
An extended abstract of this work appears in [2].
This full version appeared in IEE Proceedings Information Security.
Volume 153, number 1, March 2006, pages 27–39.

Password-Based Authenticated Key Exchange

in the Three-Party Setting

Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Departement d’Informatique
École normale supérieure

45 Rue d’Ulm, 75230 Paris Cedex 05, France
{Michel.Abdalla,Pierre-Alain.Fouque,David.Pointcheval}@ens.fr

http://www.di.ens.fr/users/{mabdalla,fouque,pointche}.

Abstract. Password-based authenticated key exchange (PAKE) are protocols which are designed
to be secure even when the secret key used for authentication is a human-memorable password. In
this paper, we consider PAKE protocols in the three-party scenario, in which the users trying to
establish a common secret do not share a password between themselves but only with a trusted
server. Towards our goal, we recall some of the existing security notions for PAKE protocols and
introduce new ones that are more suitable to the case of generic constructions of three-party pro-
tocols. We then present a natural generic construction of a three-party PAKE protocol from any
two-party PAKE protocol and prove its security. To the best of our knowledge, the new protocol is
the first provably-secure PAKE protocol in the three-party setting.

Keywords. Password, authenticated key exchange, key distribution, multi-party protocols.

1 Introduction

Motivation. A fundamental problem in cryptography is how to communicate securely over an
insecure channel, which might be controlled by an adversary. It is common in this scenario
for two parties to encrypt and authenticate their messages in order to protect the privacy
and authenticity of these messages. One way of doing so is to use public-key encryption and
signatures, but the cost associated with these primitives may be too high for certain applications.
Another way of addressing this problem is for users to first establish a common secret key via
a key exchange protocol and then use this key to derive keys for symmetric encryption and
message authentication schemes.

In practice, one finds several flavors of key exchange protocols, each with its own benefits and
drawbacks. Among the most popular ones is the 3-party Kerberos authentication system [26].
Another one is the 2-party SIGMA protocol [20] used as the basis for the signature-based modes
of the Internet Key Exchange (IKE) protocol. Yet another flavor of key exchange protocols which
has received significant attention recently are those based on passwords.

Password-based key exchange. Password-based key exchange protocols assume a more
realistic scenario in which secret keys are not uniformly distributed over a large space, but
rather chosen from a small set of possible values (a four-digit pin, for example). They also seem
more convenient since human-memorable passwords are simpler to use than, for example, having
additional cryptographic devices capable of storing high-entropy secret keys. The vast majority
of protocols found in practice do not account, however, for such scenario and are often subject to
so-called dictionary attacks. Dictionary attacks are attacks in which an adversary tries to break
the security of a scheme by a brute-force method, in which it tries all possible combinations of
secret keys in a given small set of values (i.e., the dictionary). Even though these attacks are
not very effective in the case of high-entropy keys, they can be very damaging when the secret
key is a password since the attacker has a non-negligible chance of winning. Such attacks are
usually divided in two categories: off-line and online dictionary attacks.

c© IEE 2006.

2

To address this problem, several protocols have been designed to be secure even when the
secret key is a password. The goal of these protocols is to restrict the adversary’s success to
on-line guessing attacks only. In these attacks, the adversary must be present and interact with
the system in order to be able to verify whether its guess is correct. The security in these systems
usually relies on a policy of invalidating or blocking the use of a password if a certain number
of failed attempts has occurred.

3-party password-based key exchange. Passwords are mostly used because they are eas-
ier to remember by humans than secret keys with high entropy. Consequently, users prefer to
remember very few passwords but not many. However, in scenarios where a user wants to com-
municate with many other users, then the number of passwords that he or she would need to
remember would be linear in the number of possible partners. In order to limit the number
of passwords that each user needs to remember, we consider in this paper password-based au-
thenticated key exchange in the 3-party model, where each user only shares a password with
a trusted server. The main advantage of this solution is that it provides each user with the
capability of communicating securely with other users in the system while only requiring it to
remember a single password. This seems to be a more realistic scenario in practice than the one
in which users are expected to share multiple passwords, one for each party with which it may
communicate privately. Its main drawback is that the server is needed during the establishment
of all communication as in the Needham and Schroeder protocol [23].

Key privacy. One potential disadvantage of a 3-party model is that the privacy of the commu-
nication with respect to the server is not always guaranteed. Since we want to trust as little as
possible the third party, we develop a new notion called key privacy which roughly means that,
even though the server’s help is required to establish a session key between two users in the
system, the server should not be able to gain any information on the value of that session key.
Here we assume that the server is honest but curious. Please note that key distribution schemes
usually do not achieve this property.

Insider attacks. One of the main differences between the 2-party and the 3-party scenarios
is the existence of insider attacks. To better understand the power of these attacks, consider
the protocol in Figure 1, based on the encrypted key exchange of Bellovin and Merritt [11], in
which the server simply decrypts the message it receives and re-encrypts it under the other user’s
password. In this protocol, it is easy to see that one can mount an off-line dictionary by simply
playing the role of one of the involved parties. Notice that both A and B can obtain the necessary
information to mount an off-line dictionary attack against each other simply by eavesdropping
on the messages that are sent out by the server. More specifically, A and B can respectively
learn the values X?

S = EPWB
(XS) and Y ?

S = EPWA
(YS) and mount a dictionary attack against

each other using the fact that XS = XA and YS = YB. Despite being also possible in the case
of 2-party protocols (see [12]), insider attacks seem easier to mount in the 3-party scenario and
thus must be taken into account.

A new security model. In order to analyze the security of 3-party password-based authen-
ticated key exchange protocols, we put forward a new security model and define two notions of
security: indistinguishability of the session key and key privacy with respect to the server. The
first of these notions is the usual one and is a straight-forward generalization of the equivalent
notion in the 2-party password-based authenticated key exchange model. The second one is new
and particular to the new setting, and captures the privacy of the key with respect to the trusted
server to which all passwords are known.

3

Public information: G, g, p, E ,D, H

Client A Server Client B
pwA ∈ Password pwA, pwB ∈ Password pwB ∈ Password

x
R

← Zp ; XA ← gx y
R

← Zp ; YB ← gy

X?
A ← EpwA

(XA) Y ?
B ← EpwB

(YB)
X?

A
−→

Y ?
B
←−

XS ← DpwA
(X?

A)
YS ← DpwB

(Y ?
B)

Y ?
S ← EpwA

(YS)
X?

S ← EpwB
(XS)

Y ?
S
←−

X?
S
−→

YA ← DpwA
(Y ?

S) XB ← DpwB
(X?

S)
KA ← Y x

A KB ← X
y
B

SKA ← H(A ‖B ‖S ‖KA) SKB ← H(A‖B ‖S ‖KB)

Fig. 1. A 3-party password-based encrypted key exchange protocol that is insecure against insider attacks. Epw

and Dpw represent, respectively, the encryption and decryption algorithms of a cipher, such as AES [3], using the
password pw as the encryption and decryption key.

A generic construction. In this paper, we consider a generic construction of a 3-party
password-based protocol. Our construction is a natural one, building upon existing 2-party
password-based key exchange and 3-party symmetric key distribution schemes, to achieve prov-
able security in the strongest sense. Moreover, our construction is also modular in the sense that
it can be broken into two parts, a 3-party password-based key distribution protocol and 2-party
authenticated key exchange. The second part is only needed if key privacy with respect to the
server is required.

The need for new security notions. Surprisingly, the proof of security for the new scheme
does not seem to follow from the usual security notions for the underlying schemes as one
would expect and seems to require a new and stronger notion of security for the underlying
2-party password-based scheme (see Section 2). In fact, this new security notion is not specific
to password-based schemes and is one of the main contributions of this paper. Fortunately, we
observe that most existing 2-party password-based schemes do in fact satisfy this new prop-
erty [14, 17, 19, 22]. More specifically, only a few small changes are required in their proof in
order to achieve security in the new model. The bounds obtained in their proof remain essen-
tially unchanged.

Contributions. In this paper, we consider password-based key exchange with implicit authen-
tication in the 3-party model, where each user only shares a password with a trusted server.

New security models. Towards our goal, we put forth a new formal security model that is
appropriate for the 3-party password-based authenticated key exchange scenario and give precise
definitions of what it means for it to be secure. Our model builds upon those of Bellare and
Rogaway [9, 10] for key distribution schemes and that of Bellare, Pointcheval, and Rogaway [7]
for password-based authenticated key exchange.

New security notions. We also present a new and stronger model for 2-party authenticated
key exchange protocols, which we call the Real-Or-Random model. Our new model is provably
stronger than the existing model, to which we refer to as the Find-Then-Guess model, in the sense
that a scheme proven secure in the new model is also secure in the existing model. However, the
reverse is not necessarily true due to an unavoidable non-constant factor loss in the reduction.

4

Such losses in the reduction are extremely important in the case of password-based protocols.
In addition to the indistinguishability of the session key, we present a new property, called
key privacy, which is specific to 3-party key exchange protocols. This new notion captures in
a quantitative way the idea that the session key shared between two instances should only be
known to these two instances and no one else, including the trusted server.

