
This is the full version of the extended abstract appeared in
Advances in Cryptology – Proceedings of ASIACRYPT ’2006 (2 – 6 december 2006, Shanghai, China)
X. Lai and K. Chen Eds. Springer-Verlag, LNCS 4284, pages 332–347.

A Scalable Password-based Group Key Exchange Protocol in the

Standard Model

Michel Abdalla and David Pointcheval

Departement d’Informatique, École normale supérieure, CNRS
{Michel.Abdalla,David.Pointcheval}@ens.fr
http://www.di.ens.fr/~{mabdalla,pointche}

Abstract. This paper presents a secure constant-round password-based group key exchange protocol in
the common reference string model. Our protocol is based on the group key exchange protocol by Burmester
and Desmedt and on the 2-party password-based authenticated protocols by Gennaro and Lindell, and by
Katz, Ostrovsky, and Yung. The proof of security is in the standard model and based on the notion
of smooth projective hash functions. As a result, it can be instantiated under various computational
assumptions, such as decisional Diffie-Hellman, quadratic residuosity, and N-residuosity.

Keywords. Smooth Projective Hash Functions, Password-based Authentication, Group Key Exchange.

1 Introduction

Key exchange is one of the most useful tools in public-key cryptography, allowing users to establish
a common secret which they can then use in applications to achieve both privacy and authentic-
ity. Among the examples of key exchange protocols, the most classical one is the Diffie-Hellman
protocol [21]. Unfortunately, the latter only works between two players and does not provide any
authentication of the players.

Group Key Exchange. Group key exchange protocols are designed to provide a pool of players
communicating over an open network with a shared secret key which may later be used to achieve
cryptographic goals like multicast message confidentiality or multicast data integrity. Secure virtual
conferences involving up to one hundred participants is an example.

Due to the usefulness of group key exchange protocols, several papers have attempted to extend
the basic Diffie-Hellman protocol to the group setting. Nonetheless, most of these attempts were rather
informal or quite inefficient in practice for large groups. To make the analyses of such protocols more
formal, Bresson et al. [10,15] introduced a formal security model for group key exchange protocols,
in the same vein as [5,6,3]. Moreover, they also proposed new protocols, referred to as group Diffie-
Hellman protocols, using a ring structure for the communication, in which each player has to wait
for the message from his predecessor before producing his own. Unfortunately, the nature of their
communication structure makes their protocols quite impractical for large groups since the number of
rounds of communication is linear in the number of players.

A more efficient and practical approach to the group key exchange problem is the one proposed
by Burmester and Desmedt [16,17], in which they provide a constant-round Diffie-Hellman variant.
Their protocol is both scalable and efficient, even for large groups, since it only requires 2 rounds of
broadcasts. Thus, with reasonable time-out values, one could always quickly decide whether or not a
protocol has been successfully executed. Furthermore, their protocol has also been formally analyzed,
in the above security framework [29].

Password-Based Authenticated Key Exchange. The most classical way to add authentication
to key exchange protocols is to sign critical message flows. In fact, as shown by Katz and Yung [29] in
the context of group key exchange protocols, this technique can be made quite general and efficient,
converting any scheme that is secure against passive adversaries into one that is secure against active
ones. Unfortunately, such techniques require the use of complex infrastructures to handle public keys

c© IACR 2006.

2

and certificates. One way to avoid such infrastructures is to use passwords for authentication. In the
latter case, the pool of players who wants to agree on a common secret key only needs to share a
low-entropy password —a 4-digit pin-code, for example— against which an exhaustive search is quite
easy to perform. In password-based protocols, it is clear that an outsider attacker can always guess a
password and attempt to run the protocol. In case of failure, he can try again with a different guess.
After each failure, the adversary can erase one password. Such an attack, known as “on-line exhaustive
search” cannot be avoided, but the damage it may cause can be mitigated by other means such as
limiting the number of failed login attempts. A more dangerous threat is the “off-line exhaustive
search”, also known as “dictionary attack”. It would mean that after one failure, or even after a
simple eavesdropping, the adversary can significantly reduce the number of password candidates.

In the two-party case, perhaps the most well known Diffie-Hellman variant is the encrypted key
exchange protocol by Bellovin and Merritt [7]. However, its security analyses [3,9,12,13] require ideal
models, such as the random oracle model [4] or the ideal cipher model. The first practical password-
based key exchange protocol, without random oracles, was proposed by Katz et al. [27] in the common
reference string model and it is based on the Cramer-Shoup cryptosystem [18]. Their work was later
extended by Gennaro and Lindell [23] using the more general smooth projective hash function primi-
tive [18,19,20].

