature that the identity
of the signer, say z, differs from a publicly revoked value z;. We also add the
“witness” value t (we will have to transmit several witnesses in case of multiple
revocations); other items in the group signature remain unchanged.

= h"g¥
d:=R"
t:= (z/zl)T' for some random number r’
Vi := SKROOTREP|a, 3 : 2= h®g?"|(m)
Vo := SKROOTREP|y,6 : #/1g%2 = h7g°7|(m)
Vs := SKREP[e,(,n,A:d=R* A Z=hg*
A d"=R* A t=(3/z1)"h(m)

[ 3

If the three proofs V;, V5, V3 are correct, the verifier is convinced, as in the
classical scheme, that the encryption of z is well-formed, that is (d, %) is an
ElGamal encryption of z. According to V3, the verifier can deduce as explained
above:

A=-ne (mod n)

And then, by replacing these value in the last equation of V3, he obtains:

s\ 7" sp—€\" n
= () == ()
21 21 21

The verifier is convinced of the existence of a value 1 such that the above
equation holds. Granted this, the fact that ¢ # 1 actually proves that z # z;.
Hence, Alice is not the revoked member.




4.5 Case of multiple revocations

We can easily extend this feature to the scenario of multi-revocations. However,
as observed above, the size of the signature will grow linearly with the num-
ber of members deleted. More precisely, the number of values ¢ having to been
transmitted will be proportional (and even equal) to the number of members
revocated. On the other hand, the size of the signature of knowledge V3 will not
grow any more.

Let us consider a list £ of I deleted members, whose identities (or public
membership keys) are denoted z1, . . ., z;. If a signer Alice wants to sign a message
m while proving she is not in the list of revocated members, she will send together
with Z and d the following [ values:

tr=(z/z1)" ...t = (z)z)"

where 7' is a random number. The proofs V; and V2 remain unchanged, while
V3 becomes:

SKREP[e,C,mA:d=R A Z=h%¢ A d"=R>
A ti=Gla)" B A At =(3/2)" BN (m)

It is important to note that the number of “equations” in V3 does not change
the length of Vj itself. V3 is made of a tuple (c, s1, s2, 53, 54) corresponding to a
“challenge” and four “answers” since one wants to prove the knowledge of four
private values. The only data which grows when increasing the revocation list
are the transmitted “witnesses” t1,...,1%;.

It is also important to notice that the constant size of V3 is due to that we
use the same random »' in all the witness values. We claim that this can be
done without loss of security. Consider the case [ = 2; denote S = (21, 22, t1,t2),
where t; = (2/21)",t2 = (2/22)", the distribution which appears to the verifier
in the scheme. It is esay to show the distribution S is as indistinguishable from
a random distribution as the Diffie-Hellman distribution D = (g, g%, 9", ¢9*"). To

do so, let
g= Z and a= log, <i>
21 22

Then we have: z/z, = g* and we can rewrite:

1

S = (21, 22,t1,t2) = (297,297 %,9",9"") ~ (9,9%9",9"") =D

where & stands for “computationally indistinguishable”.

5 Security of the enhanced scheme

5.1 Correctness and unforgeability

Verifying correctness is trivial. Since the validity of a group signature is checked
by verifying the three proofs of knowledge Vi, V3, V3, it is obvious that a regis-
tered member of the group is able to produce valid sinatures (keep in mind that



the quantities a, 3,7, 9, €, represent r,x,rf1,v,r,y respectively, as defined in
section 3.3).

Unforgeability against adaptive chosen-message attacks

We now prove that unforgeability is satisfied against an active adversary. We
consider a polynomial-time bounded adversary having access to a signing oracle.
A signing oracle for group signatures can be modelled as follow: the adversary
makes a query to the oracle and obtains a group signature on a message of his
choice. The signing oracle returns a valid group signature, which means that this
later can be opened by the manager. We show that the identity revealed by such
hypothetical opening does not influence our proof.

In that model, the adversary makes a polynomial number of queries to obtain
adaptively some group signatures on messages of his choice. Next, the adversary
tries to produce a valid group signature. We say that he is successful if he can
output a message m* and a valid group signature (2*,d*,V;*, V5", V) and if
m* was not previously queried to the signing oracle. The security of the group
signature scheme states that this occurs with negligible probability.

It can be shown using standard techniques that, in the Random Oracle model,
we can efficiently simulate the signing oracle used in a chosen-message attack.
For instance, the signature of knowledge denoted by V3 :

SKREP[e,(,mA:d=R N 2=hg° A d" =R A t=(5/21)"h"](m)
is a tuple (c, s1, 82, S3, 54) satisfying:
¢ = H(ml||d||Z]|R||hllgl|d°R**[|Z°h® g®*||d® R**||t°(Z/ 21)** h**)

Such a tuple can be simulated as follows (notice than we need the value of ¢ to
correctly simulate V3):

SIMULATE-SKREP

1 Choose s1, s2, 3, 54, ¢ at random

2 Define H(m/||d| z|| Rl|h||gl|d°R** [|2°h* g*2(|d* R ||t°(2/ z1)** h**) = c
3 Return ¢, s1, 2, 53, 54 as the signature of knowledge

Now we show the security of the scheme. Assume that, at the end of the
previously described game, the adversary outputs a valid group signature

(2%, d", V1", Vo', V)

for which the verification algorithm outputs “valid”.
The correctness of V;* and V5 ensures that he knows four values «, 3, and
¢ such that the following equations hold:

5 — hagﬂel ) g*flgfz — h’Ygf5622

which implies:
g*flgfz — h’Ygéez — haflgflﬁel-i-fz



Hence, we have two representations of 2*/1 g/2 to the bases g and h. Consequently,
either the two representations are different and the adversary can compute log, h,
or they are identical and we have v = afi , 0°¢ = f13°* + f2, which means
that he had computed a certificate, §, without registering the corresponding key
(- Both of these scenarios are assumed to occur with negligible probability. This
concludes our proof.