A generic construction in the standard model. We present a generic and natural frame-
work for constructing a 3-party password-based authenticated key exchange protocol from any
secure 2-party password-based one. We do so by combining a 3-party key distribution scheme,
an authenticated Diffie-Hellman key exchange protocol, and the 2-party password-based authen-
ticated key exchange protocol. The proof of security relies solely on the security properties of
underlying primitives it uses and does not assume the Random Oracle model [8]. Hence, when
appropriately instantiated, this construction yields a secure protocol in the standard model.

Related Work. Password-based authenticated key exchange has been extensively studied in
the last few years, in various environments. The seminal work in this area is the encrypted key
exchange protocol by Bellovin and Merritt [11], in which two users execute an encrypted version
of the Diffie-Hellman key exchange protocol [16]. In their protocol, each flow is encrypted using
the password shared between these two users as the symmetric key. Unfortunately, due to the
lack of a proper security model, no formal security analysis was presented for their protocol.

The first formal security model for authenticated key exchange protocols between two parties
was introduced by Bellare and Rogaway [9]. The latter has been extended to the password-based
setting [7, 13], with security analyses of the above 2-party password-based key exchange, under
idealized assumptions, such as the random oracle and the ideal cipher models. Password-based
schemes, provably secure in the standard model, have been recently proposed [19, 18, 17], but
only for two parties. Only few papers [15, 21, 27] have considered password-based protocols in
the 3-party setting, but none of their schemes enjoys provable security. In fact, our generic
construction seems to be the first provably-secure 3-party password-based authenticated key
exchange protocol.

Another related line of research is authenticated key exchange in the 3-party setting. The first
work in this area is the protocol of Needham and Schroeder [23], which inspired the Kerberos

distributed system [26]. Later, Bellare and Rogaway introduced a formal security model in
this scenario along with a construction of the first provably-secure symmetric-key-based key
distribution scheme [10]. In this paper, we consider the special but important case in which the
secret keys are drawn from a small set of values.

Organization. In Section 2, we recall the existing security model for 2-party password-based
authenticated key exchange and introduce a new one. Next, in Section 3, we introduce new
models for 3-party password-based authenticated key exchange. Then, in Section 4, we relate
the new security notions being introduced in this paper to some of the existing ones. Section 5
then presents our generic construction of a 3-party password-based authenticated key exchange
protocol, called GPAKE, along with the security claims and suggestions on how to instantiate it.
The proofs of security for GPAKE are given in Section 6. We conclude this paper by presenting
some future extensions of this work in Section 7.

2 Security models for 2-party password-based key exchange

A secure 2-party password-based key exchange (2PAKE) is a protocol where the parties use
their password in order to derive a common session key sk that will be used to build secure

5

channels. Loosely speaking, such protocols are said to be secure against dictionary attacks if
the advantage of an attacker in distinguishing a real session key from a random key is less than
O(n/|D|)+ ε(k) where |D| is the size of the dictionary D, n is the number of active sessions and
ε(k) is a negligible function depending on the security parameter k.

In this section, we recall the security model for 2-party password-based authenticated key
exchange protocols introduced by Bellare, Pointcheval, and Rogaway (BPR) [7] and introduce a
new one. For reasons that will soon become apparent, we refer to the new model as the Real-Or-
Random (ROR) model and to the BPR model as the Find-Then-Guess (FTG) model, following
the terminology of Bellare et al. for symmetric encryption schemes [5].

2.1 Communication model

Protocol participants. Each participant in the 2-party password-based key exchange is
either a client C ∈ C or a server S ∈ S. The set of all users or participants U is the union C ∪S.

Long-lived keys. Each client C ∈ C holds a password pwC . Each server S ∈ S holds a vector
pwS = 〈pwC〉C∈C with an entry for each client. pwC and pwS are also called the long-lived keys
of client C and server S.

Protocol execution. The interaction between an adversary A and the protocol participants
occurs only via oracle queries, which model the adversary capabilities in a real attack. During
the execution, the adversary may create several concurrent instances of a participant. These
queries are as follows, where U i denotes the instance i of a participant U :

– Execute(C i, Sj): This query models passive attacks in which the attacker eavesdrops on
honest executions between a client instance C i and a server instance Sj. The output of
this query consists of the messages that were exchanged during the honest execution of the
protocol.

– Send(U i,m): This query models an active attack, in which the adversary may intercept a
message and then either modify it, create a new one, or simply forward it to the intended
participant. The output of this query is the message that the participant instance U i would
generate upon receipt of message m.

2.2 Security definitions

Partnering. As in [7], we use the notion of partnering based on session identifiers (sid) and
partner identifiers (pid). More specifically, let the session identifier of a client or server instance
be a function of all the messages sent and received by that instance as specified by the key
exchange protocol. Let the partner identifier of a client or server instance be the instance with
which a common secret key is to be established. Then, two instances U i

1 and U j
2 are said to be

partners if the following conditions are met: (1) Both U i
1 and U j

2 accept; (2) Both U i
1 and U j

2

share the same session identifiers; (3) The partner identifier for U i
1 is U j

2 and vice-versa; and

(4) No instance other than U i
1 and U j

2 accepts with a partner identifier equal to U i
1 or U j

2 . In
practice, the sid can be taken to be the partial transcript of the conversation between the client
and the server instances before the acceptance.

Freshness. In order to properly formalize security notions for the session key, one has to be
careful to avoid cases in which adversary can trivially break the security of the scheme. For
example, an adversary who is trying to distinguish the session key of an instance U i from a
random key can trivially do so if it obtains the key for that instance through a Reveal query

6

(see definition below) to instance U i or its partner. Instead of explicitly defining a notion of
freshness and mandating the adversary to only perform tests on fresh instances as in previous
work, we opted to embed that notion inside the definition of the oracles.

Indistinguishability in the Find-Then-Guess model. This is the definition currently being
used in the literature. In order to measure the indistinguishability of the session key of user
instance, the adversary is given access to two additional oracles: the Reveal oracle, which models
the misuse of session keys by a user, and the Test oracle, which tries to capture the adversary’s
ability (or inability) to tell apart a real session key from a random one. Let b be a bit chosen
uniformly at random at the beginning of the experiment defining indistinguishability in the
Find-Then-Guess (FTG) model. These oracles are defined as follows.

– Reveal(U i): If a session key is not defined for instance U i or if a Test query was asked to
either U i or to its partner, then return ⊥. Otherwise, return the session key held by the
instance U i.

– Test(U i): If no session key for instance U i is defined or if a Reveal query was asked to either
U i or to its partner, then return the undefined symbol ⊥. Otherwise, return the session key
for instance U i if b = 1 or a random key from the same domain if b = 0.

The adversary in this case is allowed to ask multiple queries to the Execute, Reveal, and Send

oracles, but it is restricted to ask only a single query to the Test oracle. The goal of the adversary
is to guess the value of the hidden bit b used by the Test oracle. The adversary is considered
successful if it guesses b correctly.

Let Succ denote the event in which the adversary is successful. The ftg-ake-advantage of
an adversary A in violating the indistinguishability of the protocol P in the FTG sense and the
advantage function of the protocol P , when passwords are drawn from a dictionary D, are
respectively

Advftg−ake
P,D (A) = 2 · Pr[Succ]− 1; and

Advftg−ake
P,D (t, R) = max

A
{Advftg−ake

P,D (A) },

where the maximum is over all A with time-complexity at most t and using resources at most
R (such as the number of queries to its oracles). The definition of time-complexity that we
use henceforth is the usual one, which includes the maximum of all execution times in the
experiments defining the security plus the code size of the adversary [1]. Note that the advantage
of an adversary that simply guesses the bit b is 0 in the above definition due to the rescaling of
the probabilities.

We say a 2-party password-based key exchange protocol P is secure in the FTG sense if the
advantage Advftg−ake

P,D is only negligibly larger than kn/|D|, where n is number of active sessions
and k is a constant. A session is said to be active if it involves Send queries by the adversary.
We note that k = 1 in the best scenario one can expect since an adversary that simply guesses
the password and plays the role of a given user via Send queries has an advantage of n/|D|.

In order to guarantee that security definitions are actually meaningful in practice, we assume
henceforth that the size of the key space from which the session key is sampled is at least super-
polynomial in the security parameter.

Indistinguishability in the Real-Or-Random model. This is a new definition. In the Real-
Or-Random (ROR) model, we only allow the adversary to ask Execute, Send, and Test queries.
In other words, the Reveal oracle that exists in the FTG model is no longer available to the
adversary. Instead, we allow the adversary to ask as many Test queries as it wants to different

7

instances. All Test queries in this case will be answered using the same value for the hidden bit
b that was chosen at the beginning . That is, the keys returned by the Test oracle are either all
real or all random. However, in the random case, the same random key value should be returned
for Test queries that are asked to two instances which are partnered. P lease note that the Test

oracle is the oracle modeling the misuse of keys by a user in this case. The goal of the adversary
is still the same: to guess the value of the hidden bit b used to answer Test queries. The adversary
is considered successful if it guesses b correctly.

Let Succ denote the event in which the adversary is successful. The ror-ake-advantage
of an adversary A in violating the indistinguishability of the protocol P in the ROR sense,
Advror−ake

P,D (A), and the advantage function Advror−ake
P,D (t, R) of the protocol P are then de-

fined as in the previous definition.

