
This is the full version of the extended abstract which appears in
the 9th International Conference on Theory and Practice in Public Key Cryptography – PKC 2006
(24–26 april 2006, New York, USA)
M. Yung Ed. Springer-Verlag, LNCS 3958, pages 427–442.

Password-based Group Key Exchange

in a Constant Number of Rounds

Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, and David Pointcheval

1 Departement d’Informatique, École normale supérieure
45 Rue d’Ulm, 75230 Paris Cedex 05, France

{Michel.Abdalla,David.Pointcheval}@ens.fr
http://www.di.ens.fr/~{mabdalla,pointche}

2 Cryptology Department, CELAR, 35174 Bruz, France
Emmanuel.Bresson@polytechnique.org, http://www.di.ens.fr/~bresson

3 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
OChevassut@lbl.gov, http://www.dsd.lbl.gov/~chevassu

Abstract. With the development of grids, distributed applications are spread across multiple com-
puting resources and require efficient security mechanisms among the processes. Although protocols
for authenticated group Diffie-Hellman key exchange protocols seem to be the natural mechanisms
for supporting these applications, current solutions are either limited by the use of public key infras-
tructures or by their scalability, requiring a number of rounds linear in the number of group members.
To overcome these shortcomings, we propose in this paper the first provably-secure password-based
constant-round group key exchange protocol. It is based on the protocol of Burmester and Desmedt
and is provably-secure in the random-oracle and ideal-cipher models, under the Decisional Diffie-
Hellman assumption. The new protocol is very efficient and fully scalable since it only requires
four rounds of communication and four multi-exponentiations per user. Moreover, the new protocol
avoids intricate authentication infrastructures by relying on passwords for authentication.

1 Introduction

Motivation. Modern distributed applications often need to maintain consistency of replicated infor-
mation and coordinate the activities of many processes. Collaborative applications and distributed
computations are both examples of these types of applications. With the development of grids [12],
distributed computations are spread across multiple computing resources requiring efficient security
mechanisms between the processes. Although protocols for group Diffie-Hellman key exchange [5, 7,
6, 8] provide a natural mechanism for supporting these applications, these protocols are limited in
their scalability due to a number of rounds linear in the number of group members. An alternative
is to use a protocol for group key exchange that runs in a constant number or rounds [11, 15, 16].
The two measures of a protocol’s efficiency are the computational cost per member and the com-
munication complexity (number of protocol rounds) of the given protocol. Since the Moore’s laws
has told us that computing power grows faster than communication power, it is therefore natural
to trade communication power for computing power in a group key exchange protocol.
A password is the ideal authentication means to exchange a session key in the absence of public-key
infrastructures or pre-distributed symmetric keys. In a group, the sharing of a password among the
members greatly simplifies the setup of distributed applications [7, 11]. An example of distributed
applications could simply be the networking of all the devices attached to a human. Low-entropy
passwords are easy for humans to remember, but cannot of course guarantee the same level of secu-
rity as high-entropy secrets such as symmetric or asymmetric keys. The most serious attack against
a password-based protocol is the so-called dictionary attack: the attacker recovers the password and
uses it to impersonate the legitimate user. The low-entropy feature makes the job of the attacker
easier since the attacker (off-line) runs through all the possible passwords in order to obtain partial
information and to maximize his success probability. The minimum required from a protocol is
security against this attack.

Contributions. In the present paper, we study the problem of scalable protocols for authenticated
group Diffie-Hellman key exchange. Many researchers have studied and found solutions to this
problem in the context of a Public-Key Infrastructure (PKI), yet a (secure) solution had to be
found in the context of a (short) password shared among the members of the group. Two attempts

c© IACR 2006.

in this direction are due to Dutta and Barua [11] and to Lee, Hwang, and Lee [17]. Unfortunately,
adding authentication services to a group key exchange protocol is a not trivial since redundancy
in the flows of the protocol can open the door to different forms of attacks. In fact, in Section 3,
we briefly describe attacks against the schemes of Dutta and Barua [11] and of Lee, Hwang, and
Lee [17]. Then, in Section 4, we show how to add password-authentication services to the Burmester
and Desmedt scheme [9, 10]. Our protocol is provably secure in the random-oracle [4] and ideal-cipher
models [3] under the Decisional Diffie-Hellman assumption.

Related Work. Following the work of Bresson et al. on the group Diffie-Hellman key exchange
problem [5, 7, 6, 8], several researchers have developed similar protocols but that run in a constant
number of rounds. Katz and Yung [15] added authentication services to the original Burmester
and Desmedt’s protocol [9, 10]. Later, Kim, Lee and Lee extended the work of Katz and Yung
to take into account the notion of dynamicity in the membership [16]. The problem of adding
password-authentication services followed shortly after. In [7], Bresson et al. proposed the first
solution to the group Diffie-Hellman key exchange problem in the password-based scenario. Their
protocol, however, has a total number of rounds which is linear in the total number of players in
the group. In [11, 17], two different password-based versions of Burmester-Desmedt protocol were
proposed along with proofs in the random-oracle and ideal-cipher models. Unfortunately, the latter
two schemes are not secure.