5.2 Anonymity and unlinkability

Anonymity is ensured by the security of the ElGamal scheme, that is, the hard-
ness of computational Diffie-Hellman problem. It is easy to see that, because,
since Vi, Va2, V3 are zero-knowledge, the only information an adversary has to
learn z is the encryption (Z,d) of it.

More interesting is unlinkability. We can prove that the signatures are un-
linkable by using a signature distinguisher as an oracle to break the decisional
Diffie-Hellman problem, or, which is equivalent, the semantic security of El-
Gamal scheme.

Assume we have an oracle that can distinguish two group signatures, i.e. that
can win with non-negligible probability the following game: a message m and two
members z; and 29 are chosen. A bit b is secretly and randomly chosen. Then the
group member 2z, signs the message m. The resulting signature (Z,d, V1, Va, V3)
is given to the adversary which outputs a bit b'. He wins if b = b'.

We now can use such an adversary to break the semantic security of ElGamal
[11]. Consider the following two algorithms:

FINDER
1 Randomly choose 21,25 in G

DISTINGUISHER(A, B)

/*(A,B) = (h"2p, R") is an ElGamal encryption of z;*/
1 Randomly choose a message m

2 Randomly choose a witness ¢t # 1

3 Simulate Vi, Va2, V3 on the message m

4 Give (m, A, B,t,V1,V3,V3) to the adversary

5 Return b': the output of the adversary

We first run the FINDER and obtain two members z; and z». Then a bit
b is randomly chosen (out of our view) and we are given an encryption of z
by ElGamal. Using the adversary through algorithm DISTINGUISHER, we can
distinguish which one of z; or z; has been ElGamal encrypted, which is the
break of semantic security.

5.3 Traceability and framing

The ability to open a group signature for the group manager is ensured by the
correctness of V3. Keep in mind that V3 proves that the identity of the signer,



z, is correctly ElGamal encrypted. Anybody can thus be sure that the group
leader would be able to open the signature if asked. Combined with V; and Va,
this proof ensures that the revealed member is a registered one: what is shown
in these signature of knowledge is the knowledge of a membership certificate
corresponding to the identity encrypted. Thus, avoiding traceability is at least
as hard as the computation of an unregistered certificate or the break of the
underlying signatures of knowledge.

The security against a framing attack is a bit more complicated. It can be
stated as follows: no coalition of members nor the group leader can compute a
valid group signature which, if opened, would be associated to somebody else.

Since the validity of a signature ensures that the signer knows a membership
certificate (i.e. a solution to the equation v = fiz® + f), a framing attack is
hard if the following assumption holds:

Claim. No (adaptative) coalition can compute k + 1 points on the curve C :
Ye = fi X + fs when knowing only & points on it.

This assumption does not hold for every values of e; and ez, fi and fo. We
now deal with what can be done to obtain an equivalent assumption, as well as
the description of cases where the claim is false (which implies that a coalition
attack is possible).

Case where ged(ej,ez) = 1 First, we can note that Claim 5.3 is equivalent
to a simpler version in case that e; and e; are relatively prime; in that case,
there exist A and p such that: Ae; + pes = 1. Then the equation of C can be

rewritten:
ve: — f1>\61+#€2Xe1 + f2

Y\~ A €1 —pe2
) = (10" A
1
or, by changing variables,
Y2 = X' +d, where d= fof "

Thus, we just have to consider cases where f; = 1. Proving Claim 5.3 appears
to be mathematically non-trivial, although it seems to be true.

Other cases If e; and e are not relatively prime, a similar transformation can
be performed, which modifies the values of the exponents. Let e be the greatest
common divisor of e; and ez, and note e} = ej/e, e, = ea/e. We now have
ged(el, e5) =1 and we can write:

Y = Yefl—ﬂ
X'=X°f}
Y'er = X" +d,  whered = fof] "
This does not appear to be interesting, because the transformation used is non-
linear.



A framing attack when e; = ez If e; = e; the transformation proposed
above is useless. However, if fi = 1, we can show that Claim 5.3 is false. As-
suming that the common value e = e; = ey is small, it is possible for a coalition
of 2¢ registered members to compute a new membership certificate without the
help of the group manager.

FRAMING(e)

1 Choose a membership key V4

240+ 1,k 2°

3 Fori«+ 1tok

4 Xi < Vi

5 Vi + REGISTER(X;)

6 Return (V;/2,X;/2) as a new certificate

It easy to verify that such an algorithm produce new (unregistered) mem-
bership certificate. From k equations V;* = X7 + f, coming from registrations,
we obtain by summation: Vj, = V|{ + 2°f, and then:

(5 (1) s

This shows how a coalition of & = 2¢ members can forge a valid group sig-
nature which would be associated to an unexistent member if opened. Although
such a problem can easily be avoided by carefully choosing group parameters, it
is interesting to mention it as a new possible weakness of the scheme.

6 Conclusion

In this paper, we provide the first efficient solution to delete members from a
group without compromising their past signatures or changing the group public
key. The security of our mechanism is formally proven, as well as the underlying
group signature scheme. However, obtaining members revocation with constant
size signatures remains an open problem.
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