A new paradigm for public key identification

Jacques Stern,
Laboratoire d’informatique,
Ecole Normale Supérieure

Abstract

The present article investigates the possibility of designing zero-knowledge identi-
fication schemes based on hard problems from coding theory. Zero-knowledge proofs
were introduced in 1985, in a paper by Goldwasser, Micali and Rackoff ([16]). Their
practical significance was soon demonstrated in the work of Fiat and Shamir ([11]),
who turned zero-knowledge proofs of quadratic residuosity into efficient means of es-
tablishing user identities. In the present paper, we propose a new identification scheme,
based on error-correcting codes, which is zero-knowledge and seems of practical value.
Furthermore, we describe several variants, including one which has an identity based
character. The security of our schemes depends on the hardness of finding a word
of given syndrome and prescribed (small) weight with respect to some randomly gen-
erated binary linear error-correcting code. This is, of course, not the first attempt
to design a cryptographic scheme using tools from coding theory. The difference is
that identification protocols do not follow the public key paradigm based on trap-door
functions and described in the seminal Diffie-Hellman paper ([8]). Rather, they only
require one-way functions, which opens the way to using, in a rather direct manner,
simple combinatorial problems of the kind provided by coding theory. The resulting
schemes compare favourably to their number-theoretic analogues.

0 Introduction

Modern cryptography is concerned with algorithms and schemes which ensure confidentiality,
integrity and proof of origin for digital communications. In conventional cryptosystems, these
various functionalities are provided in a setting where the transmitter and the receiver share
a common key, whose secrecy is requested for proper operation. A major breakthrough
took place in 1976 with the appearance of public-key cryptography ([8]). In their paper,
Diffie and Hellman proposed a new concept, allowing the use of two matching keys, one
for encryption and a different one for decryption. The main novel character of the concept
is that the encryption key need not be kept secret. Shortly afterwards, Rivest, Shamir
and Adleman invented the celebrated RSA algorithm ([29]). This algorithm is a public key
system making heavy use of operations modulo a large integer n obtained by multiplying
together two prime numbers and whose security is related to difficulty of factoring n. Since
then, nearly all new cryptographic schemes have been based on hard problems from number

theory, despite the fact that this produces a significant computing load. One of the most
noticeable exception is the well-known encryption scheme introduced by McEliece, which uses
Goppa codes (see [25]). Even if the question of finding appropriate alternative techniques is
considered a major open problem in the area of public key cryptography, little progress has
been made.

Subsequent research in the area has been aimed at achieving simpler functionalities at a
lower cost in terms of computing load. This research has been quite successful in the setting
of identification, where a user attempts to convince another entity of his identity by means of
an on-line communication. Of course, the transaction should not give enough information to
allow anyone else to misrepresent himself as the legitimate user, including the entity carrying
the identification process. A major step forward in this area was made with zero-knowledge
proofs, introduced in 1985, in a paper by Goldwasser, Micali and Rackoff ([16]) and whose
practical significance for public key identification was soon demonstrated in the work of Fiat
and Shamir ([11]). Still, zero-knowledge based techniques have continued to rely on number
theory, even though the new protocols do not exactly follow the basic public key paradigm
invented by Diffie and Hellman and requiring trap-door functions ([8]). Rather, they are
based on one-way functions, which is a less stringent requirement and which opens the way
to using simpler techniques, more combinatorial in spirit. In 1989, there were two attempts
to build identification protocols based on simple operations (see [33, 24]). The first one relied
on the intractability of some coding problem but, unfortunately, was not really practical,
due to its heavy communication load. The other one was based on the so-called Permuted
Kernel problem (PKP). It achieved limited computing time both on the user’s side and on
the verifier’s side and low communication complexity. Furthermore, it was well suited to the
environment of small portable devices using 8 bit microprocessors.

In the present paper, we propose a new identification scheme, based on the hardness of
a problem from coding theory which we call the syndrome decoding problem (SD). Besides
coding theory, the security only relies on the very simple cryptographic primitive of hashing
and thus offers a true alternative to number-theoretic protocols. When formalized at a
suitable level of generality, this scheme is zero-knowledge. Furthermore, it seems of truly
practical value: as for the PKP scheme, discussed above, it has limited computing load and
communication complexity. Also, since it only uses the logical operations induced by coding
and the efficient operations involved in hashing, it could easily be partially implemented in
hardware, with a definite gain in terms of efficiency. The results in this paper have been
announced in [35].

The paper is organized as follows: section 1 discusses the underlying hard problem from
coding theory on which the scheme is based. This is in the framework of complexity theory.
The identification protocol itself appears in section 2. Next, in section 3, we give formal proofs
of the zero-knowledge property. Section 4 provides a more informal treatment of several
variants of the basic scheme. We close the paper by mentioning various other combinatorial
problems that lead to related schemes.

1 The underlying hard problem

As was mentioned in the introduction, an identification scheme uses a specific one-way
function. Actually, a one way-function is not a mere function but a family of functions f,,
depending on an integer n, which is usually thought as a security parameter. In order to
simplify matters, we will always assume that the domain D,, of f, is such that, for suitable
strictly increasing functions k(n) and I(n), I(n) > k(n), D, is included in {0,1}™ and is
the image of {0,1}*(™ by a one-to-one polynomial-time function. This is a particular case
of what is called polynomially-samplable. Note that our conventions imply that for n # m,
D,, and D,, are disjoint.

Definition 1 A collection of functions {f, : D, + {0,1} ™} is called strongly one-way
iof the following two conditions hold:

i)there ezists a polynomial-time algorithm F' that, on input x € Dy, always outputs f,(z).
ii) for every probabilistic polynomial-time algorithm A, every ¢ > 0 and all sufficiently large
n’s,

Pr(A(fu(X) € £ (fulX) < -

where X, is a random variable uniformly distributed over D,,.

Remark. Our notation possibly needs explanation: f, ! applied to some value y refers to
the set of all pre-images of y.

Of course, the practical relevance of the above definition is questionable as is the meaning
of proofs based on it. In practice, we have only constants and not parameters going to infinity.
This opens up a whole potential discussion on the role of complexity-based arguments in
cryptography and is not specific to the scheme presented here nor to the theorems proved
in order to assess its security. There are various ways to answer this objection. Firstly, we
may argue, based on experiments, that the asymptotics are actually relevant in the proposed
range of parameters. This is what is usually done for schemes based e.g. on the hardness of
factoring and parameters for these schemes are finely tuned, taking into account the latest
progress of factoring algorithms. We will develop similar argument for our scheme further
down in the present section. Secondly, we may view complexity-theoretic proofs as a mere
technique to validate the design of cryptographic protocols: with this modest approach,
schemes that are supported by some type of mathematical proof receive some evidence that
their design is not flawed but the word proof cannot be applied without precaution to the
practical implementations. Finally, we may use a specific lower bound on the security of
the concrete one-way function under consideration. Accordingly, the reductions used in the
proofs have to be analyzed for precise running time and lowering of the security. Since
it entails extra technical and notational difficulties we have chosen not to systematically
undertake this kind of analysis in a paper aimed at a large audience and to keep it for future
work.