Outline of the paper. The paper is organized as follows. In Section 2, we recall the security model
usually used for password-based group Diffie-Hellman key exchange. This model was previously
defined in [7], but also takes advantage of [1]. In Section 3 we recall Burmester-Desmedt scheme
and describe attacks against the schemes of Dutta and Barua [11] and of Lee, Hwang, and Lee [17].
In Section 4, we describe the mechanics behind our protocol. In Section 5, we show that our protocol
is provably-secure in the random-oracle and ideal-cipher models under the Decisional Diffie-Hellman
assumption.

2 Security Model

2.1 Password-Based Authentication

In the password-based authentication setting, we assume each player holds a password pw drawn
uniformly at random from the dictionary Password of size N . This secret of low-entropy (N is often
assumed to be small, i.e. typically less than a million) will be used to authenticate the parties to
each other
Unfortunately, one cannot prevent an adversary to choose randomly a password in the dictionary
and to try to impersonate a player. However such on-line exhaustive search (even if N is not so
large) can easily be limited by requiring a minimal time interval between successive failed attempts
or locking an account after a threshold of failures. Security against such active attacks is measured
in the number of passwords the adversary can “erase” from the candidate list after a failure.
On the other hand, off-line exhaustive search cannot be limited by such practical behaviors or
computational resources considerations. Hopefully, they can be prevented if the protocol is carefully
designed and ensures that no information about the password can leak from passively eavesdropped
transcripts, but also from active attacks.

2.2 Formal Definitions

We denote by U1, . . . , Un the parties that can participate in the key exchange protocol P . Each of
them may have several instances called oracles involved in distinct, possibly concurrent, executions
of P . We denote Ui instances by U j

i . The parties share a low-entropy secret pw which is uniformly
drawn from a small dictionary Password of size N .
The key exchange algorithm P is an interactive protocol between the Ui’s that provides the instances
with a session key sk. During the execution of this protocol, the adversary has the entire control of
the network, and tries to break the privacy of the key.

Remark 1. In the “constant-round” protocols that we will study, simultaneous broadcasts are inten-
sively used. However we do not make any assumption about the correctness of the latter primitive:
it is actually a multi-cast, in which the adversary may delay, modify, or cancel the message sent to
each recipient independently.

2

In the usual security model [7], several queries are available to the adversary to model his capability.
We however enhance it with the Real-or-Random notion for the semantic security [1] instead of the
Find-then-Guess. This notion is strictly stronger in the password-based setting. And actually, since
we focus on the semantic security only, we can assume that each time a player accepts a key, the
latter is revealed to the adversary, either in a real way, or in a random one (according to a bit b).
Let us briefly review each query:

– Send(U j
i , m): This query enables to consider active attacks by having A sending a message

to any instance U j
i . The adversary A gets back the response U j

i generates in processing the
message m according to the protocol P . A query Send(Start) initializes the key exchange
algorithm, and thus the adversary receives the initial flows sent out by the instance.

– Testb(U j
i): This query models the misuse of the session key by instance Ui (known-key attacks).

The query is only available to A if the attacked instance actually “holds” a session key. It either
releases the actual key to A, if b = 1 or a random one, if b = 0. The random keys must however
be consistant between users in the same session. Therefore, a random key is simulated by the
evaluation of a random function on the view a user has of the session: all the partners have
the same view, they thus have the same random key (but independent of the actual view.)

Remark 2. Note that it has been shown [1] that this query is indeed enough to model known-

key attacks —where Reveal queries, which always answer with the real keys, are available—,
and makes the model even stronger. Even though their result has only been proven in the
two-party and three-party scenarios, one should note that their proof can be easily extended
to the group scenario.

As already noticed, the aim of the adversary is to break the privacy of the session key (a.k.a.,
semantic security). This security notion takes place in the context of executing P in the presence of
the adversary A. One first draws a password pw from Password, flips a coin b, provides coin tosses
to A, as well as access to the Testb and Send oracles.

The goal of the adversary is to guess the bit b involved in the Test queries, by outputting this guess
b′. We denote the AKE advantage as the probability that A correctly guesses the value of b. More
precisely we define Advake

P (A) = 2 Pr[b = b′] − 1. The protocol P is said to be (t, ε)-AKE-secure if
A’s advantage is smaller than ε for any adversary A running with time t.

2.3 On the Simplification of the Model

In previous models, Execute queries were introduced to model passive eavesdropping. However,
they can easily be simulated using the Send queries. In our analysis, we refine the way to deal with
the adversary possible behaviors. We will denote by qactive the number of messages the adversary
produced by himself (thus without including those he has just forwarded). This number upper-
bounds the number of on-line “tests” the adversary performs to guess the password. And we denote
by qsession the total number of sessions the adversary has initiated: nqsession , where n is the size
of the group, upper-bounds the total number of messages the adversary has sent in the protocol
(including those he has built and those he has just forwarded). We emphasize that this is stronger
than considering only Execute and Send queries: while being polynomially equivalent, the two models
are not tightly equivalent, since the adversary does not need to know in advance if he will forward
all the flows, or be active when a new session starts. Moreover, suppressing the Execute queries
makes the model even simpler.

The best we can expect with such a scheme is that the adversary erases no more than 1 password
for each session in which he plays actively (since there exists attacks which achieve that in any
password-based scheme.) However, in our quite efficient scheme, we can just prevent the adversary
from erasing more than 1 password for each player he tries to impersonate (we will even show our
proof is almost optimal.)

