Software-Hardware Trade-offs; application to
A5/1 Cryptanalysis

Thomas Pornin! and Jacques Stern?

! Département d’Informatique, Ecole Normale Supérieure, 45 rue d’Ulm,
75005 Paris, France, thomas.pornin@ens.fr
2 idem, jacques.stern@ens.fr

Abstract This paper shows how a well-balanced trade-off between a
generic workstation and dumb but fast reconfigurable hardware can lead
to a more efficient implementation of a cryptanalysis than a full hardware
or a full software implementation. A realistic cryptanalysis of the A5/1
GSM stream cipher is presented as an illustration of such trade-off. We
mention that our cryptanalysis requires only a minimal amount of cipher
output and cannot be compared to the attack recently announced by Alex
Biryukov, Adi Shamir and David Wagner|[2].

Keywords: A5/1, GSM, stream cipher, FPGA, cryptanalysis, trade-off

1 Introduction

There are two main species of computer devices that are used by cryptanalysts:
generic all-purposes workstations, and specialized hardware devices. Among the
latters, Field Programmable Gate Arrays are more and more used, since they
give a good performance/cost ratio and a fast and cheap development cycle.

Operations that are easy to implement on a FPGA include all bit permu-
tations, shifts, bitwise logical operations, and small lookup tables. This makes
them especially well-suited for implementing block ciphers such as DES, and
all stream ciphers and random generators using Linear Feedback Shift Registers
(LFSR). However, the low-level structure of such devices makes it almost impos-
sible to implement of a high-level algorithm whose behaviour is dependant on
the input data. A branching process or a recursive search in a tree are definitely
out of reach.

Workstations, on the contrary, are good at running complex algorithms, since
conditional execution, function calls and stack memory structures are natural
on these platforms. They are also especially optimized at performing complex
mathematic operations such as integer multiplications or floating point calcula-
tions. Yet, they are ineffective at more simple operations, in proportion to their
cost: an expensive 21264 Alpha processor will perform only four bitwise logical
operations per cycle on 64-bit registers, despite its over 15 millions transistors.

We present here a study on a trade-off between these two technologies. The
chosen algorithm is A5/1; this stream cipher is used in GSM mobile phones to



ensure confidentiality of “over the air” communication. A5/1 was published in
[1] unofficially, but Alex Biryukov, Adi Shamir and David Wagner claim in [2]
that they received confirmation from the GSM organization that this design is
the true A5/1 as used in GSM phones. Therefore we will assume that the A5/1
described here is indeed the correct algorithm; anyway, this algorithm is merely
used as an illustration of our technique.

Recently, Alex Biryukov, Adi Shamir and David Wagner presented in [2] an
impressive attack against the A5/1 cipher; this attack is a time-memory trade-off
that requires a non-negligeable amount of known plaintext (about 25000 bits).
Since the internal state of A5/1 is only 64-bit, it should be recoverable with only
64-bit of known plaintext; we therefore consider this framework, where only 64
consecutive bits or so of plaintext (and the corresponding ciphertext) have been
intercepted. Moreover, the time-memory trade-off of [2] is made very effective
due to many features of A5/1 that allow some smart optimizations. We do not
use such features, and our work should be applicable to other similar ciphers.

The hardware used is a Compaq XP-1000 workstation (21264 Alpha processor
at 500 MHz) and Compagq (formerly Digital) Pamette cards; a Pamette is a PCI
card that includes five Xilinx 4010E FPGA. One of these FPGA is used to handle
the PCI bus; there is room for some SDRAM connected to two of the FPGA.
At the time of writing this paper, an XP-1000 is a 3000$ workstation, and a
Pamette costs about 10008.

2 Description of A5/1

A5/1 is a neat design that uses a very small amount of silicium when imple-
mented in hardware. It includes three LFSR, with a clocking sequence depending
on the internal state of the three registers. It outputs a stream of bits that is
combined (by mean of an exclusive or) with the data to encipher.

The three LFSR are of length 19, 22 and 23 bits. At each clock cycle, a
majority bit is calculated, from the three middle bits of the registers; those
registers which middle bit agrees with the majority are shifted. Then the output
bit is the exclusive or of the three final bits of the registers. Figure 1 illustrates
this mechanism. A full description of the algorithm may be found in [1].