We now turn to error-correcting codes. An (n, k, d) binary linear code is a linear subspace
of {0,1}" of dimension k, whose non zero elements have weight at least d. Here, {0,1}" is
viewed as a vector space over the two-element field, with the usual bitwise addition and
scalar multiplication. Members of {0,1}" are sometimes called words and the (Hamming)

3

weight of a word z, denoted by wg(x) is the number of ones it includes. The information
d-1
2

errors, where |¢| denotes, as usual, the integer part of a real number t. An (n, k, d) binary
linear code can also be defined by its parity check matrix which is an m-by-n binary matrix
(m = n — k), with the property that, for each vector of the code, the product (mod 2) of
the matrix by the vector is zero. In the matrix vector product, the element of the code is a
column vector and lies on the right of the matrix. Actually, this product can be computed
for any vector and is called the syndrome. If the vector is not in the code, the syndrome is
non zero.

It is well known that the question of finding the closest codeword to a vector is hard.
It is also difficult to find a word of given weight from its syndrome’s value (see [2]). More
precisely, the following problem, stated in the style of [12], is NP-complete:

rate of an (n, k, d) binary linear code is the ratio k£/n and the code can correct up to [

Instance An m X n binary matrix H = (h;;), a binary non-zero vector y = (y1, ..., Ym),
and a positive integer w.

Question Is there a binary vector x = (z1,...,x,) with no more than w 1’s such that, for
1<i<m, 37 hij -2 =y (mod 2) ?

Comment: The variant in which we ask for an z with ezactly w 1’s is NP-complete, even for
y =(0,0,...,0). If we drop the word “exactly”, the question becomes open.

NP-completeness ensures that there is no polynomial-time algorithm for solving a problem
in the worst case; however many NP-complete problems can be attacked after a suitable
preprocessing phase or can be suitably approximated or else can be efficiently solved on
average. The first issue has been discussed in a related work of Bruck and Naor ([5]), where
they present a linear code, such that even with a large amount of pre-processing (based
on the parity matrix only), it is still hard to produce a minimum-weight word leading to
this syndrome. Non-approximability results for the minimum distance of a code appear
in [1]. As for the the hardness of random instances, the question has been investigated by
various researchers, especially for families of random codes with a constant information rate.
Such codes can be obtained by randomly filling up a parity check matrix of the appropriate
dimension with zeros and ones. It is known that these codes almost surely satisfy the Gilbert-
Varshamov bound ([23]) and therefore that they can correct a constant fraction of the length
of the codewords. More accurately, we let p = k/n and we define a function A = GV (p) by
the relation 1 — p = Hy(A), with 0 < A < 1/2 and Hs(z) = —zlogy,x — (1 — z) log,(1 —).

Then, for any § < A, random codes with information rate p almost surely decode [‘5—”J errors.

Still, it is difficult do decode with respect to these codes and it even looks equallir hard to
exhibit codewords achieving the minimum distance or to find words of given syndrome whose
weight is close to the minimum distance. Several probabilistic algorithms have been proposed
that solve these problems (see [19, 34, 6]) but their running time is exponential. In practical
terms, it appears relatively easy to design efficient probabilistic algorithms which find words
of very low weight and given syndrome, and similarly for words of average weight, but the
probability of success decreases exponentially with the prescribed weight, the most difficult

case arising for values close to the Gilbert-Varshamov bound.

In order to encapture the notion of hardness that was just described, we make the fol-
lowing definition, where M(p X q) denotes the set of binary matrices with p rows and ¢
columns::

Definition 2 Let 0, § be in (0,1); The SD(6,0) collection is the set of functions {f,} such
that:

D, ={(M,z)|M € M(|0n]|xn),z € {0,1}",wg(z) = |dn]}

fo: (M,z) — (M,M -x)

With this definition, we can formally state the intractability assumption on which the
identification scheme proposed in this paper is built. It expresses the hardness of what we
call the Syndrome Decoding problem.

Intractability assumption Let 6 be in (0,1). Then, for all § such that 0 < 6 < 1/2 and
H,y(5) < 8, the SD(0, 6) collection of functions is strongly one-way.

As was already pointed out, the above intractability assumption does not tell much
about the choice of actual parameters that guarantee that the concrete problem of finding
short codewords is beyond the limits of current computing technology. A survey of known
algorithms for solving this problem appears in [6] with a discussion of their possible imple-
mentations and of their actual performances. We refer the reader to this paper and we only
briefly comment on some figures taken from [6], for the case § = 1/2. When n = 256 and
m = 128 finding a word of weight close to 30 from its syndrome is possible and takes a few
hours on a workstation. On the other hand, if we set n = 512, m = 256 and look for a word
of weight 56, the workfactor for the search based on the best algorithm can be estimated as
270 Even if it is difficult to make exact comparisons, it seems that this involves a computing
effort similar to what might be needed for factoring a 512 bit integer. Obviously, larger
dimensions yield better security.

2 The identification scheme

2.1 Description of the scheme

The purpose of the scheme is to allow the identification of users in a system run by a central
trusted authority. The proposed scheme uses a fixed (mxn)-matrix H over the two-element
field. This matrix is common to all users and is originally built randomly by the authority.
Ideally, this means that each bit of the matrix is chosen uniformly and independantly, even
if practicality may impose the use of some form of pseudo-random bit generator, as will be
discussed later. H is used as a parity-check matrix and, as observed in the previous section,
it provides a linear binary code with a good correcting power.

Upon registration, each user U receives a secret key sy, chosen at random by the authority
among all n-bit words with a prescribed number p of 1’s. This prescribed number p is also
part of the system. The public identification of the user is computed as

iU = H.SU

This public identification is made available in some form of directory or is certified by means
of a digital signature of the authority. It may further be linked to the actual identity of the
user. This allows a registered participant who wants to access a given ressource to submit
his public identity in order to undertake an identification session. Once the correctness of
the public identity has been checked by the entity controlling the ressource, either through
the directory or by means of the certificate, the interactive identification protocol can take
place.

The identification scheme relies on the notion of a commitment. A commitment is an
electronic way to temporarily hide a sequence of bits u that cannot be changed. It is actually
a two-stage process: a commit stage and a decommit stage. In the commit phase, the user
transmits the image (u) of u via some public cryptographic hash function. Later, during
the decommit phase, the user simply reveals the value of v and the computation of (u)
can be checked. Commitments are usually achieved by hash functions. This is a standard
cryptographic tool and, from a practical point of view, several hash functions such that MD5
(see [30]) or SHA (see [31]) can be used. The usual property required for hash functions is
collision-freeness: it should be impossible to forge different sequence of bits u and v such
that (u) = (v). The existence of collision-free hash functions is a widely believed assumption
and can be suitably stated in the context of complexity theory by considering a collision
free family, since the hash function depends not only on its input u, but also on the security
parameter n. Note that the image of u by a collision-free hash function binds the value of
u by preventing the user to announce another string v at the decommit stage. Still, it does
not ensure the stronger property that no partial information on the committed string u can
be recovered. A drastic way to ensure this property is to model the commit function (u) by
a truly random function. This hypothesis has already been used by various authors and is
nicely developed in [4]. The underlying complexity-theoretic model is the Turing machine
with random oracle. Another possibility is to add randomness to the hash function: instead
of computing the image of u by a collision-free hash function A, one computes the image of
pllp® u, where p is a randomly chosen string with the same length as u and where || denotes
concatenation. We will call this technique random hashing.