3 Preliminaries

The best starting point for an efficient password-based group key exchange, and namely if one wants
a constant-round protocol, is the scheme proposed by Burmester and Desmedt [9, 10] at Eurocrypt
94 and later formally analyzed by Katz and Yung in 2003 [15].

3

3.1 The Burmester and Desmedt Protocol

In the Burmester-Desmedt scheme, one considers a cyclic group G generated by g, in which the
Decisional Diffie-Hellman (DDH) assumption holds. The protocol works as follows, where all the
indices are taken modulo n (between 1 and n), and n is the size of the group:

– Each player Ui chooses a random exponent xi and broadcasts zi = gxi ;
– Each player computes the Zi = zxi

i−1 and Zi+1 = z
xi+1

i = zxi
i+1, and broadcasts Xi = Zi+1/Zi;

– Each player computes his session key as Ki = Zn
i Xn−1

i Xn−2
i+1 · · ·Xi+n−2.

It is easy to see that for any i, we have Ki =
Qj=n

j=1 Zj = gx1x2+x2x3+···+xnx1 .

3.2 A Naive Password-Based Approach

We immediately note that encrypting values in the second round would lead to a trivial dictionary
attack, since the product of all values is equal to 1. One may want to enhance the Burmester and
Desmedt’s protocol by using a password pw to “mask” the first round only. One then comes up to
the simple protocole, using a mask of the form hpw , where h is another generator of the group G,
whose discrete logarithm in the base g is unknown [2]:

– Each player Ui chooses a random exponent xi, computes zi = gxi and broadcasts z?
i = zih

pw ;
– Each player extracts zi−1 and zi+1, and computes the Zi = zxi

i−1 and Zi+1 = z
xi+1

i = zxi
i+1. He

then broadcasts Xi = Zi+1/Zi;
– Each player computes his secret as Ki = Zn

i Xn−1
i Xn−2

i+1 · · ·Xi+n−2

Thereafter, one can add any key confirmation and/or any intricate key extraction (even in the
random oracle model, such as ski = H(View, Ki)), but it does not help. Indeed, the homomorphic
property of this “masking” technique allows active attacks from the adversary: Assume that the
adversary impersonates players U1 and U3 and sends for the first round z?

1 = gu1 and z?
3 = gu3 , for

known values u1 and u3. On the second round, the adversary waits for receiving X2 from player U2:

X2 =

„

z3

z1

«x2

= gx2(u3−u1) =
“ z2

hpw

”u3−u1

.

Then one knows that hpw = z2/X
(u1−u3)−1

2 , which can be easily checked off-line: a dictionary attack.
Furthermore, one can be easily convinced that any mechanism such as proof of knowledge, com-
mitments, etc. to “enforce” the adversary to properly construct his values are useless against this
attack, since in the above attack, the adversary plays “honestly”.

3.3 The Dutta and Barua Protocol

Dutta and Barua [11] proposed a variant of the Kim-Lee-Lee protocol [16] presented at Asiacrypt
’04. It makes use of the ideal-cipher model, instead of a simple mask as above, and is claimed to be
secure against dictionary attacks:

– Each player Ui chooses a random exponent xi, as well as a random key ki, computes zi = gxi ,
and broadcasts z?

i = Epw (zi);
– Each player extracts zi−1 and zi+1, and computes the KL

i = H(zxi
i−1) = H(gxi−1xi) and

KR
i = H(z

xi+1

i) = H(zxi
i+1) = H(gxixi+1). For i = 1, . . . , n − 1, Ui computes Xi = KL

i ⊕ KR
i ,

while Un computes Xn = kn ⊕ KR
n ; For i = 1, . . . , n − 1, Ui broadcasts E ′

pw (ki‖Xi), while Un

broadcasts E ′′(Xn);
– After decryption, they can all recover all the ki, and then the common session key is set as

sk = H(k1‖ . . . ‖kn).
Unfortunately, their protocol contains another source of redundancy that can be exploited by an
attacker: the encryption algorithm of all users use the password as their encryption key. Therefore,
a simple attack against their scheme runs as follows: the adversary plays the role of user U3, with
honest users U1 and U2. When the adversary receives z?

1 = Epw (z1) and z?
2 = Epw (z2), he sets

z?
3 = Z?

1 , sends it to users U1 and U2, and waits for their responses. Note that setting z?
3 = Z?

1

implicitly sets x3 = x1. At this point, the adversary knows that KL
2 = H(gx1x2) and KR

2 =
H(gx2x3) = H(gx1x2), and thus X2 = 0k (where k is the output length of the function H). Upon
receiving E ′

pw (k2‖X2) from U2, he can perform an off-line dictionary attack that immediately leads
to the correct password, since this will be the only one decrypting this value to k2‖0

k.
This confirms the fact that converting a provably-secure scheme into a password-based protocol is
not a simple task. The main problem we observe with the above scheme is the unique way in which
the initial messages of all users are encrypted, allowing attacks where one player can easily replay
messages from another player. Thus, to avoid problems such as these, one should at least make sure
that the encryption key used by each user is unique to that user. In fact, this is one of the features
of the protocol that we present in the next section.