In the group key exchange case, very few protocols have been proposed with password authen-
tication. In [11,14], Bresson et al. showed how to adapt their group Diffie-Hellman protocols to the
password-based scenario. However, as the original protocols on which they are based, their security
analyses require ideal models and the total number of rounds is linear in the number of players, mak-
ing their schemes impractical for large groups. More recently, several constant-round password-based
group key exchange protocols have been proposed in the literature by Abdalla et al. [1], by Dutta
and Barua [22], and by Kim, Lee, and Lee [30]. All of these constructions are based on the Burmester
and Desmedt protocol [16,17] and are quite efficient, but their security analyses usually require the
random oracle and/or the ideal cipher models. 1 Independently and concurrently to our work, a new
constant-round password-based group key exchange protocol has been proposed by Bohli et al. [8].
Their protocol is more efficient than ours and also enjoys a security proof in the standard model.

Contributions. In this paper, we propose the first password-based authenticated group key exchange
protocol in the standard model. To achieve this goal, we extend the Gennaro-Lindell framework [23] to
the group setting, using ideas similar to those used in the Burmester-Desmedt protocol [16,17]. In do-
ing so, we take advantage of the smooth projective hash function primitive [19] to avoid the use of ideal
models. Our protocol has several advantages. First, it is efficient both in terms of communication, only
requiring 5 rounds, and in terms of computation, with a per-user computational load that is linear in
the size of the group. Second, like the Burmester-Desmedt protocol, our protocol is also contributory
since each member contributes equally to the generation of the common session key. Such property,
as pointed out by Steiner, Tsudik and Waidner [32], may be essential for certain distributed applica-
tions. Finally, as in the Gennaro-Lindell framework [23], our protocol works in the common reference
string model and is quite general, being built in a modular way from four cryptographic primitives: a
LPKE-IND-CCA-secure labeled encryption scheme, a signature scheme, a family of smooth projective
hash functions, and a family of universal hash functions. Thus, it can be instantiated under various
computational assumptions, such as decisional Diffie-Hellman, quadratic residuosity, and N -residuosity
(see [23]). In particular, the Diffie-Hellman variant (based on the Cramer-Shoup cryptosystem [18])
can be seen as a generalization of the KOY protocol [27] to the group setting.

1 In fact, in [1], Abdalla et al. showed that the protocols by Dutta and Barua [22] and by Kim, Lee, and Lee are insecure
by presenting concrete attacks against these schemes.

3

2 Security Model

The security model for password-based group key exchange protocols that we present here is the one
by Bresson et al. [14], which is based on the model by Bellare et al. [3] for 2-party password-based key
exchange protocols.

Protocol participants. Let U denote the set of potential participants in a password-based group
key exchange protocol. Each participant U ∈ U may belong to several subgroups G ⊆ U , each of which
has a unique password pwG associated to it. The password pwG of a subgroup G is known to all the
users Ui ∈ G.

Protocol execution. The interaction between an adversary A and the protocol participants only
occurs via oracle queries, which model the adversary capabilities in a real attack. During the execution
of the protocol, the adversary may create several instances of a participant and several instances of
the same participant may be active at any given time. Let U 〈i〉 denote the instance i of a participant
U and let b be a bit chosen uniformly at random. The query types available to the adversary are as
follows:

• Execute(U
〈i1〉
1 , . . . , U

〈in〉
n): This query models passive attacks in which the attacker eavesdrops on

honest executions among the participant instances U
〈i1〉
1 , . . . , U

〈in〉
n . It returns the messages that

were exchanged during an honest execution of the protocol.

• Send(U 〈i〉,m): This query models an active attack, in which the adversary may tamper with the
message being sent over the public channel. It returns the message that the participant instance
U 〈i〉 would generate upon receipt of message m.

• Reveal(U 〈i〉): This query models the misuse of session keys by a user. It returns the session key
held by the instance U 〈i〉.

• Test(U 〈i〉): This query tries to capture the adversary’s ability to tell apart a real session key from
a random one. It returns the session key for instance U 〈i〉 if b = 1 or a random key of the same
size if b = 0.