We now describe the basic interactive protocol that enables any user U (which we call
the prover) to identify himself to another entity (which we call the verifier). The protocol
includes r rounds, each of these being performed as follows:

1. The prover picks a random n-bit word y together with a random permutation o of the
integers {1---n} and sends commitments c1, ¢, c3 respectively as

c1 = (o|[H(y))
2 = (y.0)
cs = ((y © sv).0)

to the verifier. A permutation o is being considered in this setting as a vector of bits
which encodes it; also note that y.o refers to the image of y under permutation o.

2. The verifier sends a random element b of {0, 1, 2}.

3. If b is 0, then, the prover returns y and o. If b is 1 then, the prover reveals y @ s and
o. Finally, if b equals 2, then the prover discloses both y.c and sy.o.

4. Tf b equals 0, the verifier checks that commitments ¢; and ¢y, which were made in step
1, have been computed honestly. More accurately, let ¥ and ¢ be the answers received
from the prover at step 3, then the equations to check are as follows:

¢ = (0]|H (7))
2 = (J.0)

If b equals 1, the verifier checks that commitments ¢; and c3 were correct. Again, let
us denote by y and ¢ the answers received from the prover at step 3. Note that from
the equation

H(y)=H(y @ sv) ®iv

it follows that the first check amounts to the equation
¢ = (0[|H () ® iv)

As for the second check, it reads

cs = (7.0)
Finally, if b is 2, the verifier checks the weight property and commitments ¢, and cs.
Denoting by y and s the answers received at step 3, this corresponds to verifying that
wp (§) has the prescribed value p and that the following equations hold

ca = (7)
c3=(J @ 3)

It should be understood that the description that was just given refers to the case when
commitments are simply achieved by hashing. When random hashing is used as explained
above, then each commitment ¢;, j = 1,2,3 uses a random string p;, j = 1,2,3. Step 3
should then be replaced by the following

e If bis 0, then the prover returns y, ¢ and p;, po. If bis 1, then the prover reveals y & s,
o and pq, ps. Finally, if b equals 2, then, the prover discloses y.o, sy.0 and ps, ps.

Obvious changes are also needed in step 4, in order to properly decommit.
The number r of consecutive rounds depends on the required level of security and will
be discussed further on as well as the values of the parameters n, k, p.

2.2 Practical versions of the scheme

We first briefly discuss security issues from an informal point of view. A more formal ap-
proach will be taken in the next section. Clearly, the security of the scheme relies on the
difficulty of inverting the function

s — H(s)

when its arguments are restricted to valid secret keys. Section 1 already gave some evidence
of this difficulty. In order to propose minimum size parameters, we note that any inversion
algorithm solves the problem of finding a word of weight p in the code consisting of all words
x such that H(z) is 0 or i. We next use the precise asymptotic evaluation of best algorithms
computing codewords of small weight, recently given in [6] and confirmed by experiments in
moderate sizes. This leads to the following possible sizes:

e n=>512,m=256,p= 56
e n="T68m=384,p=284
e n=1024,m =512,p =110

These values correspond to codes with information rate 1/2. The value of p is slightly
below the Gilbert-Varshamov bound. This is in accordance with the observations made
in section 1. From the estimations of [6], the workfactor for the known algorithms that
might reveal the secret is above O(Q¥) where 2 is about 1.18 for the chosen values. For the
minimum parameters quoted above, this yields a value close to 27°, which can be considered
as unfeasible. Of course, larger parameters and trade-offs between the size of the code and
its dimension can be considered. Also note that the parameters here are being chosen by
considering only a time estimate for the most direct attack, namely finding a secret key sy
from H and iy. This ignores the fact that, in the reduction of the security of the scheme
to inverting H, which will be given in the next section, there may be some degradation of
the security level and this could mean that larger parameters are advisable. This type of
analysis has already been considered in section 1 and, as was noted there, is not specific to
the cryptographic scheme introduced in this paper. The only argument that we can offer
is that we know of no other way to break the scheme than solving the underlying hard SD
problem.

In order to counterfeit a given identity without knowing the secret key, various strategies
can be used.

1. Having only y and o ready for the verifier’s query and replacing the unknown sy by
some arbitrary vector ¢ of weight p, for the computation of the various commitments.
Thus, the false prover hopes that b is 0 or 2. In the first case, he can simply disclose y
and ¢ and in the second case, he returns y.c and t.0. On the other hand, he is unable
to answer when b = 1 and, as a result, the probability of success is (2/3)", where r is
the number of rounds.

2. A similar strategy can be defined with y @ s in place of y. In this case, the false prover
hopes that b is 1 or 2

3. Having o and both y and y @ t ready where t is some element such that H(t) = i,
distinct from sy and whose weight is not p. This strategy expects that b is 0 or 1 and
again yields the same probability of success.

It is fairly clear that shifting between one strategy to another has also the same probability
of success.
We close this section by various remarks related to the actual performances of our scheme.

. It might be thought that the proposed scheme requires a large amount of memory.
This is not accurate: on one hand, because the operations to perform are very simple,
they can be implemented in hardware in a quite efficient way; on the other hand, if the
scheme is implemented, partially or totally, in software, it is not neccessary to store all
of H. One can only store words corresponding to some chosen locations and extend
these by a fixed software random number generator.

. The communication complexity of the protocol is comparable to what it is in the Fiat-
Shamir scheme when only one key is used. If we assume that permutations come from
a seed of 120 bits via a pseudo-random generator and that hash values are 128 bits
long, we obtain an average number of bits per round which is slightly above 1000 bits
when n = 512. There is a trick that can save one hash value. It consists in replacing
in step 1 ¢, g, c3 by {c1||ea||e3). This requires providing the missing hash value at
step 3, which becomes

(a) If b is 0, then the prover returns y, o and c3. If b is 1, then the prover reveals
Yy @ s, o and cy. Finally, if b equals 2, then the prover discloses y.0, sy.0 and ¢;.

Step 4 has also to be modified accordingly. The trick saves 128 bits per round and the
resulting communication complexity is close to 900 bits on average.

. The security of the scheme can be increased by taking n, £ and p larger. The figures
n = 512, k = 256 are to be considered as a minimum.

. The heaviest part of the computing load of the prover (which is usually a portable
device with a limited computing power) is the computation of H(y), which is done
in step 1. This load can be drastically reduced by extending the protocol to a 5-pass
version which will be discussed further on in this paper.