The majority clocking implies that, at each clock cycle, there are four possible
moves:

register 1 and 2 are shifted
register 1 and 3 are shifted
register 2 and 3 are shifted
— all registers are shifted

The internal state is loaded with a 64-bit session key and a 22-bit known
counter; the cipher is then ran for 100 cycles and the corresponding output
bits discarded, and then 228 bits are produced for enciphering the data. Then
the cipher is reset, with the same key and the next counter value. The key
can easily be recovered from the internal state at any moment with a critical



>>> SHIFTDIRECTION =>>>

VI\HHHNHH\HH%
; —

1 Y

FHHH\HHNHHHHHH*

- &1 )

?l\HHHHN‘\‘HHHHH%
—— I

vvv OUTPUT

Figure 1: The A5/1 Stream Cipher

branching process exposed in [3]; therefore, once one internal state of A5/1 has
been revealed, the cryptanalysis is to be considered complete, since the same
session key is used throughout the entire phone conversation.

In GSM phones, the session keys are produced with another algorithm, which
might depend on the operator. Marc Briceno, Ian Goldberg and David Wagner,
who published in May 1999 in [1] the first complete description of A5/1, claim
that all the implementations they checked used 54-bit session keys (that is, 64-
bit keys with 10 fixed bits set to 0). Although other operators could decide
otherwise, it is probable that this convention will be maintained by operators in
the name of backward compatibility. Still, our work does not make use of this
feature.

3 Software Cryptanalysis of A5/1

A first cryptanalysis of A5/1 was first informally presented by Ross Anderson,
who published in 1994 [4] an alleged description of A5/1 (which turned out to be
mostly correct, except for the position of bits for clocking and linear feedback).
The idea is to guess the two first registers, and half of the third register, which is
basically enough to know the clocking sequence and deduce the second half of the
third register by solving a system of linear equations. This attack is applicable to
the real A5/1, with a workload of about 2°? guesses (each implying the resolution
of a system of a dozen linear equations).

Then Jovan Goli¢ presented, in 1997 [3], a complex cryptanalysis with an
average complexity of slightly above 240 operations; however, each operation is
a resolution of a 64 x 64 linear system, and some of the assumptions used to
get the claimed complexity are somehow irrealistic since they lead to an overly
complex and slow implementation.

The Goli¢ attack is, basically, guessing the clock sequence for a given number
of clock cycles, adjusting it if necessary by adding some more guesses; knowing
the clock sequence, each output bit is a linear equation of known internal state
bits. The guess also gives other linear equations, which describe the majority



function. When enough equations are obtained, the system is reversed, and the
potential initial state is recovered and tested against the remaining known output
bits.

We implemented a simplified version of the Goli¢ attack. This is done by
backtrack in a tree representing at depth n the different internal states after n
clock cycles. So each node has four subtrees, since there are four possible moves
at each cycle. Each guess in the backtrack process is taking one of the four
branches; this gives us three equations:

— two equations represent the clock control calculation
— one equation is the calculation of the output bit

These equations are linear in Z,, with 64 unknown values. These values are
the 64-bit initial state, and, at each step of the algorithm, each bit of one LFSR
is a linear combination of several bits of the initial sate of the same LFSR; this
combination depends only on the number of times the LFSR has been clocked
since the initial state. So, if we call ¢;, ¢ and ¢3 the clocking bits of the respective
three LFSR at one step, and guess that registers 1 and 2 move, and register 3
does not, we get the following two equations:

c1+ce=0
c1+cz3=1

The third equation is similar: if, after clocking, the end bits of the three
LFSR are respectively e;, e; and e3, and the output bit is v, then we have the
following;:

er+ey+e3=v

We maintain, during the backtrack, a system of such equations describing
the previous steps of the algorithm starting from the initial state; this system is
triangular, which means the following: for each equation n, there exists one of
the unknowns such that its coefficient in equation n is 1, and such that in all
following equations (equations n + 1, n + 2, ...) its coefficient is 0. When the
system is complete (64 equations), equation 64 is:

SL':kl

where z is one of the unknowns, and k; is a constant value (0 or 1). Equation 63
is:
Y+ kox = k3

where y is another unknown value, and ks and k3 are constants. So, once z value
is known, y is known too. We can go on with this process up to equation 1,
and therefore simply recover the whole 64 unknown values. This is the standard,
well-known method of linear system solving, due to Gauss.