As in FTG case, we say a 2-party password-based key exchange protocol P is secure in the
ROR sense if the advantage Advftg−ake

P,D is only negligibly larger than kn/|D|, where n is number
of active sessions and k is a constant.

Relation between notions. As we prove in Section 4, the Real-Or-Random (ROR) security
model is actually stronger than the Find-Then-Guess (FTG) security model, assuming that
constant factor losses in the security reduction are acceptable. More specifically, we show that
proofs of security in the ROR model can be easily translated into proofs of security in the FTG

model with only a 2 factor loss in the reduction (see Lemma 1). The reverse, however, is not
necessarily true since the reduction is not security preserving. There is a loss of non-constant
factor in the reduction (see Lemma 2). Moreover, the loss in the reduction cannot be avoided as
there exist schemes for which we can prove such a loss in security exists (see Proposition 3).

To better understand the gap between the two notions, imagine a password-based scheme
that was proven secure in the FTG model. By definition, the advantage of any adversary is at
most O(n/|D|)+ ε(k), where n is the number of active sessions and ε(k) is a negligible term. By
applying the reduction, we can show that no adversary can do better than O(n2/|D|) + n · ε(k),
which is not enough to guarantee the security of the same scheme in the ROR model. Note that
such a gap is not as important in the case where high-entropy keys are used since both terms in
the expression would be negligible.

As a consequence, we cannot take for granted the security of the existing schemes and new
proofs of security need be provided. Fortunately, we would like to point out here that the security
proof for several of the existing schemes can be easily modified to meet the new security goals
with essentially the same bounds. The reason for that is that the security proofs of most existing
password-based schemes in fact prove something stronger than what is required by the security
model. More specifically, most proofs generally show that not only the session key being tested
looks random, but all the keys that may be involved in a reveal query also look random to an
adversary that does not know the secret password, thus satisfying the security requirements of
our new model. In particular, this is the case for the KOY protocol [19] and its generalization [17],
and some other schemes based on the encrypted key exchange scheme of Bellovin and Merritt [11]
(e.g., [14, 22]).

Since most existing password-based schemes do seem to achieve security in the new and
stronger security model and since the latter appears to be more applicable to situations in
which one wishes to use a password-based key exchange protocol as a black box, we suggest the
use of our new model when proving the security of new password-based schemes.

Relation to simulation models. In [24], the Find-Then-Guess model of [10] is shown to be
equivalent to simulation models in the sense that a scheme that is proven secure in one model

8

is also secure in the other model. By closely examining their proof, one can easily see that the
equivalence does not apply to the case of password-based protocols due to the non-security-
preserving reduction. It seems, however, that their proof of equivalence can be adapted to show
the equivalence between the simulation model and the Real-Or-Random model that we introduce
in this paper in the case of password-based protocols.

3 Security models for 3-party password-based key exchange

In this section, we put forward new formal security models for 3-party password-authenticated
key exchange and key distribution protocols. Our models are generalizations of the model of
Bellare and Rogaway [10] for 3-party key distribution schemes to the password case and that of
Bellare, Pointcheval, and Rogaway [7] for 2-party password-based authenticated key exchange.

3.1 Protocol Syntax

Protocol participants. Each participant in a 3-party password-based key exchange is either
a client U ∈ U or a trusted server S ∈ S. The set of clients U is made up of two disjoint sets: C,
the set of honest clients, and E , the set of malicious clients. For simplicity, and without loss of
generality 1, we assume the set S to contain only a single trusted server.

The inclusion of the malicious set E among the participants is one of the main differences
between the 2-party and the 3-party models. Despite being also important in the 2-party model
(see [12]), the inclusion of malicious users seems to be essential in the 3-party model as insider
attacks appear to be a more realistic threat.

Long-lived keys. As in the 2-party case, each client C ∈ C holds a password pwC and each
server S ∈ S holds a vector pwS = 〈pwC〉C∈C with an entry for each client. The only difference
with respect to the 2-party case is that the set of passwords pwE, where E ∈ E , is assumed to
be known by the adversary.

3.2 Communication model

The interaction between an adversary A and the protocol participants occurs only via oracle
queries, which model the adversary capabilities in a real attack. These queries are as follows:

– Execute(U i1
1 , Sj , U i2

2): This query models passive attacks in which the attacker eavesdrops
on honest executions among the client instances U i1

1 and U i2
2 and trusted server instance Sj .

The output of this query consists of the messages that were exchanged during the honest
execution of the protocol.

– SendClient(U i,m): This query models an active attack, in which the adversary may intercept
a message and then modify it, create a new one, or simply forward it to the intended client.
The output of this query is the message that client instance U i would generate upon receipt
of message m.

– SendServer(Sj ,m): This query models an active attack against a server. It outputs the
message that server instance Sj would generate upon receipt of message m.

1 This is because we are working in the concurrent model and because all servers are assumed to know the
passwords of all users.

9

3.3 Indistinguishability

The security definitions presented here build upon those of Bellare and Rogaway [9, 10] and that
of Bellare, Pointcheval, and Rogaway [7].

Notation. Following [9, 10], we say an instance U i has accepted if it goes into an accept mode
after receiving the last expected protocol message.

Partnering. The definition of partnering in the 3-party setting is similar to the one given in
the 2-party setting and is thus omitted here. We note, however, that, in order to guarantee that
all participants in the same session end up with the same session identifier, the forwarding of
messages may be required.

Freshness. As in the 2-party case, we opted to embed the notion of freshness inside the defi-
nition of the oracles.

Indistinguishability in Find-Then-Guess model. This definition we give here is the straight-
forward generalization of that of Bellare, Pointcheval, and Rogaway [7] for the 2-party case,
combined with ideas of the model of Bellare and Rogaway [10] for 3-party key distribution. As
in the 2-party case, we also define a Reveal oracle to model the misuse of session keys and a
Test oracle to capture the adversary’s ability to distinguish a real session key from a random
one. Let b be a bit chosen uniformly at random at the beginning of the experiment defining
indistinguishability in the FTG model. These oracles are defined as follows:

– Reveal(U i): If a session key is not defined for instance U i or if a Test query was asked to
either U i or to its partner, then return ⊥. Otherwise, return the session key held by the
instance U i.

– Test(U i): If no session key is defined for instance U i or if the intended partner of U i is part
of the malicious set or if a Reveal query was asked to either U i or to its partner, then return
the invalid symbol ⊥. Otherwise, return either the session key for instance U i if b = 1 or a
random key from the same domain if b = 0.

Consider an execution of the key exchange protocol P by an adversary A, in which the latter is
given access to the Reveal, Execute, SendClient, SendServer, and Test oracles and asks a single
Test query, and outputs a guess bit b′. Such an adversary is said to win the experiment defining
indistinguishability if b′ = b, where b is the hidden bit used by the Test oracle. Let Succ denote
the event in which the adversary wins this game. The ftg-ake-advantage Adv ftg−ake

P,D (A) of
an adversary A in violating the indistinguishability of the protocol P in the FTG sense and
the advantage function Advftg−ake

P,D (t, R) of the protocol P are then defined as in previous
definitions.

Like in the 2-party case, we say a 3-party password-based key exchange protocol P is secure
in the FTG sense if the advantage Advftg−ake

P,D is only negligibly larger than kn/|D|, where n is
number of active sessions and k is a constant.

Indistinguishability in Real-Or-Random model. This is a new definition. In the ROR

model, Reveal queries are no longer allowed and are replaced by Test queries. In this case,
however, the adversary is allowed to ask as many Test queries as it wants.

The modifications to the Test oracle are as follows. If a Test query is asked to a client instance
that has not accepted, then return the invalid symbol ⊥. If a Test query is asked to an instance
of an honest client whose intended partner is dishonest or to an instance of a dishonest client,
then return the real session key. Otherwise, the Test query returns either the real session key if
b = 1 and a random one if b = 0, where b is the hidden bit selected at random prior to the first

10

call. However, when b = 0, the same random key value should be returned for Test queries that
are asked to two instances which are partnered. The goal of the adversary is still the same: to
guess the value of the hidden bit used by the Test oracle. The adversary is considered successful
if it guesses b correctly.

Consider an execution of the key exchange protocol P by an adversary A, in which the latter
is given access to the Execute, SendClient, SendServer, and Test oracles, and outputs a guess
bit b′. Such an adversary is said to win the experiment defining indistinguishability in the ROR
sense if b′ = b, where b is the hidden bit used by the Test oracle. Let Succ denote the event in
which the adversary wins this game. The ror-ake-advantage Advror−ake

P,D (A) of an adversary
A in violating the indistinguishability of the protocol P in the ROR sense and the advantage
function Advror−ake

P,D (t, R) of the protocol P are then defined as in previous definitions.

3.4 Key privacy with respect to the server

Differently from previous work, we define the notion of key privacy to capture, in a quantitative
way, the idea that the session key shared between two instances should only be known to these
two instances and no one else, including the trusted server. The goal of this new notion is to
limit the amount of trust put into the server. That is, even though we rely on the server to
help clients establish session keys between themselves, we still want to guarantee the privacy
of these session keys with respect to the server. In fact, this is the main difference between a
key distribution protocol (in which the session key is known to the server) and a 3-party key
exchange protocol (for which the session key remains unknown to the server).