. Considering that the probability of any cheating strategy is bounded above by (2/3)",
where r is the number of rounds, we see that the basic protocol has to be repeated
35 times in order to achieve a level of security of 107%. A key difference between the
proposed schemes and previous proposals is the fact that a single round offers only
security 1/3 instead of 1/2. There is a variant of our protocol that achieves security
1/2. Tt will be discussed further on in this paper

. As is the case for Shamir’s PKP, our scheme is not identity based. This means that
public keys necessarily have to be made available by means of a directory or that they
have to be certified by the issuing authority. We will consider below a variant of this
scheme with an identity-based character.

. Following [11], our identification scheme can be turned into a signature scheme as
follows:

e prepare r commitments c{, c%, c%, j =1,---r according to the instructions for step
1 and hash them together with the message m

e use the prepared commitments for step 1 and replace the verifier queries at step
2 using the successive digits of the hash value computed above in a base-3 repre-
sentation

e compute the answers at step 3 as prescribed

e issue the transcript of all communications sent during the r steps as the signature
of m

Note that the quantity (3/2)" now represents the workfactor needed to forge a sig-
nature: the attacker can try (3/2)" variants ¢; until, by trial and error, he finds one
whose hash value provides questions that he is prepared to answer. Accordingly, a
larger value of r is required , say r > 120, in order to make the attack unfeasible. This
leads to rather long signatures. Still, if suitably optimized, the technique might prove
useful in specific scenarios, since verification is quite fast.

2.3 Comparison with other schemes

We now undertake a comparison with known zero-knowledge protocols. This is not an easy
task especially if we want to address practicality: efficiency is actually dependant on the
type of platform on which the protocols are implemented and on the degree of optimization
of the software. Since we have not done large scale experiments with the numerous known
schemes, we will restrict ourselves to a few remarks. Several parameters are meaningful when
comparing schemes: the time for identification (on the prover’s side), the time for verification
(on the verifier’s side), the communication complexity, the key size and the security level.
In order to keep the discussion simple, we will ignore the latter by considering that the
minimum proposed parameters for our scheme, namely n = 512, m = 256,p = 56 offer
the same guarantee, as far as the underlying problem is concerned, as the number-theoretic
analogues based on 512-bit numbers. We will also adjust the respective number of rounds
so as to obtain a level of security of 1075. In the case of our scheme, this means 35 rounds.

Computing time. The various identification protocols can be organized in three groups.

e The schemes by Guillou and Quisquater ([17]), Ohta and Okamoto ([27]), Schnorr
([32]), Okamoto ([26]) all use modular exponentiation modulo a large number 7, both
on the prover’s side and on the verifier’s side. It is worth noting that, when n is 512 bits,
this operation requires 768 modular multiplications on average and leads to significant
computing time even on large machines: for example, on a SUN SPARC 10, about 70
milliseconds are needed for the prover and 120 milliseconds for the verifier. In a very
limited computing environment, such as the one provided by smart cards, the operation
simply cannot be performed unless some specific arithmetical co-processor is added.
With such a device on board, 768 modular multiplications are done in approximately
500 milliseconds.

e The schemes proposed in [11, 9] and usually called the Fiat-Shamir schemes, only
use modular multiplication. They are based on one or several secret keys, whose
respective square modulo some fixed large number n is public. When a single key is

10

used, the number of modular multiplications to perform is 1.5 on average (both for
the prover and for the verifier). This leads to 30 multiplications on each side for a
full identification with security level 1078. This is presumably of the same order of
magnitude as the 35 boolean matrix multiplications needed for our scheme. When
several keys are used, the number of multiplications in each round increases but the
number of rounds simultaneously decreases: with five keys and the same security level
of 107°, only 14 multiplications are needed on average.

e The scheme proposed by Shamir in [24] and known as the PKP scheme, from the
underlying “permuted kernel problem”, on which it relies and the present scheme are
quite similar in performances. Both can be implemented on a standard smart card
with no arithmetical co-processor. In the case of our scheme, an implementation has
been done on an SGS Thomson ST16623 card with 224 bytes of RAM, of which 140
bytes only are used for SD. One round is computed by the card in 800 ms.

Communication complexity. Clearly, the protocol proposed in the present paper can-
not compete with the various schemes using modular exponentiation and mentioned above.
These schemes can usually be performed in a single round, even if this is at the cost of
formally losing the zero-knowledge character that will be discussed in the next section. This
means that the overall communication stays in the kilobit range. The same is true for the
Fiat-Shamir scheme with a large number of keys. For the single key case, the communication
of each round is close to 1000 bits, which is very comparable to what we have. The figures
for PKP are similar so that these protocols only differ by the number of rounds needed.

Key size. In number theoretic protocols, the key length is usually of the same size as the
modulus n. This means 512 bits in the context that we discuss. It is higher for the multiple
key Fiat-Shamir scheme, since each key has to be stored. On the other hand, some algorithms
based on the discrete logarithm problem may have a shorter secret key: for example, in the
Schnorr scheme, the secret key can be made as small as, say, 140 to 160 bits. In our proposal,
the public key is 256 bits and the secret key is a vector of 512 bits with hamming weight 56.
The latter can be coded as a word of 512 bits but more compact encodings, close to 256 bits,
are also possible, for example by suitably decribing the successive gaps between the one’s
locations. The key size for PKP is similar. It is interesting to note that smaller key sizes are
possible as demonstrated by a recent result of the author (see [36])

From the above discussion, we see that the identitification scheme presented in this paper
will presumably appear attractive in severely limited computing environments such as those
offered by smart cards. In this setting, it might be easier to implement than the single-
key Fiat-Shamir protocol or the PKP scheme, that have similar performances. The slightly
larger number of rounds could be an acceptable overhead in situations when identification
is executed as a background task, access to the ressource being granted beforehand, on a
provisional basis.

11

3 The zero-knowledge property

Following [9], the security of identification schemes is based on three properties:

e The completeness property asserts that the execution of the protocol between
a prover who has the correct secret and a verifier is successful with overwhelming
probability.

e The soundness property encaptures the notion of knowledge: in an identification
protocol, the (secret) knowledge of the prover is demonstrated by the interaction. This
means that any machine which successfully performs identification, can be suitably
“modified” so that it outputs a possible secret key. This goes through the use of a
knowledge extractor, which is given the prover’s program and may run it as a subroutine
in order to finally extract the secret key. In practical terms, this has the consequence
that an intruder who has not been given a secret key, cannot identify himself as a regular
user, provided that the computation of the secret key from the matching public key is
actually hard.

e The zero-knowledge property, also called the simulation property guarantees that
the execution of the protocol does not leak any information on the secret key, even if
the verifier is replaced by a another machine with a somehow biased strategy aiming
at extracting data from the prover. This goes through the construction of a simulator,
i.e. a machine which recreates (at least statistically) the communication between the
prover and the verifier without being given access to the secret key. In practical term,
zero-knowledge ensures that repeated executions of the protocol do not provide any
kind of useful information that might help an intruder to misrepresent himself as a
regular user.