Partnering. Following [29], we define the notion of partnering via session and partner identifiers.
Let the session identifier sidi of a participant instance U 〈i〉 be a function of all the messages sent and
received by U 〈i〉 as specified by the group key exchange protocol. Let the partner identifier pidi of a
participant instance U 〈i〉 is the set of all participants with whom U 〈i〉 wishes to establish a common

secret key. Two instances U
〈i1〉
1 and U

〈i2〉
2 are said to be partnered if and only if pidi1

1 = pidi2
2 and

sidi1
1 = sidi2

2 .

Freshness. Differently from [29], our definition of freshness does not take into account forward security
as the latter is out of the scope of the present paper. Let acci be true if an instance U 〈i〉 goes into an
accept state after receiving the last expected protocol message and false otherwise. We say that an
instance U 〈i〉 is fresh if acci = true and no Reveal has been asked to U 〈i〉 or to any of its partners.

Correctness. For a protocol to be correct, it should always be the case that, whenever two instances

U
〈i1〉
1 and U

〈i2〉
2 are partnered and have accepted, both instances should hold the same non-null session

key.

Indistinguishability. Consider an execution of the group key exchange protocol P by an adversaryA,
in which the latter is given access to the Reveal, Execute, Send, and Test oracles and asks a single Test

query to a fresh instance, and outputs a guess bit b′. Let Succ denote the event b′ correctly matches
the value of the hidden bit b used by the Test oracle. The AKE-IND advantage of an adversary A

4

in violating the indistinguishability of the protocol P and the advantage function of the protocol P ,
when passwords are drawn from a dictionary D, are respectively Advake-ind

P,D (A) = 2 · Pr [Succ] − 1

and Advake-ind
P,D (t, R) = maxA{Advake-ind

P,D (A)} , where maximum is over all A with time-complexity at
most t and using resources at most R (such as the number of queries to its oracles). The definition of
time-complexity that we use henceforth is the usual one, which includes the maximum of all execution
times in the experiments defining the security plus the code size.

We say that a password-based group key exchange protocol P is secure if the advantage of any
polynomial-time adversary is only negligibly larger than O(q/|D|), where q is number of different
protocol instances to which the adversary has asked Send queries. Given that the dictionary size can
be quite small in practice, the hidden constant in the big-O notation should be as small as possible
(preferably 1) for a higher level of security.

3 Building blocks

3.1 Universal Hash Function Families

One of the tools used in our protocol is a family of universal hash functions. A family UH of universal
hash function is a map K × G 7→ R, where K is the key or seed space, G is the domain of the
hash function, and R is the range. For each seed or key k ∈ K, we can define a particular instance
UHk : G 7→ R of the family by fixing the key being used in the computation of the function. For
simplicity, we sometimes omit the seed k from the notation when referring to a particular instance of
the family. Let UHk be a universal hash function chosen at random from a family UH . One of the
properties of universal hash function families in which we are interested is the one that says that,
if an element g is chosen uniformly at random from G, then the output distribution of UHk (g) is
statistically close to uniform in R [25].

3.2 Signatures

The signature scheme used in our protocol is the standard one introduced by Goldwasser, Micali, and
Rivest [24]. A standard signature scheme SIG = (SKG,Sign,Ver) is composed of three algorithms. The
key generation algorithm SKG takes as input 1k, where k is a security parameter, and returns a pair
(sk , vk) containing the secret signing key and the public verification key. The signing algorithm Sign

takes as input the secret key sk and a message m and returns a signature σ for that message. The
verification algorithm Ver on input (vk ,m, σ) returns 1 if σ is a valid signature for the message m with
respect to the verification key vk .

The security notion for signature schemes needed in our proofs is strong existential unforgeability
under chosen-message attacks [24]. More precisely, let (sk , vk) be a pair of secret and public keys for
a signature scheme SIG , let Sign(·) be a signing oracle which returns σ = Sign(sk ,m) on input m,
and let F be an adversary. Then, consider the experiment in which the adversary F , who is given
access to the public key vk and to the signing oracle Sign(·), outputs a pair (m, σ). Let {(mi, σi)}
denote the set of queries made to the signing oracle with the respective responses and let Succ denote
the event in which Ver(vk ,m ′, σ′) = 1 and that (m ′, σ′) 6∈ {(mi, σi)}. The SIG-SUF-CMA-advantage

of an adversary F in violating the chosen message security of the signature scheme SIG is defined

as Adv
sig-suf-cma
SIG ,F (k) = Pr [Succ]. A signature scheme SIG is said to be SIG-SUF-CMA-secure if

this advantage is a negligible function in k for all polynomial time adversaries (PTAs) F asking a
polynomial number of queries to their signing oracle.