In defining the notion of key privacy, we have in mind a server which knows the passwords
for all users, but that behaves in an honest but curious manner. For this reason, we imagine an
adversary who has access to all the passwords as well as to the Execute and SendClient oracles
but not to a Reveal oracle or to a SendServer oracle. The reason for not providing the adversary
with a SendServer oracle is because the latter can be easily simulated by the adversary using
the passwords. The reason for not providing the adversary with a a Reveal oracle is because,
in the definition of key privacy, we only consider sessions in which the key is shared between
two oracle instances. For these sessions, to capture the adversary’s ability to tell apart the real
session key from a random one from the same domain, we introduce a new type of oracle, called
TestPair. Let b is a bit chosen uniformly at random at the beginning of the experiment defining
the notion of key privacy. The TestPair is defined as follows.

– TestPair(U i
1, U

j
2): If client instances U i

1 and U j
2 do not share the same key, then return the

invalid symbol ⊥. Otherwise, return the real session key shared between client instances U i
1

and U j
2 if b = 1 or a random key from the same domain if b = 0.

Consider an execution of the key exchange protocol P by an adversary A in which the
latter is given the passwords of all users and is allowed to ask multiple queries to its Execute,
SendClient, and TestPair oracles. Let b′ be its output. Such an adversary is said to win the
experiment defining the key privacy if b′ = b, where b is the hidden bit used by the TestPair

oracle. Let Succ denote the event in which the adversary guesses b correctly. We can then define
the kp-advantage Advkp−ake

P,D (A) of A in violating the key privacy of the key exchange protocol

P and the advantage function Advkp−ake
P,D (t, R) of P as in previous definitions.

Finally, we say an adversary A succeeds in breaking the key privacy of a protocol P if its
advantage Advkp−ake

P,D (A) is non-negligible.

11

4 Relations between notions

In this section, we prove the relation between the Find-Then-Guess (FTG) and Real-Or-Random
(ROR) notions of security for authenticated key exchange protocols. The relation is not specific
to password-based schemes, but its implications are more important in that scenario.

Lemma 1. Let Advftg−ake
AKE (t, qsend, qreveal, qexe) represent the maximum advantage of an adver-

sary in violating the indistinguishability of the protocol AKE in the FTG sense when the adversary

has time-complexity at most t and asks at most qsend queries to its Send oracle, qreveal queries to

its Reveal oracle, and qexe queries to its Execute oracle. Let Advror−ake
AKE (t, qsend, qtest, qexe) repre-

sent the maximum advantage of an adversary in violating the indistinguishability of the protocol

AKE in the ROR sense when the adversary has time-complexity at most t and asks at most qsend

queries to its Send oracle, qtest queries to its Test oracle, and qexe queries to its Execute oracle.

Then, for any protocol AKE, Advftg−ake
AKE (t, qsend, qreveal, qexe) ≤ 2 ·Advror−ake

AKE (t, qsend, qtest, qexe),
where qtest = qreveal + 1.

Proof. In order to prove this lemma, we show how to build an adversary Aror against the
indistinguishability of an authenticated key exchange protocol, AKE, in the ROR model given
an adversary Aftg against the indistinguishability of the same protocol AKE in the FTG model.
We know that Aftg has time-complexity at most t and that it asks at most qsend, qreveal, and qexe

queries to its Send, Reveal, and Execute oracles, respectively.

The description of Aror is as follows. Aror starts by choosing a bit b uniformly at random
and starts running Aftg. If Aftg asks a Send query, then Aror asks the corresponding query to its
Send oracle. If Aftg asks a Execute query, then Aror asks the corresponding query to its Execute

oracle. If Aftg asks a Reveal query, then Aror asks a Test query to its Test oracle and uses the
answer it receives as the answer to the Reveal query. If Aftg asks a Test query, then Aror asks
the corresponding query to its Test oracle. If b = 1, then Aror uses the answer it received as the
answer to the Test query. Otherwise, it returns a random key to Aftg. Let b′ be the final output
of Aftg. If b′ = b, then Aror outputs 1. Otherwise, it outputs 0.

Note that Aror has time-complexity at most t and asks at most qsend, qreveal + 1, and qexe

queries to its Send, Test, and Execute oracles, respectively.

In order to analyze the advantage of Aror, first consider the case in which its Test oracle
returns random keys. It is easy to see that, in this case, Aftg cannot gain any information
about the hidden bit b used to answer its single Test query. Therefore, the probability that
Aror outputs 1 is exactly 1

2
. Now consider the case in which its Test oracle returns the actual

sessions keys. In this case, the simulation of Reveal is perfect and Aror runs Aftg exactly as in the
experiment defining the indistinguishability of Aftg in the FTG model. Therefore, the probability

that Aror outputs 1 is exactly 1
2

+ 1
2
Advftg−ake

AKE (Aftg) and, as a result, Advftg−ake
AKE (Aftg) ≤

2 ·Advror−ake
AKE (Aror) ≤ 2 ·Advror−ake

AKE (t, qsend, qreveal + 1, qexe). The lemma follows easily.

Lemma 2. Let Advftg−ake
AKE (t, qsend, qreveal, qexe) and Advror−ake

AKE (t, qsend, qtest, qexe) be defined as

in Lemma 1. Then, for any protocol AKE, Advror−ake
AKE (t, qsend, qtest, qexe) ≤ qtest ·Advftg−ake

AKE (t,
qsend, qreveal, qexe), where qreveal = qtest − 1.

Proof. In order to prove this lemma, we show how to build a sequence of adversaries Ai
ftg against

the indistinguishability of an authenticated key exchange protocol, AKE, in the FTG model given
an adversary Aror against the indistinguishability of the same protocol AKE in the ROR model.
We know that Aror has time-complexity at most t and that it asks at most qsend, qtest, and qexe

queries to its Send, Test, and Execute oracles, respectively.

12

The proof uses a standard hybrid argument, in which we define a sequence of qtest + 1
hybrid experiments Vi, where 0 ≤ i ≤ qtest. In experiment Vi, the first i queries to the Test

oracle are answered using a random key and all remaining Test queries are answered using
the real key. Please note that the hybrid experiments at the extremes correspond to the real
and random experiments in the definition of indistinguishability in the ROR model. Hence, in
order to prove the bound in the lemma, it suffices to prove that the difference in probability
that adversary Aror returns 1 between any two consecutive experiments Vi and Vi−1 is at most
Advftg−ake

AKE (t, qsend, qtest − 1, qexe). This is achieved by building a sequence of qtest adversaries
Ai

ftg, as described below.

Let Ai
ftg be a distinguisher Ai

ftg for experiments Vi and Vi−1, where 1 ≤ i ≤ qtest. A
i
ftg starts

running Aror answering to its queries as follows. If Aror asks a Send or Execute query, then Aftg

answers it using its corresponding oracle. If Aror asks a Test query, then Aftg answers it with a
random key if this query is among the first i− 1. If this is the i-th Test query, then Aftg uses its
Test oracle to answer it. All remaining Test queries are answered using the output of the Reveal

query. Aftg finishes its execution by outputting the same guess bit b outputted by Aror.
Note that Ai

ftg has time-complexity at most t and asks at most qsend, qtest − 1, and qexe

queries to its Send, Reveal, and Execute oracles, respectively.
In order to analyze the advantage of Ai

ftg, first notice that when Test oracle returns a ran-

dom key, Ai
ftg runs Aror exactly as in the experiment Vi. Next, notice that when Test oracle

returns the real key, Ai
ftg runs Aror exactly as in the experiment Vi−1. It follows that the differ-

ence in probability that adversary Aror returns 1 between experiments Vi and Vi−1 is at most
Advftg−ake

AKE (Aror) ≤ Advftg−ake
AKE (t, qsend, qtest − 1, qexe). The lemma follows easily.

Even though the reduction in Lemma 2 is not security-preserving (i.e., there is a non-constant
factor loss in the reduction), it does not imply that a gap really exists— there might exist a
tight reduction between the two notions that we have not yet found. In order to prove that the
non-constant factor loss in the reduction is indeed intrinsic, we need to show that there exist
schemes for which the gap does exist.

To achieve this goal, one can use techniques similar to those used to prove that a gap exists
between the Left-Or-Right and Find-Then-Guess notions of security for symmetric encryption
schemes [5]. In that paper, they show how to construct a new symmetric encryption scheme E ′

from a secure encryption scheme E such that E ′ exhibits the gap. E ′ was constructed in such a
way that its encryption function works like the encryption function of E most of the time, except
in a few cases (which are easily identifiable) in which the ciphertext it generates contains the
plaintext. The probability in which such bad cases happen in their construction is exactly 1/q,
where q is the non-constant factor in the reduction. Using a similar technique, we can prove the
following.

Proposition 3. The gap exhibited in Lemma 2 is intrinsic and cannot be avoided.

Proof. Let AKE be an authenticated key exchange protocol that is secure in the FTG model.
For simplicity, let us assume that qtest = 2l, for some integer l, and that k is the length of the
session key. Then, using AKE, we can construct a new scheme AKE′ that exhibits the claimed
gap as follows. AKE′ simply runs AKE and sets its session key sk to the one generated by AKE

whenever any of the first l bits of the latter are different from 0. When the first l bits of the
session key generated by AKE are to 0, then AKE′ simply sets all the bits of the session key sk
to 0.