We now turn to formal proofs of security. This is in the framework of complexity theory.
The arguments in this section will follow those in [9] and we will also use similar notations.
Secret keys and public keys are related by a fixed polynomial-time predicate. Users are
polynomial-time probabilistic Turing machines with a special tape, called the knowledge
tape, on which they store their secret key. To remain consistent with our previous notations,
we call them provers. Verifiers are also polynomial time probabilistic machines. Interaction
is modelled by having the prover and the verifier share their input tape as well as another
tape called the communication tape on which they alternately write up the messages that
they broadcast to each other. Interaction ends up when the verifier enters a final state
outputting one bit indicating the decision to accept or reject.

Our scheme can actually be described within this framework: the overall system in
which identification is performed is modelled by a probabilistic polynomial time algorithm
which, on input n, produces a random parity check matrix H of size |n| xn. Here 8 is
a fixed parameter, which has been set to 1/2 in the practical examples given above. The
algorithm also produces, on request, at most polynomially many secret key-public key pairs
(s,7). These keys are such that H(s) = i and s has weight p = |dn], § being another fixed
parameter < 1/2 with Hy(J) < 6 or equivalently 6 < GV (1 —). The protocol of section 1
is interactively executed between a prover P with public key ¢ and a verifier V', both having

12

the common input (H, 7). Although several users are around, we will focus on the security of
the identification scheme where, at any time, there is only one protocol executing. We will
successively consider the three relevant properties (completeness, soundness and simulation)
and, for each one, we will recall the formal definition before entering the proofs.

3.1 Completeness

Consider an interactive protocol based on a polynomial-time predicate II(7, .S) and executed
by a prover P and a verifier V' on the common input I. Let ACC(P,V, I) denote the verifier’s
decision, where 1 stands for acceptance. Completeness asserts that, when P is given on its
knowledge tape an S such that II(7, S) holds, then V' accepts with overwhelming probability.
More formally,

VeanVI (|I| > n — Pr{ACC(P,V,I)} >1—|I|™°)

In our scheme, the input I is the pair (H,7) and the polynomial-time predicate consists
of the two relations H(s) = ¢ and wy(s) = p. It is easily seen that, when the prover is given
the appropriate s, ACC(P,V,I) is always one.

3.2 Soundness

The formal definition of soundness is quite intricate. Furthermore several variants have been
considered in the recent literature. The definition presented in [9] refers to the situation
where the prover is a probabilistic polynomial-time machine with access to a knowledge tape.
The knowledge extractor is given the prover’s program and the auxiliary input contained on
the knowledge tape. The starting hypothesis for using the extractor is the assumption that
the prover has a non negligible probability /=¢ of convincing the verifier on some input I,
formally:

Pr{ACC(P,V,I)} > |I|"®

The conclusion is that the extractor outputs with overwhelming probability an S such that
II(Z,S) holds. Note that the extractor is dependant on the constant c. The definition
from [10] is different in that the extractor runs in expected polynomial time rather than
polynomial time but treats provers more uniformly: for any given a and large enough I, it
outputs an S such that II(7, S) holds, with probability > Pr{ACC(P,V,I)}—|I| . Another
definition appears in [3]. It also treats the prover uniformly but allows a knowledge error k
to appear in the success probability for the extractor: namely, the extractor outputs an S
such that II(7,.S) holds, within an expected number of steps bounded by

1]
Pr{ACC(P,V, 1)} — &(|1])

This definition allows to prove soundness for a single round of an iterative protocol: for
example the knowledge error of our scheme with r =1 is 2/3.

We feel that the subtleties involved in the various definitions of soundness will only be of
interest to the zero-knowledge experts and we do not go further on this topic referring to [9,
10, 3] for more information. We will take a much simpler path here by only considering the

13

case of a polynomial time probabilistic machine P which operates with an empty knowledge
tape, i.e. without the secret. Assuming that such a machine has a nonnegligible probability of
success, we will build another machine outputting, with overwhelming probability a solution
s of the equation H(s) = i, with the prescribed weight. We call such a solution an acceptable
key. As above, nonnegligible means bounded from below by the inverse of a polynomial
in n. Observe that the existence of a machine outputting acceptable keys contradicts our
intractability assumption SD(f,). Thus, our approach already provides a strong argument
towards the security of our scheme. Furthermore, the reader familiar with [9, 10, 3] will
easily translate our statements into the respective formalism of these papers. In order to
carry the proofs through, we will make use of a property of the family of hash functions we
use, namely collision freeness. We first give a formal version of the security bounds stated
in section 2.

Theorem 1 Assume that some probabilistic polynomial-time adversary P s accepted with
probability > (2/3)" + €, € > 0, after playing a constant number v of rounds of the identi-
fication protocol. Then there exists a polynomial-time probabilistic machine which outputs
an acceptable key s from the public data or else finds collisions for the hash function, with
overwhelming probability.

Proof Consider the tree T'(w) of all 3" executions corresponding to all possible questions of
the verifier when the adversary has a fixed random tape w. Let

a = Pr{T(w) has a vertex with 3 sons }

where the probability is taken over w. If a is < ¢, then it is easily seen that the probability
of success of the adversary is bounded by (2/3)" +€: (2/3)" comes from the case where T'(w)
has no vertex with 3 sons and e from the other case. Thus « is at least € and by resetting
the adversary 1/e times, one finds, with constant probability, an execution tree T'(w) with
a vertex having 3 sons. Repeating again, the probability can be made very close to one.
Now a vertex with 3 sons corresponds to a situation where 3 commitments c;, ¢o, c3 have
been made and where the adversary can provide answers to the 3 possible queries of the
verifier. Consider the answer yg, og to the question b = 0, the answer w; (representing the
expected value y ® s), o1 to the question b = 1 and, finally, the answer z, (representing y.0),
to (representing s.o) to the question b = 2. Because commitment ¢; is consistent with the
answers to both b =0 and b = 1, we have

c1 = {00, H(yo)) = (01, H(w1) & 1)

we conclude that either a collision for the hash function has been found or else that oy = o,
and H(yo) = H(w;) @ i. Similar arguments show that, unless a collision has been found,
z9 = Yo-09 and zy @ty = wq.01. We note that, since the third answer is accepted, ¢, has the
prescribed weight. Writing o in place of oy = o1, we get

to=2® (ta® 22) = (Yo ® w1).0

so that yo @ w; also has the prescribed weight. Now, H (yo ® w1) = H(yo) ® H(w1) = ¢ and
we conclude that yo @ w, is an acceptable key.

14

The drawback of the algorithm described in the above proof is that the computing time
is exponential in 7: one can find an acceptable key with constant probability only by running
the adversary 1/e times for randomly chosen w and exploring each time the full execution
tree T'(w) for all possible queries of the verifier. We now describe a more efficient way of
using the adversary.

1. randomly select the content w of the random tape of P. This defines an execution tree
T(w).

2. randomly select a sequence for the verifier’s queries. This defines a branch b of T'(w).

3. visit all vertices along branch b. If a vertex v of T'(w) with three sons is found at level
1, then output w, b, 7, else return to step 1

Lemma 1 Under the hypotheses of theorem 1, the probability of success of each step of the
improved algorithm is bounded from below by €/10.

