DISTRIBUTION OF MODULAR SUMS
AND THE SECURITY OF THE SERVER
AIDED EXPONENTIATION

PHONG Q. NGUYEN
Département d’Informatique, Ecole Normale Supérieure

45, rue d’Ulm, 75230 Paris Cedex 05, France
pnguyen@ens.fr

IGOR E. SHPARLINSKI
Department of Computing, Macquarie University
Sydney, NSW 2109, Australia

igor@comp.mq.edu.au

JACQUES STERN
Département d’Informatique, Ecole Normale Supérieure
45, rue d’Ulm, 75230 Paris Cedex 05, France

stern@dmi.ens.fr

Abstract

We obtain some uniformity of distribution results for the values of
modular sums of the form

n
Zajwj (mod M) (Z1,...,2n) € B
j=1

where M > 1 is an integer, aq,...,a, are elements of the residue
ring modulo M, selected unformly at random, and B is an arbitrary
set of n-dimensional integer vectors. In some partial cases, for very
special sets B, some results of this kind have been known, however
our estimates are more precise and more general. Our technique is
based on fairly simple properties of exponential sums. We also give
cryptographic applications of some of these results. In particular, we
consider an extension of a pseudo-random number generator due to
V. Boyko, M. Peinado and R. Venkatesan, and establish the secu-
rity of some discrete logarithm based signature schemes making use
of this generator (in both its original and extended forms). One of
these schemes, which uses precomputation is well known. The other
scheme which uses server aided computation, seems to be new. We
show that for a certain choice of parameters one can guarantee an
essential speed-up of both of these schemes without compromising the
security (compared to the traditional discrete logarithm based signa-
ture scheme).

1 Introduction

Let M > 2 be integers. We denote by Z;, the residue ring modulo M.

For a given n-dimensional vector a = (ay,...,a,) € Zy and a given set of
n-dimensional vectors B C Z'}, we consider the distribution of modular sums

a-x=)» ajz; (mod M), (z1,...,2,) € B.
=1

More precisely, given a ¢ € Zj; and an integer h > 1, we denote by N,(B,c)
the number of solutions of the congruence

a-x=c¢ (mod M), x € B.

2

Because for many applications it is technically more useful to work with
probabilities we define

1
P,(B,c) = @Na(B, c)

as the probability that a-x = ¢ (mod M) for a random vector x chosen
uniformly from B.

We use exponential sums to show that for almost all vectors a € Z}, these
quantities take their expected values under some natural restrictions on the
cardinality of B.

Although this holds to arbitrary sets B, for our applications we are mainly
interested in the following special sets. Given an integer h < M — 1 we
define B, , as the set of integer vectors x = (z1,...,z,) with0 <z; < h—1,
j=1,...,n. Given an integer k£, n > k > 1, we also define B, as the
subset of B,) consisting of vectors with precisely k& non-zero components.
Hence

‘Bn,h| = hn and ‘Bn,k,h,| = (h — 1)k (Z)

In the important (although not always optimal for our applications) special
case h = 2 we put

B’n,2 = Bn and Bn,k,Z = Bn,k-

In the case B = B, several results of this kind have been known, see [1, 8,
9, 12, 14]. These results have found several cryptographic applications, in
particular, to some cryptosystems proposed in [2], see [14]. However for other
sets no similar results seemed to be known. In particular for sets B, ; this
problem has been mentioned in [14].

We also give some cryptographic motivations and applications of our results,
in particular in the signature scheme with precomputation [2].

In many discrete logarithm based protocols, one needs to generate pairs of
the form (z,¢® (mod p)) where z is random and g is a fixed base. The
El Gamal [5] and DSA [13] (Digital Signature Algorithm) signatures as well
as the Schnorr [18, 19] and Brickell-McCurley [4] identification and signature
schemes are examples of such protocols. The generation of these pairs is
often the most expensive operation, which makes it tempting to reduce the

number of modular multiplications required per generation, especially for
smartcards. There are basically two ways to solve this problem. One way is
to generate separately a random z, and then to compute ¢* (mod p) using
a precomputation method [3, 7, 16, 10].