First, let us analyze the ROR security of AKE′. To this end, consider an adversary Aror

against the ROR security of AKE′, which makes qexe = 2l queries to its Execute oracle and

13

qtest = 2l queries to its Test oracle and then outputs 1 if any of the outputs of the Test oracle is
a string containing all zeros and returns 0, otherwise. Let b be the hidden bit used to simulate
Test oracle. To analyze the success probability of AKE′, first notice that, if b = 0 (i.e., the Test

oracle returns random keys), then the probability that the Test oracle returns the zero string
is negligible if we assume that the session key length k is sufficiently larger than the parameter
l. Thus, the probability that Aror returns 0 in this case is also negligible. Second, notice that
if b = 1 (i.e., the Test oracle returns the actual session keys), then the probability that the
Test oracle returns the zero string is greater than 1/2. This is because the probability that the
first l bits of each session key sk generated by AKE are equal to 0 is close to 1/2l due to the
security of the underlying protocol AKE. As a result, the probability that at least one of qtest = 2l

session keys computed by AKE′ is equal to zero string (in which case Aror succeeds) is close to
1− (1 − qtest)

qtest ≈ 1− 1/e ≥ 1/2, where e is the base of the natural logarithm. Therefore, the
ror-ake-advantage of Aror and the ror-ake-advantage function of the protocol AKE′ is at least
1/2.

Second, let us analyze the FTG security of AKE′. To do so, we note that an adversary against
the FTG security of AKE′ must hope that the first l bits of the challenge session key that it
receives from its Test oracle are equal to zero. Otherwise, this adversary cannot achieve an
advantage that is greater than that of an adversary attacking the underlying AKE. Since the
first l bits of the challenge session key are equal to zero with probability close to 1/2 l, it follows

that Advftg−ake

AKE′ (t, qsend, qreveal, qexe) ≤ Advftg−ake
AKE (t, qsend, qreveal, qexe) + 1/2l.

Finally, we observe that, since we started with a protocol AKE that is secure in the FTG

sense, the value Advftg−ake
AKE (t, qsend, qreveal, qexe) should be negligible in comparison to 1/2l. As a

result, the ratio between the ror-ake-advantage and the ftg-ake-advantage of the protocol AKE ′

necessarily contains a non-constant factor that is proportional to the number of queries to the
Test oracle.

We note that, when the underlying scheme AKE is a password-based key exchange, not every
choice of parameters yields the result claimed in the proposition due to the fact Adv ftg−ake

AKE (t,
qsend, qreveal, qexe) usually contains non-negligible terms. However, since there are choices of pa-
rameters and schemes for which the gap does exist, that is already sufficient for the purpose of
the proposition.

Finally, it is also worth pointing out that the protocol AKE′ used to exhibit the gap in
Lemma 2 cannot be considered secure in the FTG model. This fact, however, does not invalidate
the proof of Proposition 3.

5 A generic three-party password-based protocol

In this section, we introduce a generic construction of a 3-party password-based key exchange
protocol in the scenario in which we have an honest-but-curious server. It combines a 2-party
password-based key exchange, a secure key distribution protocol, and a 2-party MAC-based
key exchange and has several attractive features. First, our construction does not rely on the
Random Oracle (RO) model [8] as long as the underlying primitives themselves do not rely
on it. Hence, by using schemes such as the KOY protocol [19] for the 2-party password-based
key exchange and the 3-party key distribution scheme in [10], one gets a 3-party password-
based protocol whose security is in the standard model. Second, if 2-party password-based key
exchange protocols already exist between the server and its users in a distributed system, they
can be re-used in the construction of our 3-party password-based key exchange.

14

5.1 Building blocks

In this section, we recall the definitions for the cryptographic primitives that we use in the
construction of our generic 3-party password-based authenticated key exchange, GPAKE.

Decisional Diffie-Hellman assumption: DDH. The DDH assumption states, roughly, that
the distributions (gu, gv , guv) and (gu, gv , gw) are computationally indistinguishable when u, v, w
are drawn at random from {1, . . . , |G|}. This can be made more precise by defining two experi-
ments, Expddh-real

G (A) and Expddh-rand
G (A). In both experiments, we compute two values U = gu

and V = gv to be given to A. But in addition to that, we also provide a third input, which is
guv in Expddh-real

G (A) and gz for a random z in Expddh-rand
G (A). The goal of the adversary is to

guess a bit indicating the experiment it thinks it is in. We define the advantage of A in vio-
lating the DDH assumption, Advddh

G (A), as Pr[Expddh-real
G (A) = 1]−Pr[Expddh-rand

G (A) = 1].
The advantage function of the group, Advddh

G (t) is then defined as the maximum value of
Advddh

G (A) over all A with time-complexity at most t.

Message authentication codes (MAC). Let ` be a security parameter and let sk be a `-
bit secret key uniformly distributed in {0, 1}`. A message authentication code MAC = (Tag,
Ver) is defined by the following two algorithms: (1) A MAC generation algorithm Tag, possibly
probabilistic, which given a message m and a secret key sk ∈ {0, 1}`, produces a tag µ; and
(2) A MAC verification algorithm Ver, which given a tag µ, a message m, and a secret key sk ,
outputs 1 if µ is a valid tag for m under sk and 0, otherwise.

The security notion that we need for the MAC scheme is strong existential unforgeabil-
ity under chosen-message attacks, which is based on existential unforgeability notion in [6]. In
this notion, the adversary should be unable to create a new valid message-tag pair, even af-
ter seeing many such valid pairs. More specifically, let MAC be a MAC scheme, let sk be a
secret key chosen uniformly at random from {0, 1}`, and let A be an adversary against the
security of MAC. Then, consider the experiment in which the adversary A is given access to
a MAC generation oracle Tag(sk ; ·) and to a MAC verification oracle Ver(sk ; ·, ·) and outputs
a message-tag pair (m,µ). Let Succ denote the event in which Ver(sk ;m,µ) = 1 and the tag
µ was not outputted by the Tag(sk ; ·) oracle on input m. The advantage of A in violating
the strong existential unforgeability of the MAC scheme MAC under chosen-message attacks is
defined as Advsuf−cma

MAC (A) = Pr[Succ]. The advantage function of the MAC scheme MAC,

Advsuf−cma
MAC (t, qg, qv), is then defined as the maximum value of Advsuf−cma

MAC (A) over all A with
time-complexity at most t and asking at most qg and qv queries to its MAC generation and
verification oracles, respectively.

3-party key distribution. A secure key distribution protocol KD is a 3-party protocol between
2 parties and a trusted server S where S picks a session key at random and securely sends it to
the users. The security model, formally introduced in [10], is a generalization of that for 2-party
authenticated key exchange protocols, to which a new oracle was added to represent the trusted
server. Their security is in the Find-Then-Guess (FTG) model, using the terminology that we
introduced for key exchange protocols.

In our generic construction, we only need a KD secure with respect to a single session since
the symmetric keys used as input to the key distribution protocol differ from session to session.
They are the session keys obtained from the 2-party password-based authenticated key exchange
protocols between the server and each of the two parties. Since in this case, both the FTG and
the ROR notions are equivalent, we opted to use their definition (i.e. FTG) adapted to our

terminology. That is, we define Advftg−kd
KD (A) as the advantage of adversary A in violating

15

the indistinguishability of a key distribution KD in the FTG sense, and Adv ftg−kd
KD (t, s, r) as the

advantage function of KD, which is the maximum value of Advftg−kd
KD (A) over all A with

time-complexity at most t, asking Send queries with respect to at most s sessions and asking at
most r Reveal queries.

5.2 Description of the generic solution

Our generic construction can be seen as a form of compiler transforming any secure 2-party
password-based key exchange protocol P into a secure password-based 3-party key exchange
protocol P ′ in the honest-but-curious security model using a secure key distribution KD, a
secure MAC scheme, and generic number-theoretic operations in a group G for which the DDH
assumption holds (see Section 5.1).

pwB

2PAKE(skA) 2PAKE(skB)

KD(skB, km)KD(skA, km)

gx, MAC(km, gx, B, A)

gy, MAC(km, gy, A, B)

BA S
pwA pwA pwB

Fig. 2. GPAKE: a generic three-party password-based key exchange

The compiler, depicted in Figure 2, works as follows. First, we use the protocol P between
a user A and the server S to establish a secure high-entropy session key sk A. Second, we use
the protocol P between the server S and the user B in order to establish a session key sk B .
Third, using a key distribution KD, we have the server S first select a MAC key km, using the
key generation of the latter, and then distribute this key to A and B using the session keys sk A

and skB, respectively, generated in the first two steps. Finally, A and B use a MAC-based key
exchange to establish a session key CDH in an authenticated way.

5.3 Security

Indistinguishability in the Real-Or-Random model. As the following theorem states, the
generic scheme GPAKE depicted in Figure 2 is a secure 3-party password-based key exchange
protocol as long as the Decisional Diffie-Hellman assumption holds in G and the underlying
primitives it uses are secure. The proof of security, however, is not as tight as one would wish,
due to the loss of a factor 2 in the reduction.