Consider the set X defined by
X = {w|T(w)has at least 2" 4 $3" branches }

We claim that X has probability at least €/2. Otherwise, we can bound the overall probability
of success of the adversary P by distinguishing the case w € X and the case w ¢ X. The
first case contributes by at most /2 and the second by (3)" +¢/2 and taking the sum yields
a contradiction. Now, when w is in X, we can consider the subtree of T'(w) consisting of
successful executions. Since w € X, this subtree has at least 2" + £3" branches. For any
index 7, 0 < i < r we let n; denote the number of vertices at level ¢ and for 0 < i < r, we
set «; = n;.1/n;. We have

r—1 €
H (07 2 2" + —3T
i=0 2
Taking logarithms, this yields
r—1 € p p
> log(ey) > log(2" + §3r) > log((1 — §)QT + 537“)
i=0

Using a convexity inequality, this is
> (1-— %)r + %rlogB
Hence one of the log(a;)s has to exceed 1+ £(log3 — 1), which implies
o; > 2.22083"D > 9 4 ¢In2(log3 — 1)

Now, if we let n; and n;3 respectively denote the number of vertices of T'(w) with at most
two sons and with three sons, we get
o < 2n49 + 313 :2_{_%
N2 + N3 n;
and this shows that the proportion of vertices with 3 sons at level i is larger than e 1n 2(log 3 —
1). Putting together the inequalities we see that

15

e we get w € X with probability > ¢/2
e we then get a successful branch b with (conditional) probability > (2/3)" + €/2
e we finally get a vertex with three nodes with (conditional) probability > €ln 2(log3—1)

Taking the product, we get the lower bound 20%3=1) ()3 which is > ¢

Together with the proof of theorem 1 the probabilistic estimates given by the lemma
show that repeating the basic step 10/(€)® times reveals an acceptable key with constant
probability ~ 1 — 1/e.

It should be noted that, lemma 1 actually provides some concrete security estimates:
assume for example that we aim at a security level which is € and that we are concerned
with an attacker which performs a huge preprocessing step with running time 7" and has a
subsequent small running time ¢ during the interaction. This is a reasonable scenario since we
are dealing with identification: there could be a time-out device for bounding ¢. Now, using
the attacker repeatedly, we find an acceptable key in time T' + %. This can be compared
with the time needed to attack the SD problem by the best known algorithms (see [6]). The
figures should be convincing enough for codes of size 1024 although they cannot really justify
the smaller parameter size that we suggest. But the same is true of all proofs that support
various number-theoretic schemes from the literature.

Lemma 1 can be read as proving soundness with knowledge error (2/3)" in the sense
of [3]. The following result achieves soundness in the sense of [9], provided that the number
of rounds is not too small.

Theorem 2 Assume that some probabilistic polynomial time adversary P is accepted with
non negligible probability after playing a number of rounds r(n) of the identification protocol
that is such that log(n) = o(r(n)). Assume further that the hash function is collision free.
Then there exists a polynomial-time probabilistic machine which outputs an acceptable key
from the public data with overwhelming probability.

Proof We use the above lemma. If 7(n) is the probability of success of P, then, since logn
is an o(r), we have, for n large enough (2/3)" < @ Setting € = @and observing that
10/(¢)? is polynomially bounded, we see that a vertex with three sons will be found with
overwhelming probability by operating P only a polynomial number of times.

Remark. The hypothesis on the hash function is really needed. In [13], Marc Girault and the
author have shown that, if collisions can be efficiently produced, then very dangerous attacks
against the scheme can be mounted. In more practical terms, this has the consequence that
64-bit hash values cannot be considered.

3.3 The simulation property

We now turn to the zero-knowledge aspect of the protocol. As explained above, this property
guarantees that the execution of the protocol does not leak any information on the secret
key, even if the verifier is replaced by another machine V with a somehow biased strategy
aiming at extracting data from the prover. Following [9], we give a more precise definition:

16

Definition 3 An interactive protocol between two polynomial-time machines P and V 1is
zero-knowledge if, for every polynomial time machine V, there exists a machine S which
generates, in expected polynomial time, an output having the same probability distribution as
the content of the communication tape produced during the interaction of P and V.

The expert reader will observe that the definition just given only describes a specific form
of zero-knowledge, usually called perfect zero-knowledge. Other related definitions exist:
statistical zero-knowledge is concerned with the situation where the simulated distribution
S, is indistinguishable from the original distribution D,,, which means

VeInVIVX (|I| > n — Pr{Sn(X) — Dy (X)} < [1]79)

Computational zero-knowledge applies to the case when the two distributions cannot be
distinguished (in the same asymptotic sense) by a polynomial-time machine outputting one
bit, usually called a polynomial-time test.

Thus, we need to build a simulator, i.e. a machine S(V), which recreates the commu-
nication between V and P in expected polynomial-time. This uses the idea of resettable
simulation from [16]: at the beginning of each round the simulator chooses at random one of
the three cheating strategies described in section 2.2 and prepares the initial commitments
c1, Ca, ¢z according to the chosen strategy. Now, each strategy allows to successfully answer
two of the three challenges issued by V. In case V asks the wrong question, the simulator
resets the machine for the current round. The simulator clearly runs in expected polynomial
time 37, The main technical difficulty of the proof comes from the hash function: since the
1nputs for the commitments ¢y, co, c3 come from related data, it appears difficult to claim
that they will be indistinguishable from those created by the cheating strategy, at least with-
out any further assumption. A way to circumvent this difficulty is to assume that the hash
function is actually a random function. This hypothesis has already been used in [11] and
is nicely developed in [4]. The underlying complexity-theoretic model is the Turing machine
with random oracle: both P and V' are probabilistic oracle Turing machines, the oracle pro-
viding, upon request, specific values for the hash function. Success probabilities are taken
over the random choices of the different machines and over the oracle. As pointed out in [4],
the simulator has to include a simulation of the oracle, which may appear difficult since the
oracle is an infinite object. The solution proposed in [4] is to allow the simulator to prescribe
a small (polynomial-time) piece of the oracle and have the rest filled at random. We thus
get a proof of the following.

Theorem 3 In the random oracle model, the SD protocol is zero-knowledge.

Note that the oracle zero-knowledge definition of [4] is primarily used to show that the
corresponding model allows to do zero-knowledge proofs in one round, which is impossible
in the usual model. We use the random oracle setting in a different way since it models a
further property of cryptographic hash functions (besides collision-freeness). Such a property
seems to be needed to perform the simulation of identification protocols which use hashing,
such as SD or the PKP scheme from [24]. Since the latter does not include proofs, we can
only suspect that it had the same setting in mind. In the case of SD, there is another
option to prove zero-knowledge: it consists in modifying the commitment step by using

17

random hashing, as explained in section 2. Recall that this simply involves changing ()
into (p||p @ x), where p is a randomly chosen string with the same length as z.

Theorem 4 When random hashing is used, the SD protocol is zero-knowledge.