The other way is to generate x and ¢g* (mod p) together by a special

pseudo-random number generator which also uses precomputation. Schnorr [18]
was the first to propose such a preprocessing scheme. The scheme has much
better performances than all other methods but there is a certain drawback:
the output exponent x is no more guaranteed to be random, and therefore,
each generation might leak information. Indeed, de Rooij [15] showed how

to break the scheme. A later modification proposed by Schnorr in [19], was
also broken by de Rooij [17].

Boyko, Peinado and Venkatesan [2] have recently proposed a new and very
simple generator to produce pairs of the form (z,¢* (mod p)), where p is a
prime number, and g € Z,, is of multiplicative order M.

We describe a generalization of the BPV generator, which combined with
a certain exponentiation algorithm from [3], becomes computationally more
efficient.

This generator as well as our extension, can naturally be used for a signa-
ture scheme with precomputation, and thus provides a substantial speed-up
compared to the traditional scheme. However, it should be mentioned that
the approach of [10] seems to be more efficient for the above values of M
(although the asymptotic behaviour of that method has not been evaluated
in that paper).

On the other hand, we also describe another scheme, to which the results
of [10] do not apply. In that scheme, instead of precomputing and thus
storing a rather substantial set of integers, one uses the server to assist the
signature generation. This new scheme is suitable for computation on a
device with low computational power and memory (such as a smart-card, for
example).

We show that the security of both signature schemes is preserved, when
certain conditions on their parameters are met. Our proof is based on the
notion of statistical distance.

Throughout the paper log z and In z denote the binary and the natural log-
arithm of real a > 0, respectively.

2 Extended BPV Generator

Let g € Z;, be of multiplicative order M.

The original generator of Boyko, Peinado and Venkatesan [2], which we call
BPV, with integer parameters n > k£ > 1 can be described as follows:

Preprocessing Step: Generate n random integers ay,...,a, € Zj;. For
each j =1,...,n, compute 3; = g§ (mod p) and store the values of a; and
B; in a table.

Pair Generation: Whenever a pair (z,¢") is needed, randomly generate
S C{1,...,n} such that |S| = k. Compute

=Y a; (modM) and X=][B=g¢" (modp).

Jjes jeSs
If =0 (mod M) then start again, otherwise return the pair (z, X).

T

For any output (z,X), we indeed have X = ¢® (mod p). The scheme
needs to store n elements of Zj;, and n elements of Z. It requires k£ — 1
modular multiplications to compute X (and the same number of additions to
compute x, but this cost is negligible). This can be compared with the cost
of direct computation of g* which is about 1.5log M modular multiplications
on average and about about 1.5log M modular multiplications in the worst
case. Thus the ratio k/log M is a natural measure of speed-up of the BPV
generator.

Recall that for the DSA [13] and Schnorr [18, 19] schemes M has 160 bits,
while for the El Gamal [5] and Brickell-McCurley [4] schemes M has at least
512 bits. Each generation requires £ modular multiplications. For M = p—1
where p is a 512-bit prime the authors of [2] suggest to take n = 512 and
k = 64.

We now describe an extension of the BPV generator which we will call
EBPYV, with the same integer parameters n > k£ > 1 and another inte-
ger parameter h > 1. The preprocessing step of the generator is the same
however the pair generation follows a slightly more general algorithm:

Extended Pair Generation: Whenever a pair (z, g*) is needed, randomly
generate S C {1,...,n} such that |S| = k and for each j € S select a random

integer z; € {1,...,h — 1}. Compute

z=Y ojz; (mod M) and X =][g’ (modp),
jESs j€s
thus X = ¢* (modp). If z = 0 (mod M) then start again, otherwise
return the pair (z, X).

It is easy to see that we still have X = ¢® (mod p) and that for h = 2 this
is precisely the BPV generator.

The cost of computing z is still very low at least if A is small (it involves
k — 1 modular additions and £ — 1 modular multiplications but one of the
factors is small). It has been shown in Theorem 1 of [3] (see also Theorem 7
of [7]) that there exists a (simple) algorithm which computes X with only
k + h — 3 modular multiplications.

We finally explain how to use the above technique in a completely different
scenario : instead of precomputing and thus storing a rather substantial set
of integers, one uses the server to help with random pair generation. Appli-
cations that we have in mind are related with devices whose computational
power and memory are extremely low (such as a smart-card, for example).
Such devices can optionnally be plugged in a base so as to communicate with
a server (a PC which may or may not be connected to the Internet). We use
the server in the following way:

Loading Step - server side: The server generates n random integers
Q1,...,0, € Zy. For each j = 1,...,n, it computes §; = g¢ (mod p)
and broadcasts the values of o; and ;.