Theorem 4. Let 2PAKE be a secure 2-party password-based Key Exchange, KD be a secure key

distribution, and MAC be a secure MAC algorithm. Let qexe and qtest represent the number of

queries to Execute and Test oracles, and let qA
send, qB

send, qkd, and qake represent the number

of queries to the SendClient and SendServer oracles with respect to each of the two 2PAKE

16

protocols, the KD protocol, and the final AKE protocol. Then,

Advror−ake
GPAKE,D(t, qexe, qtest, q

A
send, qB

send, qkd, qake) ≤

2 · (qexe + qkd) ·Advftg−kd
KD (t, 1, 0) + 2 · qake ·Adveuf−cma

MAC (t, 2, 0)

+ 2 ·Advddh
G (t + 8(qexe + qake)τe) + 2 ·Advror−ake

2PAKE,D(t, qexe, qexe + qA
send, q

A
send)

+ 2 ·Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, q
B
send) ,

where τe denotes the exponentiation computational time in G.

Key privacy with respect to the server. As the following theorem states, the generic scheme
GPAKE depicted in Figure 2 has key privacy with respect to the server as long as the Decisional
Diffie-Hellman assumption holds in G.

Theorem 5. Let GPAKE be the 3-party password-based authenticated key exchange scheme de-

picted in Figure 2. Then,

Advkp−ake
GPAKE,D(t, qexe, qtest, q

A
send, qB

send, qkd, qake) ≤ 2 ·Advddh
G (t′) ,

where t′ = t + 8 · (qexe + qake) · τe and the other parameters are defined as in Theorem 4.

5.4 Instantiations

Several practical schemes can be used in the instantiation of the 2-party password-based key
exchange of our generic construction. Among them are the KOY protocol [19] and its general-
ization [17], the PAK suite [22], and several other schemes based on the encrypted key exchange
scheme of Bellovin and Merritt [11] (e.g., [14]).

In the instantiation of the key distribution scheme, one could use the original proposal
in [10] or any other secure key distribution scheme. In particular, the server could use a chosen-
ciphertext secure symmetric encryption scheme to distribute the keys to the users. Independently
of the choice, one should keep in mind that the security requirements for the key distribution
scheme are very weak. It only needs to provide security with respect to one session.

For the instantiation of the MAC, any particular choice that makes the MAC term in
Theorem 4 negligible will do. Possible choices are the HMAC [4] or the CBC MAC.

It is important to notice that, in order for GPAKE to be secure, the underlying 2-party
password-based protocol must be secure in the ROR model. In view of the computational gap
that exists between the ROR and the FTG models (see Proposition 3), a 2-party password-based
secure in the FTG model does not suffice to prove the security of GPAKE.

6 Proof of security for GPAKE

Indistinguishability of GPAKE in the ROR model. For simplicity, we assume the set of
honest users contains only users A and B. The solution can be easily extended to the more
general case with essentially the same bounds.

Let A be an adversary against the indistinguishability of GPAKE in the Real-Or-Random
sense with time-complexity at most t, and asking at most qexe queries to its Execute oracle, qtest

queries to its Test oracle, qA
send queries to SendClient and SendServer oracles with respect to the

2PAKE protocol between A and the trusted server S, qB
send queries with respect to the 2PAKE

protocol between B and S, qkd queries with respect to the KD protocol, and qake queries with
respect to the final authenticated key exchange protocol.

17

Our proof consists of a sequence of hybrid experiments, starting with the real attack against
GPAKE scheme and ending in an experiment in which the adversary’s advantage is 0, and for
which we can bound the difference in the adversary’s advantage between any two consecutive
experiments. For each experiment Expn, we define an event Succn corresponding to the case
in which the adversary correctly guesses the hidden bit b involved in the Test queries (see
Section 3).

Experiment Exp0. This experiment corresponds to the real attack. By definition, we have

Advror−ake
GPAKE,D(A) = 2 · Pr[Succ0]− 1 (1)

Experiment Exp1. We now modify the simulation of the oracles as follows. We replace the
session key skA used as input to the KD protocol by a random session key sk ′

A in all of the
sessions. As the following lemma shows, the difference between the success probability of the
adversary A between the current and previous experiments is at most twice the probability of
breaking the security of the underlying 2PAKE protocol between A and S.

Lemma 6.
∣

∣Pr[Succ1]− Pr[Succ0]
∣

∣ ≤ Advror−ake
2PAKE,D(t, qexe, qexe + qA

send, qA
send) .

Proof. Let A1 be a distinguisher for experiments Exp1 and Exp0. We can build an adversary
Apake against the indistinguishability of the 2PAKE protocol between A and S using A1 as
follows. Apake starts by choosing a bit b uniformly at random and selecting the passwords for
all users in the system except A according to the distribution of D. Next, it starts running A1,
giving it the passwords for all the malicious clients in the system, and answering to its oracle
queries as follows.

– SendClient and SendServer queries. If A1 asks a SendClient or SendServer query pertaining
to an instance of the 2PAKE protocol between B and S, then Apake can answer it using the
password of client B that it has picked at the beginning of its execution. If the SendClient

or SendServer query pertains to an instance of the 2PAKE protocol between A and S, then
Apake can answer it by asking the corresponding query to its Send oracle. If this query
forces the given instance of client A or S to accept, then we also ask a Test query to that
instance (unless Test query had already been asked to its partner). The output of this Test

query will be used as the session key shared between A and S. All remaining SendClient

and SendServer queries by A1 can be easily answered either using the chosen values for the
session key shared between A and S or the session keys computed in the execution of the
2PAKE protocol between S and B.

– Execute queries. Apake can easily answer these queries using its own Execute oracle and the
output of the Test queries, as in the simulation of SendClient and SendServer queries.

– Test queries. Apake can easily answer these queries using the bit b that it has previously
selected and the session keys that it has computed.

Let b′ be the output of A1. If b′ = b, then Apake outputs 1. Otherwise, it outputs 0.

One can easily see that the probability that Apake outputs 1 when its Test oracle returns real
keys is exactly the probability that A1 correctly guesses the hidden bit b in experiment Exp0

(i.e., Pr[Succ0]). Similarly, the probability that Apake outputs 1 when its Test oracle returns
random keys is exactly the probability that A1 correctly guesses the hidden bit b in experiment
Exp1 (i.e., Pr[Succ1]). The lemma follows by noticing that Apake has at most time-complexity
t and asks at most qexe + qA

send queries to its Test oracle, at most qexe queries to its Execute

oracle, and at most qA
send queries to its Send oracle.

18

Experiment Exp2. We modify the previous experiment by replacing the session key sk B used
as input to the KD protocol by a random session key sk ′

B in all of the sessions. Using similar
arguments, one can prove the following lemma.

Lemma 7.
∣

∣Pr[Succ2]− Pr[Succ1]
∣

∣ ≤ Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, qB
send) .

Experiment Exp3. In this experiment, we replace the MAC key km obtained via the key dis-
tribution protocol with a random key in all of the sessions involving both A and B. According
to the following lemma, the difference between the success probability of the adversary A be-
tween the current and previous experiments is at most that of breaking the security of the key
distribution scheme KD protocol among A, B, and S.

Lemma 8.
∣

∣Pr[Succ3]− Pr[Succ2]
∣

∣ ≤ (qexe + qkd) Advftg−kd
KD (t, 1, 0) .

Proof. The proof of of this lemma uses a sequence of hybrid experiments Vj , where j is an
index between 0 and qs = (qexe + qkd). Let i represent the i-th session involving honest users
A and B. We define the hybrid experiment Vj as follows. If i ≤ j, then the MAC key km is
chosen uniformly at random as in experiment Exp3. If i > j, then the MAC key km is computed
via the key distribution protocol as in experiment Exp2. Note that experiments V0 and Vqs

are equivalent to experiments Exp2 and Exp3, respectively. Let Pj be the probability of the
event Succ in Experiment Vj . Since P0 = Pr[Succ2] and Pqs = Pr[Succ3], it follows that
∣

∣Pr[Succ3] − Pr[Succ2]
∣

∣ =
∑qs

j=1

∣

∣Pj − Pj−1

∣

∣. Thus, to prove the present lemma, it suffices

to show that
∣

∣Pj − Pj−1

∣

∣ is at most Advftg−kd
KD (t, 1, 0). To do so, we assume the existence of

a distinguisher A3,j for experiments Vj−1 and Vj and we show how to build an adversary Aj
kd

against the KD protocol that has a success probability similar to that of A3,i and that asks
queries to its Send oracle with respect to a single session only.