So, when we add one equation to the yet incomplete system, we need to
perform the Gaussian elimination of this equation relatively to the preceedings.
If we call u; the unknown value whose coefficient is 1 in equation ¢ and 0 in all



equations j for j > i, we apply the following algorithm when we add equation n
to the system:

1. call X the equation to add

.forifrom1lton—1

. if u; has a coefficient 1 in X, add equation i to X

. next ¢

. append X to the system

. find the first non-zero coefficient in X, call u,, the
corresponding unknown

ST W N

The last action of this algorithm may fail, if all coefficients of X are set to
0 by the elimination process. Then X is either 0 =0 or 0 = 1. If we get 0 =0,
this means that the new equation can de deduced linearly from the preceedings,
so we just throw it away and keep on with the backtrack. However, if we get
0 = 1, we are lucky: we know that the path in the tree of possible clocking
sequences, up to the point that has been reached, is wrong. If this happens at
clocking step 19, we go back to clocking step 18, and assume that the last guess
was wrong. So we forget the equations added by that last move, an go on with
another guess for that move. This is where we optimize the Goli¢ attack: we can
keep all equations corresponding to step 1 to 18, and we do not have to perform
the Gaussian elimination on them again.

This calculation can be implemented effectively on modern workstations:
since each coeflicient is 0 or 1, it can be stored as one bit. Each equation is a
65-bit word (64 bits for the 64 coefficients, one bit for the constant on the right
hand side of the equation). An addition of two equations is a bitwise exclusive
or, a native operation on modern processors. Finding the first bit set to one in
a 64-bit word may be performed by a dichotomic process, which gives the result
in 6 masking/compare/shift group of operations.

Once we have 64 linearly independant equations, in a triangular representa-
tion, we might solve the system, recover the initial state, and run A5/1 with this
initial state to see if it matches the known output; however, it is more efficient
to keep on with the elimination. At each step, since the system is complete, all
added equations will be reduced to either 0 = 0 or 0 = 1. Only one of the four
possible clocking steps will produce two 0 = 0 equations (since the system is
complete, it contains the whole information on the execution of A5/1, and the
clocking behaviour is deterministic given this information), and the third equa-
tion, depending on the ouput bit, will yield 0 = 0 with probability 0.5, and 0 =1
otherwise. So, on average, we must go two steps further in the backtrack process
to check the correctness of the guessed clocking sequence (this means six more
equations reduced).

Experiments show that total eliminations (equation X has a left hand side
equal to 0) are very rare before step 21; this is coherent with the intuitive idea
that we cannot find anything on the internal state of A5/1 before the registers
have wrapped around. The complexity of the backtrack is therefore the expected
value 4%4/3 x 6, which is about 2%5-3. Each operation is the Gaussian elimination
of one equation according to an average of about 64 preceedings linear equations



(most of the computation time is spent in the leaves of the tree, where the linear
system is complete, or almost). This is the complexity for the whole search; on
the average, we find the correct clocking sequence after exploring half of the
tree, so the complexity is 2443, We claim that this is the same complexity as the
Goli¢ one, expressed in a more realistic unit.

Our implementation takes 400 days on a Compaq-XP1000 (21264 Alpha pro-
cessor at 500 MHz) to explore the full tree; this yields an average software-only
cryptanalysis time of 200 days on one workstation.

4 Hardware Cryptanalysis of A5/1

4.1 Description of the FPGA Pamette Card

The Pamette card includes five Xilinx 4010E FPGA chips; one of them is dedi-
cated to the handling of the PCI bus. Each 4010E is a matrix of reconfigurable
units called Configurable Logic Blocks (CLB).

Each CLB includes:

— two 4 — 1 reconfigurable lookup tables

— one 3 — 1 reconfigurable lookup table, two entries of which are the outputs
of the two preceeding lookup tables

— two one-bit registers

Figure 2 gives an insight of a CLB. The two 4 — 1 and the 3 — 1 functions
are fully configurable (they are implemented as lookup tables). There are four
outputs, two of them corresponding to two one-bit registers; each register is
controlled by an “enable” input, that can be set either to 1 (the register always
updates) or connected to one output of a CLB (possibly the same). The initial
value of each register is either 0 and 1, and this is configurable.

There are 24 x 24 = 576 CLB in a 4010E chip; the interconnecting matrix is
also highly configurable; up to eight parallel signals can be carried between two
rows of CLB.

The Xilinx chips are connected with each other through 16-bit and 8&-bit
busses; two of the four available chips are connected to optional static RAM,
and to the fifth chip (the PCI-handler) with a 32-bit wide bus. The whole card
may be clocked up to 66 MHz, depending on the design (to run at 66 MHz, there
must be only one CLB and no long routing between two registers).

A more complete description of a Xilinx chip is available from Xilinx (see
[5] for details). The Pamette itself is from Compaq (formerly Digital) and is
described in [6].

4.2 Implementation of A5/1 on a Pamette

It is possible to implement A5/1 on a Xilinx 4010E with the following charac-
teristics:

— At each cycle, one step of A5/1 is performed.