Loading Step - client side: The server randomly generates S C {1,...,n}
such that |S| = k and, while receiving the server’s communication, the client
stores the k pairs (a;, §;) corresponding to the indices j in S.

After this, one applies the above extended pair generation procedure and
stores the pair (z, X) for further signature generation.

It should be noted that, in the special case where h = 2, the two steps
that have to be performed by the server can be merged since the required
multiplications can be performed on the fly. This definitely reduces the
overall memory needed.

We believe that our scheme is realistic and, in Section 6, we will propose suit-
able choices for the parameters that should allow practical implementations.

However, some precautions are in order. Firstly, it should be impossible to
detect the choices of indices performed by the client to form S. Otherwise,
the pair (z, X) used at signature generation becomes known to the attacker
and, as is well known, this allows to disclose the secret signing key. Sec-
ondly, the server should be trusted. Otherwise, there are easy strategies that
disclose the signing key again: for example, one can feed the device with
n identical pairs. On the other hand, we do not require the various pairs
(ej, Bj) to remain secret since we only care about the randomness of the
output pair.

Smart cards manufacturers have developped countermeasures against “tim-
ing” and “power” attacks, which should hopefully address our first concern.
As for the second, it can be handled by various cryptographic means. If
there is a communication link from the card to the server, both can perform
a key exchange and the server can encipher the communication. There are
ways to achieve this and keep the computational overhead low for the server.
In a “broadcast” scenario, this becomes impossible and the only way seems
to have the server hash-and-sign the broadcast. Again, this can be done by
keeping the computing power of the client low, for example, by using low-
exponent RSA. Still, it might be the case that the device cannot hash on the
fly and keep up with the communication speed. A way to overcome the dif-
ficulty is to use hash-trees: once the pairs have been sent, the full hash-tree
built from the n pairs is broadcast, together with the signature of its root.
The client only needs to capture the k£ paths requested for checking the hash
computations and the signature.

3 Distribution of Modular Sums

Let us define
e(z) = exp(2miz/M).

We make use of the identity

Ml [0, ifuz0 (mod M);

which holds for any integer v and which follows from the formula for the sum
of a geometric progression (see Exercise 11.a Chapter 3 of [20]).

Lemma 1 For any integer A 20 (mod M),

2

= M"(B).

>

acZy,

Y e(la-x)

x€EB

Proof. We have

=> Y e(A(a-x—a-y)).

x,yeEBacZy,

)y

acZyy,

Y e(ra-x)

xEB

If x = y the contribution of the inner sum is M™. If x # y then, assuming
without loss of generality that z,, # y,, we obtain

Z e(A(a-x—a-y))

acZy,
n—1 M—-1
= > e A gl —yy) | D e(Aan(zn —yn)) =0
(al,...,an,l)elg/[_l j=1 an=0
and the desired result follows. O

Using the Cauchy inequality, we derive from Lemma 1 that

>

acZy,

S e(ra-x)| < M"|B|'2. (2)

x€EB

Theorem 2 The identity

1)2 M-1
~ M|B|

1
W Z Z (Pa(B’C)_M

aEZ"M c€EZ

holds.

Proof. From (1) we have

Nu(B.)= 22 3 Y e(A(ax—0)).

XEB A=0

The contribution of the term corresponding to A = 0 is |B|/M.

8

Therefore

¥ (M0 BNy (ﬁgemdzeua-x))

cEZ cEZ x€EB

2

-1

~ LY Y etwctitm) ¥ era-x+na-y)

c€Znyr An=1 x,yeB

1 M—-1
Z Y e(Qa-x+na-y) Y e(=Ac—nc).
)\77 1x,yeB cEZ

The sum over ¢ vanishes if \+7# 0 (mod M) and is equal to M otherwise.
Hence,

3 (N (B c)—@)2 - L Zl e(A(a-x—a-y))
c€Zas M M = x,yEB
M— 2
- 4 X Seba
M =1 IxeB
Applying Lemma 1, we obtain the desired result. O

In particular, using the Cauchy inequality we obtain

1
Mn Z Z a nk,h,C) — M‘ < MI/Q‘Bn,k,hrlﬂ- (3)

acZ}, c€EZy

4 Statistical distance

In complexity theory, it is customary to use the notion of statistical distance
between two distributions (see for instance [11, 6]). Recall that the (proba-
bility) distribution D associated with a random variable X over a set S is the
function mapping any n of S to D(n) = Pr(X = n). The statistical distance
between two distributions ¢/ and V over a finite set S is defined as:

ZIU n)|.

nES

It is indeed a distance.