The description of Aj
kd is as follows. As in previous cases, Aj

kd starts by choosing a bit b
uniformly at random and selecting the passwords for all users in the system according to the
distribution of D. Next, Aj

kd starts running A3,j, giving it the passwords for all the malicious

clients in the system. Then, for the first j − 1 sessions, Aj
kd simulates all oracles exactly as in

experiment Exp3. Likewise, for the last qs − j sessions, Aj
kd simulates all oracles exactly as in

experiment Exp2. For the j-th session, instead of choosing the inputs for the key distribution
protocol, Aj

kd simulates the SendClient, SendServer, and Execute oracles of A3,j using the Send

oracle for the KD protocol. Moreover, Aj
kd also makes a Test query with respect to this session

to obtain a key k̃m and it uses this key to simulate the remainder of the GPAKE protocol of the
j-th session. Let b′ be the output of A3,j. If b′ = b, then Aj

kd outputs 1. Otherwise, it outputs 0.
In order to analyze the advantage of Ai

kd, one can easily see that the probability that Ai
kd

outputs 1 when its Test oracle returns real keys is exactly the probability that A3,j correctly
guesses the hidden bit b in experiment Vj−1 (i.e., Pj−1). Similarly, the probability that Ai

kd

outputs 1 when its Test oracle returns random keys is exactly the probability that A3,j correctly
guesses the hidden bit b in experiment Vj (i.e., Pj−1). The lemma follows by noticing that Ai

kd

has time-complexity at most t, that it asks queries to its Send oracle with respect to a single

session only, and that it asks no Reveal queries.

Experiment Exp4. In this experiment, we modify the oracle instances as follows. If the ad-
versary asks a SendClient query containing a new pair message-tag not previously generated
by an oracle, then we consider the MAC tag invalid and force the instance in question (which
received a forged message) to terminate without accepting. As the following lemma shows, the
difference between the current and previous experiments should be negligible if we use a secure
MAC scheme.

19

Lemma 9.
∣

∣Pr[Succ4]− Pr[Succ3]
∣

∣ ≤ qake ·Advsuf−cma
MAC (t, 2, 0) .

Proof. The proof of this lemma also uses hybrid arguments in the same way as in the proof of
Lemma 8. The total number of hybrids in this case is qake, since Execute queries do not need to
be taken into account in this case. In hybrid Vi, where 0 ≤ i ≤ qake, queries in the first i sessions
are answered as in experiment Exp4 and all other queries are answered as in experiment Exp3.
Let A4,i be a distinguisher for hybrids Vi and Vi−1. Using A4,i, we can build an adversary for
the MAC scheme as follows.

For the first i− 1 sessions, the adversary Ai
mac will choose random values for the MAC key

and is therefore able to perfect simulate the oracles given to A4,i. In the i-th session, Ai
mac makes

use of its MAC generation and verification oracles to answer queries from A4,i. If A4,i asks a
SendClient containing a pair message-tag not previously generated by Ai

mac, then Ai
mac halts

and outputs that pair as its forgery. If no such pair is generated, we output a failure indication.
For all remaining sessions, Ai

mac uses the actual MAC keys obtained via the key distribution
scheme as in experiment Exp3 to answer queries from A4,i.

Let F be the event in which a message-tag pair is considered invalid in hybrid Vi but valid in
hybrid Vi−1. Notice that Pr[F] is at most the probability that an adversary Ai

mac can forge a new
message-tag pair under a chosen-message attack. Since Ai

mac has time-complexity t and makes
at most two queries to its MAC generation oracle (to answer the SendClient queries) and no
queries to its verification oracle, we have that Pr[F] ≤ Advsuf−cma

MAC (t, 2, 0). Moreover, since the
two hybrids proceed identically until F occurs, we have Pr[SuccVi−1 ∧¬F] = Pr[SuccVi

∧¬F].
By Lemma 1 of [25], we have |Pr[SuccVi−1]−Pr[SuccVi

]| ≤ Pr[F]. The lemma follows from the
fact that there are at most qake hybrids.

Experiment Exp5. In this experiment, we change the simulation of SendClient(U i,m) queries
pertaining the last two flows of GPAKE as well as the simulation of the Test(U i) oracle to avoid
relying on the knowledge of the values x and y used to compute the answer to these queries.
More precisely, instead of choosing the values of x and y directly, we assume that we are given a
random DDH triple (X,Y,Z), where X = gx, Y = gy, and Z = gxy. Then, using (X,Y,Z) and
the classical random self-reducibility of the Diffie-Hellman problem, we show how to simulate
the above-mentioned oracles for all those sessions involving two honest users. All other queries
are simulated as in experiment Exp4.

The behavior of our simulation in this experiment is as follows. Experiment Exp5 is identical
to experiment Exp4, except that we apply the following special rules when dealing with Test(U i)
and SendClient(U i,m) queries for the last two flows of GPAKE where U i and its intended partner
are honest users:

R1: When processing a SendClient(Ai,Start) query, the simulator selects two random values
a0 and x0 in Zq, computes X0 = Xa0gx0 , and stores (a0, x0, X0) in a table X .

R2: When processing a SendClient(Bj, (X0,m0)) query in the last message of the protocol,

– if the element X0 has been computed by our simulator and is thus stored in the table
X , then our simulator answers this query by choosing two random values b0, y0

R
← Zq

and computing Y0 = Y b0gy0 . It also stores (b0, y0, Y0) in a table Y. and computes the
value Z0 = Za0b0 × Y x0b0 ×Xa0y0 × gx0y0 to be able to answer Test queries.

– if the elements X0 is not stored in the table X , then the simulation proceeds as in
experiment Exp4 (i.e., it halts without accepting).

R3: When processing a Test(U i) query, where U i and its intended partner are instances of a
honest user that have accepted, then the simulator answers this query using the value Z0

that it has pre-computed. We notice that, since active attacks against such instances have

20

been ruled out in experiment Exp4, the simulator always knows the correct value Z0 for the
session key.

In order to analyze the differences between the current and the previous experiments, we first
observe that, since MAC forgeries have been dealt with in experiment Exp4, the second case of
rule R2 will always cause the user instance involved in that query to not accept. Second, for all
those sessions involving instances of users A and B, the Test(U i) queries are always correctly
answered. As a result, it is clear that experiments Exp4 and Exp5 are equivalent, since we
have consistently replaced one set of random variables by another set of identically distributed
random variables. In particular, Pr[Succ4] = Pr[Succ5].

Experiment Exp6. The current experiment is similar to the previous one, except that all rules
are computed using a triple (X,Y,Z) sampled from a random distribution (gx, gy, gz), intead of
a DDH triple. As the following lemma shows, the difference between the current and previous
experiments should be negligible if DDH is hard in G.

Lemma 10.
∣

∣Pr[Succ6]− Pr[Succ5]
∣

∣ ≤ Advddh
G (t + 8(qexe + qake)τe) .

Proof. Let A be an attacker that breaks the indistinguishability experiment of GPAKE with a
different advantage in Experiment Exp6 than in Experiment Exp5. We can build an adversary
Addh for the DDH problem in G as follows. Let (X,Y,Z) be the input given to Addh. Addh first
selects a bit b at random and then starts running A. If A asks a SendClient, Execute, or Test

query, then Addh computes its output exactly as in the previous experiment but using the triple
(X,Y,Z) that it had received as input. Let b′ be the output of A. If b′ = b, then Addh returns 1
or 0, otherwise.

Let us now analyze the success probability of Addh. Clearly, when the triple (X,Y,Z) is a
true Diffie-Hellman triple, Addh runs A exactly as in experiment Exp5 and thus the probability
that Addh outputs 1 is exactly Pr[Succ5]. On the other hand, when (X,Y,Z) is a random
triple, Addh runs A exactly as in experiment Exp6 and thus the probability that Addh outputs
1 is exactly Pr[Succ6]. The lemma follows from the fact that Addh has time-complexity at
most t + 8(qexe + qake)τe, due to the additional time for the computations of the random
self-reducibility.

Due to the random self-reducibility property of the Diffie-Hellman problem, all the sessions
keys Z0 used to answer Test queries in experiment Exp6 are randomly and independently
distributed in G. As a result, no information on the hidden bit b used by the Test oracle is leaked
to the adversary and thus Pr[Succ6] = 1

2
. This result combined with the previous lemmas yields

the result in Theorem 4.

Key privacy. The proof of key privacy uses arguments similar to those used in experiments
Exp5 and Exp6 in the proof of indistinguishability of GPAKE. Let Akp be an adversary against
the key privacy of GPAKE with time-complexity at most t, and asking at most qexe queries to
its Execute oracle, qtest queries to its TestPair oracle, and qake queries to SendClient oracle with
respect to the final MAC-based authenticated key exchange protocol. Using Akp, we can build
an adversary Addh for the DDH problem in G as follows.

Let (X,Y,Z) be the input given to Addh. Addh first chooses the passwords for all users in
the system according to the distribution of D. It also chooses a bit b at random that is used
to answer queries to the TestPair oracle. It then starts running Akp giving all the password of
all users to it. Since Addh knows the password of all users, it can easily answer queries made
by Akp. However, in order to use Akp to help it solve the DDH problem, Addh will use the
classical random self-reducibility of the Diffie-Hellman problem to introduce its input triple in

21

the answers to SendClient, Execute, and TestPair queries with respect to the last two flows of
GPAKE.

To simulate the Execute oracle, we simply use the passwords that we have chosen and proceed
as in the actual protocol, except when computing the last two flows of GPAKE. For these flows,
we proceed as in simulation of the SendClient oracle described below.

The simulation of the SendClient and TestPair are as follows:

R1: When processing a SendClient(Ai,Start) query, Addh selects two random values a0 and x0

in Zq, computes X0 = Xa0gx0 , and stores (a0, x0, X0) in a table X .