1 JLUT4>1 ,
i L

i

i | LutT *\;D‘Y
i 3->1 i

|

|

! H\ !
—_— |
1 . XQ
E LUT 4->1 ) :

! i

| 1 X

! > i

! I

L e a

Figure 2: A Configurable Logic Bloc

— It is possible to reload the LESRs with new values in one cycle.
— The resulting design runs at 50 MHz.
— 12 parallel instances of A5/1 may be put into each Xilinx chip.

The details of the implementation are fairly straightforward. The clocking
bit is calculated from the three clocking bits of the registers, with one extra bit
indicating that a new initial state must be loaded into the registers. This clocking
bit is used as the “enable” input for the registers. The clocking bit calculation
requires only half a CLB; we also use half a CLB for each bit in each LFSR, (one
bit register to store the value, one lookup table to feed the register with either the
preceeding value, or a new value, when another initial state must be loaded).
With the feedback computation (one half-CLB) and the comparison with the
reference value (1.5 to 3.5 CLB), a whole instance of A5/1 requires only 36 or 38
CLBs (depending whether we want to compute 32, 64 or more output bits). So
we may store twelve instances of A5/1 on each Xilinx chip and still have room
for the synchronization clocks and the shared counter, which gives the successive
initial states to try (the twelve instances try the same initial states except for
some bits, so they share the counter).

Since the design is really compact (all critical data exchanges are local to one
small area of the chip) and the computational depth (maximal number of CLB
between two registers) is small (only 2 CLB at most must be gone through at
each cycle), we can run the whole design at 50 MHz.

Therefore, we have 48 parallel implentations of A5/1 in one Pamette, that
may try 64 A5/1 steps in 64 cycles. One more cycle will be needed for the
reload of the state, so we can try up to 37 millions initial states per second per
Pamette. This is faster than the best known software implementation of A5/1,
described in [2], which can treat up to 8 steps at a time, but runs at the speed of
a workstation’s RAM. Pamette cards give a high degree of intrinsic parallelism.

So, if we want to perform an exhaustive search on the 64-bit internal state,
we need about 15800 Pamette-years, that is 15800 years with one Pamette, or



1 year with 15800 Pamettes. We might want to take advantage of the alleged
fact that session keys are only 54-bit, not 64-bit. Then we must, for each guess,
perform the 100 discarding states, which drops the Pamette efficiency to about
14.5 millions key tests per second; however, the exhaustive search workload is
divided by a factor of 2!° = 1024, which leads to a total effort of about 39
Pamette-years. This is reachable by many agencies and businesses around the
world, although not quite efficient for daily cryptanalysis.

For completeness, we must add that the infrastructure needed is small: ac-
tually, there is no real problem of data bandwidth. Each instance of A5/1 runs
isolated from the others, and the only data that has to be exchanged is the ini-
tial setting of the FPGA (but loading a Xilinx 4010E with a given design is a
matter of milliseconds), and one bit from one instance of A5/1 to indicate that a
matching initial state has been found. The controlling PC has a very simple job:
it waits for the bit to be set, and measures the time taken from the beginning
of the search. From this measure, the matching state can be narrowed to a set
of only a few millions candidates, which can be precisely tried in a few seconds
on the cheapest of nowadays PCs.

5 The Software-Hardware Trade-off

An intuitive, information theory oriented point of view is that the minimal work-
load to cryptanalyse A5/1 is something like 4%4/3. In this approach, the clocking
sequence is considered as intractable; it cannot be controlled except with an ex-
haustive search. Since the initial state is 64-bit, we need 64 binary data in order
to cryptanalyse A5/1. From each step, we get one bit from the ouput, and two
bits from the clocking sequence, since four clocking steps are possible. We will
not have our 64 equations until we have considered at least 64/3 steps, and then
the exhaustive search will have cost us 4%4/3 operations.

The software cryptanalysis presented in section 3 sticks as close as possible
to this workload. On the contrary, the hardware exhaustive search is way above
it, but may be ran on a really dumb but fast device. Indeed, any conditionnal
code (and there is many in a backtrack) is a pain to implement on a FPGA;
it usually ends up in reimplementing a complete cpu, which is a misuse of the
hardware, since a real cpu of comparable cost will be much more optimized for
this task.

The main idea of the trade-off is to make part of the job with a software
implementation, but to jump over the “complexity barrier” with an hardware
implementation. This is a trade-off between an increased workload and the pos-
sibility to perform part of this workload on an efficient hardware device.