4

3.4 The Lee-Hwang-Lee Protocol

In [17], Lee, Hwang, and Lee proposed another password-based version of the Burmester-Desmedt
protocol, which makes use of the random-oracle and ideal-cipher models. Let E be an ideal cipher
and let H and H′ be random oracles. Their protocol works as follows:

– Each player Ui chooses a random exponent xi, computes zi = gxi , and broadcasts (Ui, z
?
i =

Epw (zi));
– Each player Ui extracts zi−1 and zi+1, computes Ki = H(zxi

i+1) = H(gxixi+1), Ki−1 =
H(zxi

i−1) = H(gxi−1xi), wi = Ki−1 ⊕ Ki, and broadcasts (Ui, wi).
– Each player Ui first computes the values Kj = H(gxj−1xj) for j = 1, . . . , n, using the values wj

that were broadcasted in the second round. Next, each player Ui sets sk = H′(H(gx1x2)‖ . . . ‖H(gxn−1xn)‖H(gxnx1))
as the common session key.

To show that the protocol above is not secure, we present the following simple attack against the
semantic security of the session key. First, we start two sessions with player U1 using {U1, . . . , U4}
as the group. Let x1 and x′

1 be the corresponding values chosen by the two instances of player U1

in each of these sessions and let (U1, z
?
1 = Epw (gx1)) and (U1, z

′?
1 = Epw (gx′

1)) be the corresponding
values outputted by these instances. For the instance that outputted (U1, z

?
1), we provide to it the

values (U2, z
′?
1), (U3, z

?
1), and (U4, z

′?
1), as the first-round messages of players U2, U3, and U4. This

implicitly makes K1 = K2 = K3 = K4 = H(gx′
1x1). Likewise, for the instance that outputted

(U1, z
′?
1), we provide to it the values (U2, z

?
1), (U3, z

′?
1), and (U4, z

?
1), as the first-round messages

of players U2, U3, and U4. This implicitly makes K ′
1 = K′

2 = K′
3 = K′

4 = H(gx′
1x1). As a result,

w1 = w2 = w3 = w4 = 0 and w′
1 = w′

2 = w′
3 = w′

4 = 0 and, thus, we can easily compute
the appropriate second-round messages for players U2, U3, and U4 in both sessions. Moreover, the
session keys of these two sessions are the same. Thus, we can ask test queries to both instances of
player U1 and check whether we get back the same value. This should be the case whenever the
output of test oracle is the actual session key.

4 Our protocol

As above, we use the ideal-cipher model. The latter considers a family of random permutations
Ek : G → G indexed by a `H-bit key k which are accessible (as well as their inverses) through oracle
queries (E and D). Here we use the password, together with nonces, and the index of the user, to
encrypt the values in the first round. Other values are sent in the clear. Also a preliminary round
is used during which each player chooses random nonces to be used. This will be crucial to define
sessions, and then link the encrypted values all together.

Key generations (for the symmetric encryption E , and for the session key) will make use of hash
functions H : {0, 1}? → {0, 1}`H and G : {0, 1}? → {0, 1}`G . Key confirmations will apply the
function Auth : {0, 1}? → {0, 1}`Auth .

4.1 Description

The protocol runs as follows:

1. Each player Ui chooses a random nonce Ni and broadcasts (Ui, Ni);
2. The session S = U1‖N1‖ . . . ‖Ui‖Ni . . . ‖Un‖Nn is then defined, in which each player has a

specific index i, and a specific symmetric key ki = H(S, i, pw). Each player Ui chooses a
random exponent xi and broadcasts z?

i = Eki
(zi), where zi = gxi ;

3. Each player extracts zi−1 = Dki−1
(z?

i−1) and zi+1 = Dki+1
(z?

i+1), and computes the Zi = zxi
i−1

and Zi+1 = z
xi+1

i = zxi
i+1. He then broadcasts Xi = Zi+1/Zi;

4. Each player computes his secret as Ki = Zn
i Xn−1

i Xn−2
i+1 · · ·Xi+n−2, and broadcasts his key

confirmation Authi = Auth(S, {z?
j , Xj}j , Ki, i).

5. After having received and checked all the key confirmations, each player defined is session key
as ski = G(S, {z?

j , Xj ,Authj}j , Ki).

4.2 Security Theorem

Here we present the main security result of this paper, whose proof appears in Section 5.

5

Theorem 3. Let P the above protocol in which the password is chosen in a dictionary of size

N . Then for any adversary A running in time t, that makes at most qactive attempts within at

most qSession sessions, his advantage in breaking the semantic security of the session key, in the

ideal-cipher model, is upper-bounded by:

Adv
ake
P (t) ≤

2qactive
N

+ 4qsessionnAdv
ddh
G (t) +

2q2
G

2`G
+

2q2
Auth

2`Auth

+
8qG + 2qAuth + 2qD + 2nqEqsession + (qE + qD)2

|G|
+

2qH(qH + qD)

2`H

where qG , qH, qAuth, qE , qD denote the number of oracle queries the adversary is allowed to make to

the random oracles G, H and Auth, and to the ideal-cipher oracles E and D, respectively.