In view of the proof of theorem 3, it is enough to show that the commitments ¢y, co, 3
follow the same distribution when they come from a legitimate user P and when they are
produced by any of the three cheating strategies. We only analyze the first strategy and
leave the two remaining cases to the reader. It consists in choosing y and o at random
and replacing the unknown sy by some arbitrary vector ¢ of weight p. Commitments are
computed as follows

ci = {pillp1 ® (o||H(y)))
co = (p2||p2 @ (y.0))
c3 = {ps|lps © ((y @ 1).0))

Now, the mapping

(p17p27p3707 y) — (/«’17,02;/03 S ((SU ¥ t).O’),O', y)

is a permutation of the underlying probability space which tranforms the commitments
c1,Ca, c3 into the corresponding commitments generated by the legitimate user. This is
enough to conclude that both distributions of commitments are alike and to complete the
proof of theorem 4.

4 Variants of the scheme

We now close up the theoretical evaluation of our scheme and discuss several variants at a
practically oriented level, i.e. without formal proofs.

4.1 A variant which minimizes the computing load

In order to minimize the computing load, we introduce a 5-pass variant. This variant depends
on a new parameter gq.

e Step 1 is the same except that commitment ¢; is replaced by (o). Thus H(y) is not
computed at this stage.

e After step 1, the verifier sends back a choice of g indices from {1---m} (these refer to
a choice of ¢ rows of the matrix H).

e The prover answers by sending the list of bits by, - -+, b, corresponding to the selected
indices of the vector H(y). This consitutes a kind of partial commitment for H(y).

e The rest of the protocol is similar (with obvious changes for the checking step).

18

Of course this opens up new strategies for cheating: basically, one will try to have both y
and y @ t ready where ¢ is some element of weight p such that H(t) differs from 7 on a small
number of bits, say h. This will increase the probability of success by an amount which is
close to %(1 — %)‘1. In the case n = 512, m = 256, p = 56, ¢ = 64, h = 15, this extra amount
is roughly 0.007 and the loss can be compensated by adding only one extra round of the
protocol.

Of course, the new strategy becomes more and more successful as h decreases; for ex-
ample, making h = 4 and keeping all other figures unchanged increases the probability of
cheating successfully to 0.78. But it can be shown that finding a ¢ as above is equivalent to
finding a word s’ of weight at most p+ h with a given syndrome H (s') =i and it is believed
that, when A is very small, this remains unfeasable. Of course, many other trade-offs between
n, k,p, h,q are possible.

4.2 A variant which minimizes the number of rounds.

In this variant, the secret key s is replaced by a simplex code generated by si,---,s,. Recall
that a simplex code of dimension v has all its non zero codewords of weight 2°~! (see [22]).
It is easy to construct such a code with length 2™ — 1 and to extend the length to any larger
value n. The corresponding public key is the sequence H(s1),---, H(s,) -

It is unknown whether or not it is much easier to recover the family of secret vectors
than to recover a single one. As a set of minimal values, we recommend v = 7 together with
n = 576 and m = 288. This ensures consistency with our previous estimates.

We now describe one 5-pass round of a protocol that achieves identification.

1. The prover picks a random n-bit word y together with a random permutation o of the

integers {1 - - - n} and sends commitments ¢;, ¢, respectively for (o, H(y)), (y.0, $1.0, - -, $,.0)

to the verifier.
2. The verifier sends a random binary vector by, - - -, b,.

3. The prover computes
2= (y@ Dbys))o
7=1

and sends z to the verifier
4. The verifier responds with a one bit challenge b.

5. If b is 0, the prover reveals o. If b is 1, the prover discloses y.o as well as the full
sequence §1.0, -, §,.0.

6. If b equals 0, the verifier checks that commitment ¢; has been computed honestly.Note
that H(y) can be recovered from H(z.07!), the sequence of public keys and the binary
vector issued at step 2.

If b equals 1, the verifier checks that commitment ¢, was correct, that the computation
of z is consistent and that sq,---,s, actually form a simplex code of the required
weight.

19

As before, this basic round can be repeated. Using arguments similar to those in section 3,
it can be shown that the probability of success of a single round, when no information about
the secret keys is known, cannot significantly excess 1+22;J 71, which is essentially 1/2. On the
other hand, it is clear that the communication complexity is worse than in the single-key

case.

4.3 An identity based version

One attractive feature of the Fiat-Shamir scheme is that the public key can be derived from
the user’s identity, thus avoiding the need to link both by some signature from the issuing
authority. Neither Shamir’s PKP scheme nor our basic scheme have this feature. We now
investigate various modifications that can turn our scheme into an identity-based scheme.
We note that our identity based versions are very sensitive to the possible disclosure of secret
keys: for example, if several users pool their keys, then the overall system becomes weak.
As a consequence these versions should be restricted to scenarios where the secret data are
not available to the (physical) users. This is presumably the case if tamper-proof devices are
used.

A first possibility is to use a set of ¢ simplex codes of dimension m. If s;,---,s, is the
first of these codes, then m bits can define a specific key

v
D b;s;
j=1

and therefore, assuming that the identity of a user is given by tv bits, one can define ¢ secret
keys for each user. Now, these secret keys can be used randomly to perform identification.
The verifier has to store tv vectors of k bits (the images of the basis vectors of the codes),
which is much less than a full directory of users. We suggest v = 7 ¢t = 6 as a reasonable
implementation.

The other possibility that we describe is a bit more intricate and is more a suggestion for
further research. It uses a “master code” consisting of 2¢ vectors si,- - -, so; Whose one-bits
only cover a subset 71" of the possible n locations. We assume that the identity Idy of each
user is given by a balanced sequence of 2t bits eq, -, ey, i.e. a sequence with ¢ zeros and
t ones. We let F'(Idy) be the vector space generated by those H(s;)’s such that e; = 1.
The public key iy of the user should satisfy ¢ € F(Idy). Key generation goes as follows: by
Gaussian elimination, it is possible to find a linear combination sy of the s;’s, e; = 1 whose
weight p is slightly below \TIT—t
authority.

The security of this variant is more difficult to analyze. Let F' be the vector space
generated by of all of the H(s;)’s and let C' be the code consisting of all words = such that
H(z) € F. Typically, it can be observed that C' has a vector with a small number of ones
located within the (unknown) set 7. The dimensions should be designed in order that the
weight of this vector is large enough. We suggest, as a working example, |T| = 272, t = 40,
p =112, n = 1024, m = 512.

. This is the secret key of the user, computed by the issuing

20

5 Conclusion.

Before concluding the paper, we briefly mention another possible scheme that can be devised
by replacing the {0, 1}-matrix H of SD by a matrix over a finite field with an extremely small
number g of elements (typically 3, 5 or 7). In this situation, the weight constraint is replaced
by the constraint that the secret solution s to the equation H(s) = ¢ consists entirely of
zeros and ones. Thus the underlying difficult problem is a modular knapsack. Although it is
known that knapsacks can be attacked by methods based on lattice reduction (see [21, 7]), it
is clear also that these methods do not apply to the modular case, at least when the modulus
g is very small. Possible values for the scheme are (with the same notations as above)

e n=196, m=128 ¢q=3
e n=2384, m=256,g=3
e n=128 m=64,9q=>5
en=192 m=96,¢q=5
One round of the protocol is performed as follows:

1. The prover picks a random vector y with coefficients from the g-element field, together
with a random permutation o of the integers {1---n} and sends commitments ¢y, ¢z, c3
respectively for (o, H(y)), (y.o) and ((y + s mod ¢q).0).