The software part is the beginning of the software cryptanalysis. We perform
an exhaustive search on the clocking sequence on the first n steps of A5/1 (for
instance, with n = 17). Each guess will give us 3n linear equations in the initial
state; the workstation will then solve each system, that is exhibit the (64 —
3n + 1) 64-bit vectors that represent a basis for the affine subspace in Z$* which
holds all the solutions to this 3n equations system ((64 — 3n) vectors for the



basis of the corresponding linear subspace, and one more vector as origin of the
affine subspace). Then these vectors are sent to the Pamette card, which then
exhaustively tries all elements of this subspace as initial states; this is a matter
of 264737 executions of A5/1.

For instance, for n = 17, the software part will have to generate 234 systems;
solving each system is about twice the cost of performing the Gauss elimination
on each of them. For each system, the affine subspace of solutions contains 2'3
elements, so the workload for the Pamette Card is 23* x 2!3 = 217 executions
of A5/1, at Pamette speed. With a correct balancing between the software and
the hardware part (that is, an appropriate choice of n), we can achieve a much
lower cryptanalysis time than a full-hardware or full-software solution.

There are two possible optimizations in this method:

— Most of the time, the 3n equations are linearly independant. It is therefore
not necessary to handle the rare case where the reversing of the system
gives either an impossibility or a wider subspace of solutions: we just discard
these occurrences. Therefore, 5% or so of cryptanalysis are not successful;
we believe this is acceptable. This does not actually improve performances
but greatly simplifies the implementation.

— It is not needed to test in the Pamette each initial state against the whole
64-bit output. All we need to do is test against enough bits so that the
average case is that no initial state matches, and so that it is very unlikely
that two or more initial states match. For instance, if n = 17, me might try
only 32 bits of output; one subspace every 32768 (on average) will contain
a match, and this can be handled easily in software. The hardware testing
will be twice faster than if all 64 bits had to be matched for in hardware.

The optimal choice of n heavily depends on the number of workstations
and the number of Pamettes available (in fact, on the ratio between these two
numbers). We give here numbers for one XP-1000 Alpha station, and two 4010E
Pamettes; these are durations for execution of the workload:

n soft. load soft. time hard. load hard. time

16 232 0.09 248 22
17 234 0.39 247 11
18 236 1.7 246 5

19 238 7.1 245 2.5
20 240 30 244 1.3

The time figures are expressed in days; this corresponds to the full crypt-
analysis, that is the worst case. The average cryptanalysis will take up half of
the time given. We consider that the Pamette will try to match against 32 bits
of output.

We see that, when there are two Pamettes for each workstation, the optimal
n is 18, which allows cryptanalysis in 2.5 days on average. By comparison, with
the same investment, we could have two workstations, that would perform the
full software cryptanalysis in 200 days (average time: 100 days). So we have a



factor of forty in performance, and still have some computing power available
on the workstation (some of which is used to check the about 2! subspaces
that contain an initial state that gives 32 correct output bits; this means 224
software checks, that is only a few seconds on the workstation). A full hardware
exhaustive search is definitely out of the question, even if we take benefit of the
reduced session key size.

6 Conclusion

We showed how a right balancing between a tricky software and a dumb hardware
implementations can dramatically speed up a cryptanalysis of A5/1. With a
small investment (less than 200008), it is quite possible to uncover an intercepted
GSM communication in a realistic interception scenario: although we do not have
a complete specification of the GSM protocol, we believe that it is easy to guess
64 bits of communication. This is, in our point of view, a much more applicable
attack in the real world, than the (although impressive) attack from Biryukov,
Shamir and Wagner, since this latter requires an average of two seconds of exact
plaintext.

Morevover, we did not use any specific characteristic of A5/1 such as the
position of clocking bits or the feedback function, so this study has a much
wider impact than GSM privacy. All LFSR-based pseudo-random generators,
with a data-controlled clock sequence, might be affected by this technique. We
strongly suggest that such generators be given an internal state of 128 bits at
least.

References

1. Marc Briceno, Ian Goldberg, David Wagner, A pedagogical implementation of A5/1,
web publication, http://www.scard.org/gsm/body.html, 1999.

2. Alex Biryukov, Adi Shamir, David Wagner, Real Time Cryptanalysis of A5/1 on a
PC, presented at FSE2000.

3. Jovan Dj. Goli¢, Cryptanalysis of Alleged A5 Stream Cipher Lecture Notes in Com-
puter Science, Advances in Cryptology, proceedings of EUROCRYPT’97, pp. 239-
255, 1997.

4. Ross Anderson, A5 (Was: HACKING DIGITAL PHONES) Usenet communication
on sci.crypt, alt.security and uk.telecom, June 17th 1994.

5. The Xilinx web site, http://www.xilinx.com/

6. The Pamette main web site,
http://www.research.digital.com/SRC/pamette/