We will need to consider sampled distributions.

9

Denote by D™ the distribution defined over S™ by choosing independently at
random m samples of S, according to D. In other words, D™(ny, ..., ny) =
D(n1)D(ng) - - - D(nym). We will use the following elementary result, which
shows that, when two distributions are close, the sampled distributions re-
main close:

Lemma 3 Let U and V be two distributions defined over a set S. Then for

all integer m.:
LU™, V™) <mLU,V).

Proof. Define m + 1 hybrid distributions Dy over S™ by choosing indepen-
dently k£ elements of S according to U, and m — k according to V. That is,
we let for k£ in {0,...,m}:

Di(ni,...,nm) = [] Un) x J] V(n).

1<i<k k<i<m

In particular, the distributions Dy and D,,, are respectively identical to U™
and V™. From the triangle inequality, we have:

m—1
Lu™,ym < Z L(Dy, Dy11).

k=0

We conclude by noting that each distance L(Dy, Dyy1) is actually equal to
LU,V). O

5 Security of Signature Schemes with the
EBPV Generator

Any signature scheme consists of three algorithms: a key generation algo-
rithm Ay, a signature algorithm Ay, and a verification algorithm Aver.
When a preprocessing generator is used, the key generation and signature
verification algorithms remain the same, but one adds a preprocessing gen-
eration algorithm Apre.

Let ‘A;ig be the new signature algorithm using the generator, which takes
as input the signature keys, the message to sign, and the precomputations
generated by Apre.

10

We restrict the definitions to the cases we are interested in (such as the El
Gamal, DSA, Schnorr and similar signature schemes), by clarifying the link
between Ag and A;ig' The security proof is only valid for that model,
which we now make precise. At each signature request, the algorithm Ag;,
calls a probabilistic oracle outputting a value of the form (z, f(z)) where
is uniformly distributed over the set of keys and f is a function given on this
set. The value is then used to produce a signature. For instance, with the
DSA [13] and Schnorr [19] signature schemes one has f(z) = ¢* (mod p)
and the set of keys is Z},, where M is a 160-bit prime divisor of p — 1. The

bit-size of p varies from 512 to 1024.

The algorithm 'A;ig differs from Ag, only by the oracle called. The new
probabilistic oracle, that is the generator, always outputs a value of the form
(x, f(z)) with the same function f, but this time, the distribution of z is
not necessarily uniform. We will call defect A of the generator the statistical
distance between its distribution and the uniform distribution.

*

The oracle of Ag, only takes the keys as input, whereas the generator of Asig

takes as input both the keys and the precomputations.
Note that the defect of the EBPV generator is equal to

1 1

Aa(n, k, h) = 3 > | Pa(Bujns) — i (4)

CEZM

and thus can be estimated using (3).

We now model an attacker, with respect to the most powerful attacks, namely
adaptive attacks (see [6]). We call an adaptive attack with m chosen messages
any algorithm which makes exactly m requests to the signature algorithm
on messages of his choice, during an execution. Such an attack is said to
succeed an existential forgery if it produces a valid signature of a message of
which it had not requested a signature. For any adaptive attack 7* against
the speeded-up signature scheme, one can associate an adaptive attack T
against the original signature scheme, by replacing each call to A;ig by a
call to Agjg, with the same parameters. The attacks therefore have the same
complexity (remember that each call to the signature algorithm contributes
only by one unit to the overall complexity of the attack).

Theorem 4 Let T* be an adaptive attack with m chosen messages against
the signature scheme using the EBPV generator with parameters n, k and

11

h. If T s the adaptive attack corresponding to the original signature scheme,
then the probabilities Py(n, k,h, m,T*) and P(m,T) of success of existential
forgery for identical choices of the keys for both attacks

satisfy
1
Mn

-1/2.