2. The verifier sends a random element b of {0, 1, 2}.

3. If b is 0, the prover reveals y and o. If b is 1, the prover reveals y + s mod ¢ and o.
Finally, if b equals 2, the prover discloses y.0 and s.o.

4. The verifier makes the obvious checks.

The above protocol seems to indicate that our scheme is not an isolated example but is
related to a fairly general paradigm that produces identification protocols from hard com-
binatorial problems. Besides Shamir’s PKP and the present SD, other proposals have been
made that belong to the same family: one was put forward by Pointcheval (see [28]) using
the so-called perceptron’s problem; another one, due to the author ([36]), is based on the
problem of solving linear equations modulo a small prime, the unknowns being subject to
the condition that they belong to some prescribed subset. A specific feature of the latter is
that it achieves very small key-length both for the public and the secret key.

As a conclusion, let us repeat what we feel is the main achievement of the present paper:
by defining a new practical identification scheme based on the syndrome decoding problem
(SD), which only uses very simple operations, we believe that we have widened the range of
techniques that can be applied in crytography.

21

References

1]

8]

9]

[10]

[11]

[12]

[13]

S. Arora, L. Babai, J. Stern and Z. Sweedyk. The hardness of approximate op-
tima in lattices, codes and systems of linear equations, Proc. 8/th Ann. Symp. on
Foundations of Computer Science, (1993), 724-733.

E. R. Berlekamp, R. J. Mc Eliece and H. C. A. Van Tilborg. On the inherent
intractability of certain coding problems, IEEE Trans. Inform. Theory, (1978) 384—
386.

M. Bellare and O. Goldreich. On defining proofs of knowledge, Proceedings of
Crypto 92, Lecture Notes in Computer Science 740, 390—420.

M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for design-
ing efficient protocols. Proceedings of the 1st ACM Conference on Computer and
Communications Security, (1993), 62-73.

J. Bruck and M. Naor. The hardness of decoding linear codes with preprocessing,
IEEE Trans. Inform. Theory, IT-36(2) (1980), 381-385.

F. Chabaud. On the security of some cryptosystems based on error correcting codes.
Proceedings of Eurocrypt 94, Lecture Notes in Computer Science 950, 131-139.

M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C. P. Schnorr and J. Stern.
Improved low-density subset sum algorithms, Computational Complexity, 2, (1992),
11-128.

W. Diffie and M. E. Hellman. New Directions in Cryptography, IEEE Trans. In-
form. Theory, IT-22, (1976), 644—654.

U. Feige, A. Fiat and A. Shamir, Zero-knowledge proofs of identity, Proc. 19th
ACM Symp. Theory of Computing, (1987), 210-217, and J. Cryptology, 1 (1988),
77-95.

U. Feige and A. Shamir. Witness indistinguishability and witness hiding protocols.
Proc. 22nd ACM Symp. Theory of Computing, (1990), 416-426.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems, Proceedings of Crypto 86, Lecture Notes in Computer
Science 263, 181-187.

M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory
of NP-completeness. W. H. Freeman and Co, 1979.

M. Girault and J. Stern. On the length of cryptographic hash values used in iden-
tification schemes, Proceedings of Crypto 94, Lecture Notes in Computer Science
839, 202-215.

22

[14] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan and D. Zuckerman. Se-
curity preserving amplification of hardness, Proc. 81st Ann. Symp. on Foundations
of Computer Science, (1990), 318-326.

[15] O. Goldreich. Foundations of cryptography (Fragments of a book). Weizmann
Institut of Science, 1995.

[16] S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity of interactive
proof systems, Proc. 17th ACM Symp. Theory of Computing, (1985), 291-304.

[17] L.S. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to
security microprocessors minimizing both transmission and memory, Proceedings
of Eurocrypt 88, Lecture Notes in Computer Science 339, 123-128.

[18] R. Impagliazzo, L. Levin and M. Luby. Pseudo-random generation form one-way
functions, Proc. 21st ACM Symp. Theory of Computing, (1989), 12-24.

[19] J . S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Inform. Theory, IT-34(5): 1354-1359.

[20] L. Levin. One-way functions and pseudo-random generators, Combinatorica, 7
(1987), 357-363.

[21] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems, J.
Assoc. Comp. Mach. 32 (1985), 229-246.

[22] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes, North-
Holland, Amsterdam-New-York-Oxford (1977).

[23] J. N. Pierce. Limit distributions of the minimum distance of random linear codes,
IEEE Trans. Inform. Theory, (1967), 595-599.

[24] A. Shamir. An efficient identification scheme based on permuted kernels, Proceed-
ings of Crypto 89, Lecture Notes in Computer Science 435, 606—609.

[25] R. J. McEliece. A Public-Key System Based on Algebraic Coding Theory, Jet
Propulsion Lab, DSN Progress Report 44, (1978), 114-116.

[26] T. Okamoto. Provably secure and practical identification schemes and correspond-

ing signature schemes, Proceedings of Crypto 92, Lecture Notes in Computer Science
740, 31-53.

[27] K. Ohta and T. Okamoto. A modification of the Fiat-Shamir scheme, Proceedings
of Crypto 88, Lecture Notes in Computer Science 403, 232-243.

[28] D. Pointcheval. A new identification scheme based on the perceptrons problem,
Proceedings of Furocrypt 9/, Lecture Notes in Computer Science 921, 318-328.

[29] R. Rivest, A. Shamir and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems, Comm. of the ACM 21-2 (1978), 120-126.

23

[30] R. L. Rivest. The MD5 Message Digest Algorithm. Proceedings of Crypto 90, Lec-
ture Notes in Computer Science 537, 303-311.

[31] U. S. Department of Commerce, National Institute of Standards and Technology.
Secure Hash Standard. Federal Information Processing Standard Publication 180,
1993.

[32] C.P. Schnorr. Efficient signature generation by smart cards, J. Cryptology, 4 (1991),
161-174.

[33] J. Stern. An alternative to the Fiat-Shamir protocol, Proceedings of Eurocrypt 89,
Lecture Notes in Computer Science 434, 173-180.

[34] J. Stern. A method for finding codewords of small weight, Coding Theory and
Applications, Lecture Notes in Computer Science 388, 106-113.

[35] J. Stern. A new identification scheme based on syndrome decoding. Proceedings of
Crypto 93, Lecture Notes in Computer Science 773, 13-21.

[36] J. Stern. Designing identification schemes with keys of short size, Proceedings of
Crypto 94, Lecture Notes in Computer Science 839, 164—-173.

24