This theorem states that the security of the session key is protected against dictionary attacks: the
advantage of the adversary essentially grows linearly with the number of active attempts that the
adversary makes (i.e., the number of messages that the adversary builds by himself). While the
number of sessions includes both active attacks and passive ones (i.e., the session transcripts A
passively eavesdropped), the theorem shows that these passive attacks are essentially negligible: a
honest transcript does not help a computationally bounded adversary in guessing the password.

4.3 On the tightness of Theorem 3

Clearly, Theorem 3 ensures that when building a message by himself, the adversary cannot “test”
more than one password per message. Actually, in the proof, we use qactive to upper-bound the
number of players the adversary tries to impersonate and thus the number of different passwords
he can inject. Hence, we achieve a stronger security result than the one claimed in Theorem 3.
However, it leaves open the possibility of whether an adversary can test several passwords in the
same session. Since one may wonder whether a security proof with a tighter reduction could be
found, here we present an online dictionary attack against our scheme that shows that this is not
the case. More precisely, we exhibit an online dictionary attack in which the adversary can test
several passwords in the same session (but still no more than one password for each message!). The
idea behind the attack is to create a session in which the number of dishonest players (whose roles
are played by the adversary) is twice the number of honest players and to surround each of the
honest players with two dishonest players.
Let k be the number of honest players. The attack works as follows. First, the adversary starts
a session in which all the honest players have indices of the form 3(i − 1) + 2 for i = 1, . . . , k.
Then, let {pw1, . . . , pwk} be a list of candidate passwords that an adversary wants to try and let
i′ = 3(i − 1). To test whether pw i for i = 1, . . . , k is the correct password, the adversary plays
the role of players Ui′+1 and Ui′+3 and follows the protocol using pw i as the password. That is, he
chooses random exponents xi′+1 and xi′+3, computes the values zi′+1 = gxi′+1 and zi′+3 = gxi′+3 ,
and then computes z?

i′+1 and z?
i′+3 from zi′+1 and zi′+3 using pw i as the password. Let Xi′+2 be

the value that the honest user Ui′+2 outputs in the third round of our protocol. To verify if his
guess pw i for the password is the correct one, the adversary computes zi′+2 from z?

i′+2 using pw i

as the password and checks whether z
xi′+3

−xi′+1

i′+2 = Xi′+2. This should be the case whenever pw i is
equal to the actual password.

4.4 Computational Assumptions

Decisional Diffie-Hellman assumption: DDH. The DDH assumption states (roughly) that
the distributions (gu, gv, guv) and (gu, gv, gw) are computationally indistinguishable when u, v, w
are indices chosen uniformly at random. This can be made more precise by defining two experiments,
DDH? and DDH$. In experiment DDH?, the inputs given to the adversary are U = gu, V = gv,
and W = guv, where u and v are two random indices. In experiment DDH$, the inputs given to the
adversary are U = gu, V = gv, and W = gw, where u, v, and w are random indices. The goal of
the adversary is to guess a bit indicating the experiment he thinks he is in. A (t, ε)-distinguisher
against DDH for G is a probabilistic Turing machine ∆ with time-complexity t, which is able to
distinguish these two distributions with an advantage Advddh

G (∆) greater than ε. The advantage

6

function Advddh
G (t) for the group G is then defined as the maximum value of Advddh

G (∆) over all ∆
with time-complexity at most t.

Parallel Decisional Diffie-Hellman assumption: PDDH. We define a variant of the DDH
problem, we name it the Parallel Decisional Diffie-Hellman problem, which is equivalent to the
usual DDH problem. To this aim, we define the two following distributions:

PDH
?
n = {gx1 , . . . , gxn , gx1x2 , . . . , gxn−1xn , gxnx1 |x1, . . . , xn ∈R Zq} ,

PDH
$
n = {gx1 , . . . , gxn , gy1 , . . . , gyn |x1, . . . , xn, y1, . . . , yn ∈R Zq} .

A (t, ε)-distinguisher against PDDHn for G is a probabilistic Turing machine ∆ with time-complexity

t, which is able to distinguish these two distributions with an advantage Adv
pddhn

G
(∆) greater than

ε. The advantage function Adv
pddhn

G
(t) for the group G, is then defined as the maximum value of

Adv
pddhn

G
(∆) over all ∆ with time-complexity at most t.

Lemma 4 (Equivalence between PDDHn and DDH). For any group G and any integer n, the

PDDHn and the DDH problems are equivalent: for any time bound T ,

Adv
ddh
G (T) ≤ Adv

pddhn

G
(T) ≤ n Adv

ddh
G (T).

Proof. We omit the proof of this lemma in this version of the paper as it follows from a standard
hybrid argument [13, 14] with n+1 hybrid experiments, in which the first i DDH values are replaced
by random ones in the i-th hybrid experiment for i ∈ {0, . . . , n}. In fact, a proof of this lemma
was implicitly made in the proceedings version of the paper by Katz and Yung in Crypto 2003 [15]
when showing an upper bound for the probability distance between the experiments Faken and Real.
Moreover, in the full version of their paper, they provide an even tighter security reduction between
these two problems.