> |Pa(n kyhym, T*) = P(m, T)| < mM'?|By g,

ac”Zy,

Proof. The attack 7* requests at each execution exactly m signatures. For
each of those m signatures, the signature algorithm uses a pair of the form
(si, f(s;)) outputted by the generator, where s; has values over a certain set
S of keys. All these values sq,...,s,, are pairwise independent. Therefore,
the success probability of the attack 7* is equal to:

Z Pr generator (V4, 5s = w;) X Pr(7T™ succeeds | Vi, s; = w;).

(w1, Wm)ES™

Similarly, the success probability of the corresponding adaptive attack 7
against the original scheme is equal to:

> Pr oracle (V4, 8; = w;) x Pr(T succeeds | Vi, s; = w;),

(w1 yeee,Wm)ES™

with a uniform distribution for the sy,...,s,. But the link between A,
and Aj;, ensures us that the conditional probabilities appearing in the two
formulas are identical, and less than 1 by definition. Hence, the difference
of the success probabilities of the two attacks 7 are 7 is bounded from the
above by:

Z ‘Pr generator (Vi, Si = wi) — Proracle (Vi; S = wi) .

(wl,...,wm)esm

This expression is equal to two times the statistical distance between the
distribution obtained by sampling m outputs of the generator and the uni-
form distribution. Applying Lemma 3, the identity (4) and the bound (3)
we conclude the proof. O

It follows that when the distribution of the generator output is sufficiently
close to the uniform distribution, the BPV signature scheme is secure against
existential forgeries, provided that the original scheme is.

12

6 Selecting the Parameters

First of all we remark that for A = 2, the estimate (4) and well known bounds

of binomial coefficients imply that for every p > 0 and k& = |plog M |, for

every A > 0 there exists a constant v such that for n = |ylog M| we have
1 " —A+o

T 2 [Pa(nk,2,m, T7) = P(m, T)| < mM~ "+, (5)

acZy,

For bigger (but still polynomial in log M) values of n one can take even
smaller values of k. For example, it is easy to see that for any A > 0 if one

selects n = [(A +0.5) log? MJ and k£ = |log M/loglog M| then
1
T 2 |Pa(nk,2,m, T7) = P(m, T)| < mM Ao, (6)

acZy,

In particular, the bounds (5) means that for any desired ratio p ~ k/log M
there is a value of n = O(log M), that is, linear in the bit size of M such
that the corresponding BPV generator signature scheme is secure against
adaptive attacks (provided the original signature scheme is secure). Taking
n quadratic in the bit-size of M, we derive (6) that growing speed-up can be
achieved without compromising the security of the scheme.

We remark that case h = 2 has a very important advantage that the compu-
tation of a-x, for x € B, ; does not require any storage, it takes only £ — 1
multiplications.

Now we show that, selecting bigger values of h rather than h = 2, one can
achieve even better results.

First of all we remark that ifn = k = | Alog M/ loglog M | and h = [n/logn|
then

|Bn k,h| — M7A+0(1)a

thus the bound (6) holds for this selection of parameters as well. And the
total computational cost is n+o(n) thus asymptotically less than for repeated
squaring and other exponentiation schemes without compromising on the
security and with very reasonable storage requirements, namely with storing
k = O(log M/ loglog M) precomputed values.

Some other choices of n, k£ and h are possible as well, depending of the
particular application. For a given choice of n and a given number of multi-
plications (which is k 4+ h — 3), one can compute the optimal values of k£ and

13

Number of multiplications

n Comm. time 20 25 30 35
100 1.3s 229 & 17 217 & 21 26 & 24 275 & 28
1000 13s 27L& 18 [279 & 23 | 2739 & 27 | 2% & 31

10000 2mins 11s [2733 & 19 | 279 & 24 | 2785 & 28 | 2711 & 32
100000 22mins 2750 & 20 | 279 & 24 | 27132 & 29 | 27166 & 33

Table 1: Value of +/M/|B,, k| and optimal value of k for a 160-bit M.

h that minimize the defect. Table 1 gives such values and the correspond-
ing defect for a 160-bit M, together with the communication time, assuming
a speed of 115200 bauds, the choice of a 1024-bit prime p, and a 160-bit
hash function as in DSA (for n pairs and the hash tree with a 160-bit hash
function, one needs to send n(1.18) 4+ 2n(0.16) Kbits).