R2: When processing a SendClient(Bj, (X0,m0)) query,

– if the element X0 has been computed by Addh and is thus stored in the table X , then
Addh answers this query by choosing two random values b0, y0

R
← Zq and computing

Y0 = Y b0gy0 . Addh also stores (b0, y0, Y0) in a table Y and computes Z0 = Za0b0 ×
Y x0b0 ×Xa0y0 × gx0y0 to be able to answer TestPair queries.

– if the elements X0 is not stored in the table X , then Addh proceeds with the simulation
as it would in a real attack.

R3: When processing a TestPair(U i
1, U

j
2) query, Addh first checks whether U i

1 and U j
2 have both

accepted and have the same key. If the check fails, then Addh returns ⊥. If the check passes,
then Addh knows the corresponding value Z0 for the secret key and can answer it based on
the hidden bit b it had previously chosen.

Let b′ be the output of Akp. If b′ = b, then Addh returns 1 and 0, otherwise.

We would like to observe here that the second case of rule R2 has no influence over TestPair

queries, since the latter can only be asked to pair of oracle instances which share the same key.
This is because even though the instance involved in the SendClient may itself accept, its partner
would not be an oracle instance. Hence, a TestPair query involving this instance would always
return the invalid symbol ⊥.

In order to analyze the success probability of Addh, first consider the case in which the triple
(X,Y,Z) is a true Diffie-Hellman triple. Then, in this case, one can see that simulation of the Akp

oracles is perfect. Hence, the probability that Addh outputs 1 is exactly 1
2
+ 1

2
Advkp−ake

GPAKE,D(Akp).

On the other hand, when (X,Y,Z) is a random triple, the keys Z0 used to answer TestPair

queries are all random and independent as a result of the random self-reducibility property of
the Diffie-Hellman problem. Hence, no information on b is leaked through TestPair queries and
the probability that Addh outputs 1 is exactly 1

2
in this case. The proof of Theorem 5 follows

from the fact that Addh has time-complexity at most t + 8(qexe + qake)τe, due to the additional
time for the computations of the random self-reducibility.

7 Concluding remarks

Authentication. In order to take explicit authentication into account, one can easily extend
our model using definitions similar to those of Bellare et al. [7] for unilateral or mutual authen-
tication. In their definition, an adversary is said to break authentication if it succeeds in making
any oracle instance terminate the protocol without a partner oracle. Likewise, one could also use
their generic transformation to enhance our generic construction so that it provides unilateral
or mutual authentication. The drawback of using their generic transformation is that it requires
the random oracle model. However, standard solutions based on pseudorandom function families
that do not rely on the random oracle model can also be used in this case.

22

More efficient constructions. Even though the generic construction presented in this
paper is quite practical, more efficient solutions are possible. For instance, one possible modi-
fication is to replace the key distribution phase of our generic construction by a single round
of communication in which the server encrypts the MAC key using authenticated encryption
scheme. Another possible improvement to our generic construction would be to combine the
key distribution and the final key exchange phases into a single phase. One can easily think of
different solutions for this scenario that are more efficient that the one we give. Nevertheless,
the overall gain in efficiency that could be obtained with these extensions would most likely not
be very significant since the most costly part of these two phases, the Diffie-Hellman protocol,
seems to be necessary if key privacy with respect to the server is to be achieved. As a result, we
believe that the best way to improve the efficiency of generic construction is to adapt specific
solutions in the 2-party model to the 3-party model, instead of treating these schemes as black
boxes.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and
suggestions. The work described in this document has been supported in part by France Telecom
R&D under the contract CIDRE, between France Telecom R&D and École normale supérieure,
and in part by the European Commission through the IST Program under the contract IST-
2002-507932 ECRYPT.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and an analysis of DHIES.
In D. Naccache, editor, Topics in Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in Computer

Science, pages 143–158, San Francisco, CA, USA, Apr. 8–12, 2001. Springer-Verlag, Berlin, Germany.
2. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key exchange in the three-party

setting. In S. Vaudenay, editor, PKC 2005: 8th International Workshop on Theory and Practice in Public Key

Cryptography, volume 3386 of Lecture Notes in Computer Science, pages 65–84, Les Diablerets, Switzerland,
Jan. 23–26, 2005. Springer-Verlag, Berlin, Germany.

3. Advanced encryption standard (aes). National Institute of Standards and Technology (NIST), FIPS PUB
197, U.S. Department of Commerce, Nov. 2001.

4. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In N. Koblitz,
editor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages
1–15, Santa Barbara, CA, USA, Aug. 18–22, 1996. Springer-Verlag, Berlin, Germany.

5. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.
In 38th Annual Symposium on Foundations of Computer Science, pages 394–403, Miami Beach, Florida,
Oct. 19–22, 1997. IEEE Computer Society Press.

6. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message authentication code.
Journal of Computer and System Sciences, 61(3):362–399, 2000.

7. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks. In
B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer

Science, pages 139–155, Bruges, Belgium, May 14–18, 2000. Springer-Verlag, Berlin, Germany.
8. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In

ACM CCS 93: 1st Conference on Computer and Communications Security, pages 62–73, Fairfax, Virginia,
USA, Nov. 3–5, 1993. ACM Press.

9. M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R. Stinson, editor, Advances in

Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages 232–249, Santa Barbara,
CA, USA, Aug. 22–26, 1994. Springer-Verlag, Berlin, Germany.

10. M. Bellare and P. Rogaway. Provably secure session key distribution — the three party case. In 28th Annual

ACM Symposium on Theory of Computing, pages 57–66, Philadephia, Pennsylvania, USA, May 22–24, 1996.
ACM Press.

23

11. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure against dictionary
attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84, Oakland, California, USA, May
1992. IEEE Computer Society Press.

12. M. K. Boyarsky. Public-key cryptography and password protocols: The multi-user case. In ACM CCS 99: 6th

Conference on Computer and Communications Security, pages 63–72, Kent Ridge Digital Labs, Singapore,
Nov. 1–4, 1999. ACM Press.

13. V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated key exchange using Diffie-
Hellman. In B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes

in Computer Science, pages 156–171, Bruges, Belgium, May 14–18, 2000. Springer-Verlag, Berlin, Germany.
14. E. Bresson, O. Chevassut, and D. Pointcheval. New security results on encrypted key exchange. In F. Bao,

R. Deng, and J. Zhou, editors, PKC 2004: 7th International Workshop on Theory and Practice in Public Key

Cryptography, volume 2947 of Lecture Notes in Computer Science, pages 145–158, Singapore, Mar. 1–4, 2004.
Springer-Verlag, Berlin, Germany.

15. J. W. Byun, I. R. Jeong, D. H. Lee, and C.-S. Park. Password-authenticated key exchange between clients
with different passwords. In R. H. Deng, S. Qing, F. Bao, and J. Zhou, editors, ICICS 02: 4th International

Conference on Information and Communication Security, volume 2513 of Lecture Notes in Computer Science,
pages 134–146, Singapore, Dec. 9–12, 2002. Springer-Verlag, Berlin, Germany.

16. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

17. R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange. In E. Biham,
editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 524–543, Warsaw, Poland, May 4–8, 2003. Springer-Verlag, Berlin, Germany. http://eprint.iacr.

org/2003/032.ps.gz.
18. O. Goldreich and Y. Lindell. Session-key generation using human passwords only. In J. Kilian, editor,

Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 408–
432, Santa Barbara, CA, USA, Aug. 19–23, 2001. Springer-Verlag, Berlin, Germany. http://eprint.iacr.

org/2000/057.
19. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using human-memorable

passwords. In B. Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture

Notes in Computer Science, pages 475–494, Innsbruck, Austria, May 6–10, 2001. Springer-Verlag, Berlin,
Germany.

20. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman and its use in the
IKE protocols. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes

in Computer Science, pages 400–425, Santa Barbara, CA, USA, Aug. 17–21, 2003. Springer-Verlag, Berlin,
Germany.

21. C.-L. Lin, H.-M. Sun, and T. Hwang. Three-party encrypted key exchange: Attacks and a solution. ACM

SIGOPS Operating Systems Review, 34(4):12–20, Oct. 2000.
22. P. D. MacKenzie. The PAK suite: Protocols for password-authenticated key exchange. Contributions to IEEE

P1363.2, 2002.
23. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks of computers.

Communications of the Association for Computing Machinery, 21(21):993–999, Dec. 1978.
24. V. Shoup. On formal models for secure key exchange. Technical Report RZ 3120, IBM, 1999.
25. V. Shoup. OAEP reconsidered. In J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume

2139 of Lecture Notes in Computer Science, pages 239–259, Santa Barbara, CA, USA, Aug. 19–23, 2001.
Springer-Verlag, Berlin, Germany.

26. J. G. Steiner, B. C. Neuman, and J. L. Schiller. Kerberos: An authentication service for open networks. In
Proceedings of the USENIX Winter Conference, pages 191–202, Dallas, TX, USA, 1988.

27. M. Steiner, G. Tsudik, and M. Waidner. Refinement and extension of encrypted key exchange. ACM SIGOPS

Operating Systems Review, 29(3):22–30, July 1995.