In our security analysis, we will need a challenger that outputs a new tuple either from PDH?
n or

PDH$
n, according to an input bit. That is, we have a fixed bit β, and for any new query S, Challβ(S)

outputs a new tuple from PDH?
n if β = 0, or from PDH$

n if β = 1. If the same S is queried again, then
the same output tuple is returned. It is a well-known result that after q queries to the challenger, any
adversary in time t cannot guess the bit β with advantage larger than q×Adv

pddhn

G
(t) ≤ qn×Advddh

G (t).

5 Proof of Theorem 3

We proceed by defining several experiments (or games), the first one being the real-world experiment
(in which the success of the adversary in outputting b′ = b — denoted by event S — is larger than
(1+Advake(A))/2 by definition), the last one being a trivially secure experiment in which the success
of the adversary is straightforwardly 1/2.
Game G0: This is the real attack game, in the random-oracle and ideal-cipher models.
Game G1: We simulate the random oracles G, H and Auth in a classical way using the lists ΛG ,
ΛH and ΛAuth, with a random value for any new query, and we cancel executions (by halting the
simulation and declaring the adversary successful) in which a collision occurs in the output of hash
functions. The probability of such bad event is upper-bounded by the birthday paradox.

˛

˛

˛
Pr[S1] − Pr[S0]

˛

˛

˛
≤

q2
G

2`G
+

q2
H

2`H
+

q2
Auth

2`Auth
.

Game G2: In this game, we start to control the simulation of the ideal cipher by maintaining a
list Λ that keeps track of the previous queries-answers and that links each query to a specific user.
Members of the list Λ are of the form (type, S, i, α, k, z, z?), where type ∈ {enc, dec}. Such record
means that Ek(z) = z?, and type indicates which kind of queries generated the record. The index
i indicates which player is associated with the key k, while S indicates the session with which we
are dealing. These values are both set to ⊥ if k does not come from a H query of the form (S, i, ∗)
with i ∈ {1, . . . , n}, and S of any form. The element α will be explained later.

– On encryption query Ek(z), we look for a record (·, ·, ·, ·, k, z, ∗) in Λ. If such a record ex-
ists, we return its last component. Otherwise, we choose uniformly at random z? ∈ G, add
(enc,⊥,⊥,⊥, k, z, z?) to Λ, and return z?.

7

– On decryption query Dk(z?), we look for a record (·, ·, ·, ·, k, ∗, z?) in Λ. If such a record exists,
we return its sixth component. Otherwise, we distinguish two sub-cases, by looking up in ΛH if
k has been returned to a hash query of the form (S, i, ∗): if it the case, we choose z at random
in G

? = G\{0} and update the list Λ with (dec, S, i,⊥, k, z, z?); otherwise, we choose z at
random in G

? and update the list Λ with (dec,⊥,⊥,⊥, k, z, z?). In both cases, the decryption
query on z? is answered with z.

Such a simulation is perfect, except for the following three points. First, collisions may appear that
contradict the permutation property of the ideal-cipher: the probability can be upper-bounded by
(qE + qD)2/2|G|. Second, we avoided z being equal to 1 in the decryption queries. Finally, in the
case of the decryption query simulation, one will cancel executions (by halting the simulation and
declaring the the adversary successful) if the value k (involved in a decryption query) is output
later by H. Fortunately, this happens with probability at most qH/2`H for each decryption query.
Intuitively, as it will become clear in the next games, we indeed want to make sure that, for any k
involved in a decryption query, if k comes from a H query, we know the corresponding pair (S, i).
All being considered, such bad events are unlikely:

˛

˛

˛ Pr[S2] − Pr[S1]
˛

˛

˛ ≤
(qE + qD)2

2|G|
+

qD
|G|

+
qHqD
2`H

.

Game G3: In this game, we change the simulation of the decryption queries, and make use of
our challenger to embed an instance of the PDH problem in the protocol simulation. In this game,
we set β = 0, so that our challenger Challβ(·) output tuples (ζ1, . . . , ζn, γ1, . . . , γn) according to the
PDH?

n distribution. We use these (2n)-tuples to properly simulate the decryption queries.

More precisely, we issue a new tuple each time a new session S appears in a decryption query.
But if several queries are asked with the same S, the challenger outputs the same tuple, so we
will derive many related instances, granted the random self-reducibility. The latter tells us that,
given one tuple outputted by the challenger, then for any randomly chosen (α1, . . . , αn), the tuple
(ζα1

1 , . . . , ζαn
n , γα1α2

1 , . . . , γαnα1
n) has the same distribution as the original one.

We make use of this property as follows, by modifying the first sub-case previously considered for
new decryption queries.

– On a new decryption query Dk(z?), such that k = H(S, i, ∗) was previously obtained from H
for some valid index i, we query Challβ(S) in order to get a tuple (ζ1, . . . , ζn, γ1, . . . , γn). We
then randomly choose α ∈ Z

?
q , add (dec, S, i, α, k, z = ζα

i , z?) to Λ, and return z.

Above, we have defined the list Λ whose elements are of the form (type, S, i, α, k, z, z?). The com-
ponent ’α’ now comes into play. This element is an exponent indicating how we applied the random
self-reducibility of the PDDH problem, to the instance generated by the challenger upon the request
S: X = ζα

i . Here, the element α can only be defined if S and i are known (in order to know which
tuple, and which ζi, we are working with.) If α is unknown to the simulator, we set α = ⊥.

This change does not modify the view of the adversary, so: Pr[S3] = Pr[S2].