7 Remarks

It is easy to see that one can obtain analogues of Theorem 4 for identification
schemes as well.

One can also obtain similar results for the RSA-based generator with pre-
computation which has been introduced in [2] as well.

References

[1] M. Ajtai, ‘Generating hard instances of lattice problems’, Electronic
Collog. on Comp. Compl., Univ. of Trier, TR96-007 (1996), 1-29.

[2] V. Boyko, M. Peinado and R. Venkatesan, ‘Speeding up discrete log
and factoring based schemes via precomputations’, Proc. of Euro-
crypt’98, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1403
(1998), 221-234.

14

3]

9]

[10]

[11]

[12]

[13]

E. Brickell, D.M. Gordon, K.S. McCurley, and D. Wilson, ‘Fast expo-
nentiation with precomputation’, Proc. of Eurocrypt’92, Lect. Notes
in Comp. Sci., Springer-Verlag, Berlin, 658 (1993), 200-207.

E. F. Brickell and K. S. McCurley, ‘An interactive identification
scheme based on discrete logarithms and factoring’, Journal of Cryp-
tology, 5 (1992), 29-39.

T. El Gamal, ‘A public key cryptosystem and a signature scheme
based on discrete logarithms, IEEE Trans. Inform. Theory, 31 (1985),
469-472.

O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudo-
randomness, Springer-Verlag, Berlin, 1999.

D.M. Gordon, ‘A survey of fast exponentiation methods, Journal of
Algorithms, 27 (1998), 129-146.

F. Griffin and I. E. Shparlinski, ‘On the linear complexity of the Naor—
Reingold pseudo-random function’, Proc. of 2nd Intern. Conf. on In-
form. and Commun. Security, Sydney, 1999, Lect. Notes in Comp.
Sci., Springer-Verlag, Berlin, 1999, 301-308.

R. Impagliazzo and M. Naor, ‘Efficient cryptographic schemes prov-
ably as secure as subset sum’, J. Cryptology, 9 (1996), 199-216.

C. H. Lim and P. J. Lee, ‘More flexible exponentiation with precom-
putation’, Proc. of Crypto’94, Lect. Notes in Comp. Sci., Springer-
Verlag, Berlin, 839 (1994), 95-107.

M. Luby, Pseudorandomness and cryptographic applications, Prince-
ton University Press, 19969.

M. Naor and O. Reingold, ‘Synthesizers and their application to the
parallel construction of pseudo-random functions’, J. Comp. and Sys.
Sci., 58 (1999), 336-375.

National Institute of Standards and Technology (NIST), FIPS Publi-
cation 186: Digital Signature Standard, May 1994.

15

[14]

[15]

[16]

[17]

18]

[19]

[20]

P. Nguyen and J. Stern, ‘The hardness of the hidden subset sum
problem and its cryptographic implications’, Proc. of Crypto’99, Lect.
Notes in Comp. Sci., Springer-Verlag, Berlin, 1666 (1999), 31-46.

P. de Rooij, ‘On the security of the Schnorr scheme using prepro-
cessing’, Proc. of Furocrypt’91, Lect. Notes in Comp. Sci., Springer-
Verlag, Berlin, 547 (1991), 71-80.

P. de Rooij, ‘Efficient exponentiation using precomputation and vector
addition chains’, Proc. of Eurocrypt’9/, Lect. Notes in Comp. Sci.,
Springer-Verlag, Berlin, 950 (1995), 389-399.

P. de Rooij, ‘On Schnorr’s preprocessing for digital signature schemes’,
Journal of Cryptology, 10 (1997), 1-16.

C. P. Schnorr, ‘Efficient identification and signatures for smart cards’,
Proc. of Crypto’89, Lect. Notes in Comp. Sci., Springer-Verlag,
Berlin, 435 (1990), 239-252.

C. P. Schnorr, ‘Efficient signature generation by smart cards’, Journal
of Cryptology, 4 (1991), 161-174.

I. M. Vinogradov, Elements of number theory, Dover Publ., New York,
1954.

16