Game G4: We are now ready to simulate the Send queries in a different way, but only in the
second and third rounds: when the session S is defined, user i computes the symmetric keys as before
kj = H(S, j, pw), for all j. We thus know we are working with the tuple (ζ1, . . . , ζn, γ1, . . . , γn).

In the second round, Ui randomly chooses a value z?
i ∈ G to be broadcasted, and asks zi = Dki

(z?
i),

using the above simulation (which leads to add αi to the list Λ, unless z?
i already appeared as an

encryption result. But the latter event cannot happen with probability greater than qE/|G|.)

In the third round, Ui recovers zi−1 = Dki−1
(z?

i−1) and zi+1 = Dki+1
(z?

i+1). But then, two situations
may appear:

– z?
i−1 and z?

i+1 have been simulated according to the above simulation of the second round, and
then one gets αi−1 and αi+1 in the list Λ such that zi−1 = ζ

αi−1

i−1 and zi+1 = ζ
αi+1

i+1 ;

– one of the z?
j has been previously answered by the encryption oracle in response to an attacker

query Ek(z?), where k = H(S, j, pw) is the correct key for player Uj in session S. We denote
such an event by Encrypt. In such a case, we stop the simulation, letting the adversary win.

If everything runs smoothly, one gets

zi = ζαi
i zi−1 = ζ

αi−1

i−1 zi+1 = ζ
αi+1

i+1 .

One can then correctly compute

Zi = CDH(zi−1, zi) = γ
αi−1αi

i−1 Zi+1 = CDH(zi, zi+1) = γ
αiαi+1

i .

8

One then broadcasts Xi = Zi+1/Zi. After this final round, everybody can compute the session key
as before. The simulation is still perfect, unless the above bad events happen:

˛

˛

˛
Pr[S4] − Pr[S3]

˛

˛

˛
≤

qEqpassive

|G|
+ Pr[Encrypt4] ≤

nqEqsession
|G|

+ Pr[Encrypt4].

Game G5: Since it is clear that the security of the above scheme still relies on the DDH
assumption, we now flip the bit β to 1, in order to receive tuples (ζ1, . . . , ζn, γ1, . . . , γn) according
to the PDH$

n distribution (in which the yi’s denote the values logg γi).

˛

˛

˛
Pr[S5] − Pr[S4]

˛

˛

˛
≤ qsessionAdv

pddhn

G
(t)

˛

˛

˛ Pr[Encrypt5] − Pr[Encrypt4]
˛

˛

˛ ≤ qsessionAdv
pddhn

G
(t).

Game G6: In order to stop active attacks, where the adversary forges flows, we modify the
computation of the key confirmations: we replace the function Auth by a private one Auth′: Authi =
Auth′(S, {z?

j , Xj}j , Ki, i), where

Ki = Zn
i Xn−1

i Xn−2
i+1 · · ·Xi+n−2 = γ

nαi−1αi

i−1 Xn−1
i Xn−2

i+1 · · ·Xi+n−2

= gn(αi−1αiyi−1)Xn−1
i Xn−2

i+1 · · ·Xi+n−2.

Let us list all the information a (powerful) adversary may have, from all the Xj sent by Uj in the
S-th session:

log Xj = yj(αjαj+1) − yj−1(αj−1αj) = Ajyj − Aj−1yj−1.

As explained in [15], this does not leak any information about yi−1, since the above system contains
only n − 1 independent equations with n unknowns. Any value for yn−1 is thus possible and would
determine all the other values.
Therefore, after this modification, the probability for the adversary to see the difference between the
current and the previous experiments is to query Auth(S, {z?

j , Xj}j , Ki, i), which is upper-bounded
by qAuth/|G|.

˛

˛

˛
Pr[S6] − Pr[S5]

˛

˛

˛
≤

qAuth

|G|

˛

˛

˛
Pr[Encrypt6] − Pr[Encrypt5]

˛

˛

˛
≤

qAuth

|G|
.

Game G7: Finally, we now derive the session keys using a private random oracle G ′: ski =
G′(S, {z?

j , Xj ,Authj}j). As above, after the modification of the derivation of the session key, the
probability for the adversary to see the difference between the current and the previous experiments
is to query G(S, {z?

j , Xj ,Authj}j , Ki). Since the previous game, we know that inside each session,
all the honest users have the same view, and thus theses queries are identical: the probability of
such an event can also be upper-bounded by qG/|G|, since no information has been leaked about
Ki (except it does not correspond to the Auth queries asked above.)

˛

˛

˛ Pr[S7] − Pr[S6]
˛

˛

˛ ≤
qG

|G| − qAuth

≤
2qG
|G|

˛

˛

˛ Pr[Encrypt7] − Pr[Encrypt6]
˛

˛

˛ ≤
qG

|G| − qAuth

≤
2qG
|G|

.

Furthermore, because the private oracle G′ is private to the simulator, it is clear that

Pr[S7] =
1

2
.

Game G8: In order to conclude the proof, we need to upper-bound the event Encrypt7. One
can note that the password pw is only used in the simulation of the second and third rounds, to
compute zi, zi−1 and zi+1 (using the elements ζi, ζi−1 and ζi+1), but eventually, we output Xi only,
which are computed from the γi−1 and γi. The latter is totally independent of the former.
We can thus simplify the simulation of the second and third rounds: In the second round, Ui

randomly chooses z?
i ∈ G, and sends it (this is exactly as before.) However no decryption is needed.

In the third round, Ui simply computes and sends Xi = γi/γi−1 (this is just to make sure that the
product of the Xi is equal to 1, but we just need random elements satisfying this relation, since

9

they do not appear anywhere else.) This is a perfect simulation, since one does not need anymore
to compute Ki.
At this point, the password is never used, and can thus be chosen at the very end only, which makes
clear that probability of the Encrypt event is less than the number of first flows manufactured by
the adversary, divided by N . The latter part is upper-bounded by qactive:

Pr[Encrypt7] = Pr[Encrypt8] ≤ qactive/N.

In the above, we used the fact that collisions in the output of H have been eliminated in previous
games.
Putting all equations together, one easily gets the announced bound.

6 Conclusion

We described a constant-round password-based key exchange protocol for group, derived from the
Burmester-Desmedt scheme. The protocol is proven secure against dictionary attacks under the
DDH assumption, in the ideal-cipher and random oracle models. It remains an open problem to
find a scheme whose security depends on the number of active sessions rather than on the number
of manufactured flows.

Acknowledgements

The first and fourth authors were supported in part by France Telecom R&D as part of the
contract CIDRE, between France Telecom R&D and École normale supérieure. The third au-
thor was supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research, Mathematical Information and Computing Sciences Division, of the U.S. Department
of Energy under Contract No. DE-AC03-76SF00098. This document is report LBNL-59542. See
http://www-library.lbl.gov/disclaimer.

References

1. Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated
key exchange in the three-party setting. In Serge Vaudenay, editor, PKC 2005, volume 3386 of
LNCS, pages 65–84, Les Diablerets, Switzerland, January 23–26, 2005. Springer-Verlag, Berlin,
Germany.

2. Michel Abdalla and David Pointcheval. Simple password-based encrypted key exchange pro-
tocols. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 191–208, San
Francisco, CA, USA, February 14–18, 2005. Springer-Verlag, Berlin, Germany.

3. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 139–155, Bruges, Belgium, May 14–18, 2000. Springer-Verlag, Berlin, Germany.

4. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption: How to encrypt with RSA.
In Alfredo De Santis, editor, EUROCRYPT’94, volume 950 of LNCS, pages 92–111, Perugia,
Italy, May 9–12, 1994. Springer-Verlag, Berlin, Germany. http://www-cse.ucsd.edu/users/

mihir.
5. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Provably authenticated group

Diffie-Hellman key exchange – the dynamic case. In Colin Boyd, editor, ASIACRYPT 2001,
volume 2248 of LNCS, pages 290–309, Gold Coast, Australia, December 9–13, 2001. Springer-
Verlag, Berlin, Germany.

6. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group Diffie-Hellman
key exchange under standard assumptions. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 321–336, Amsterdam, The Netherlands, April 28 – May 2, 2002.
Springer-Verlag, Berlin, Germany.

7. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Group Diffie-Hellman key ex-
change secure against dictionary attacks. In Yuliang Zheng, editor, ASIACRYPT 2002, volume
2501 of LNCS, pages 497–514, Queenstown, New Zealand, December 1–5, 2002. Springer-Verlag,
Berlin, Germany.

10

8. Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques Quisquater. Prov-
ably authenticated group Diffie-Hellman key exchange. In ACM CCS 01, pages 255–264,
Philadelphia, PA, USA, November 5–8, 2001. ACM Press.

9. Mike Burmester and Yvo Desmedt. A secure and efficient conference key distribution system
(extended abstract). In Alfredo De Santis, editor, EUROCRYPT’94, volume 950 of LNCS,
pages 275–286, Perugia, Italy, May 9–12, 1994. Springer-Verlag, Berlin, Germany.

10. Mike Burmester and Yvo Desmedt. A secure and scalable group key exchange system. Infor-

mation Processing Letters, 94(3):137–143, May 2005.
11. Ratna Dutta and Rana Barua. Password-based encrypted group key agreement. International

Journal of Network Security, 3(1):30–41, July 2006. http://isrc.nchu.edu.tw/ijns.
12. Ian T. Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann, 2004.
13. Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge Uni-

versity Press, Cambridge, UK, 2004.
14. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System

Sciences, 28(2):270–299, 1984.
15. Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key exchange. In

Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 110–125, Santa Barbara, CA,
USA, August 17–21, 2003. Springer-Verlag, Berlin, Germany.

16. Hyun-Jeong Kim, Su-Mi Lee, and Dong Hoon Lee. Constant-round authenticated group key ex-
change for dynamic groups. In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS,
pages 245–259, Jeju Island, Korea, December 5–9, 2004. Springer-Verlag, Berlin, Germany.

17. Su-Mi Lee, Jung Yeon Hwang, and Dong Hoon Lee. Efficient password-based group key ex-
change. In Sokratis K. Katsikas, Javier Lopez, and Günther Pernul, editors, TrustBus 2004, vol-
ume 3184 of LNCS, pages 191–199, Zaragoza, Spain, August 30 – September 1, 2004. Springer-
Verlag, Berlin, Germany.

11