3.3 Labeled Encryption

The notion of labeled encryption, first formalized in the ISO 18033-2 standard [31], is a variation
of the usual encryption notion that takes into account the presence of labels in the encryption and

5

decryption algorithms. More precisely, in a labeled encryption scheme, both the encryption and de-
cryption algorithms have an additional input parameter, referred to as a label, and the decryption
algorithm should only correctly decrypt a ciphertext if its input label matches the label used to create
that ciphertext.

Formally, a labeled encryption scheme LPKE = (LKG,Enc,Dec) consists of three algorithms. Via

(pk , sk)
$
← LKG(1k), where k ∈ N is a security parameter, the randomized key-generation algorithm

produces the public and secret keys of the scheme. Via c
$
← Enc(pk , l ,m; r), the randomized encryption

algorithm produces a ciphertext c for a label l and message m using r as the randomness. Via m ←
Dec(sk , l , c), the decryption algorithm decrypts the ciphertext c using l as the label to get back a
message m.

The security notion for labeled encryption is similar to that of standard encryption schemes. The
main difference is that, whenever the adversary wishes to ask a query to his Left-or-Right encryption
oracle, in addition to providing a pair of messages (m0,m1), he also has to provide a target label l in or-
der to obtain the challenge ciphertext c. Moreover, when chosen-ciphertext security (LPKE-IND-CCA)
is concerned, the adversary is also allowed to query his decryption oracle on any pair (l , c) as long as
the ciphertext c does not match the output of a query to his Left-or-Right encryption oracle whose
input includes the label l . Formally, let LPKE = (LKG,Enc,Dec) be a labeled encryption scheme. To
any bit b ∈ {0, 1} and any adversary D, we associate the experiment:

Experiment Exp
lpke-ind-cca-b
LPKE ,D (k)

(pk , sk)
$
← LKG(1k)

EncList← ∅ ; DecList ← ∅

b′
$
← DEnc(·,·,·),Dec(·,·)(pk)

if (EncList ∩DecList = ∅)
then return b′ else return 0

Oracle Enc(l ,m0,m1)

c
$
← Enc(pk , l ,mb)

EncList← EncList ∪ {(l , c)}
return c

Oracle Dec(l , c)
DecList ← DecList ∪ {(l , c)}
return Dec(sk , l , c)

The LPKE-IND-CCA-advantage of an adversary D in violating the chosen-ciphertext indistin-
guishability of LPKE is defined as

Adv
lpke-ind-cca
LPKE ,D (k) = Pr

[

Exp
lpke-ind-cca-1
LPKE ,D (k) = 1

]

− Pr
[

Exp
lpke-ind-cca-0
LPKE ,D (k) = 1

]

.

A LPKE scheme LPKE is said to be LPKE-IND-CCA-secure if this advantage is a negligible function
in k for all PTAs D. As shown by Bellare et al. in the case of standard encryption schemes [2], one
can easily show that the Left-or-Right security notion for labeled encryption follows from the more
standard Find-Then-Guess security notion (in which the adversary is only allowed a single query to
his challenging encryption oracle).

3.4 Smooth Projective Hash Functions

The notion of projective hash function families was first introduced by Cramer and Shoup [19] as a
means to design chosen-ciphertext secure encryption schemes. Later, Gennaro and Lindell [23] showed
how to use such families to build secure password-based authenticated key exchange protocols. One
of the properties that makes these functions particularly interesting is that, for certain points of their
domain, their values can be computed by using either a secret hashing key or a public projective
key. While the computation using secret hashing key works for all the points in the domain of the
hash function, the computation using a public projective key only works for a specified subset of the
domain. A projective hash function family is said to be smooth if the value of the function on inputs
that are outside the particular subset of the domain are independent of the projective key. In [23], the
notion of smooth hash functions was presented in the context of families of hard (partitioned) subset
membership problems. Here we follow the same approach.

6

Hard partitioned subset membership problems. Let k ∈ N be a security parameter. In a
family of hard (partitioned) subset membership problem, we first specify two sets X(k) and L(k)
in {0, 1}poly(k) such that L(k) ⊆ X(k) as well as two distributions D(L(k)) and D(X(k) \ L(k))
over L(k) and X(k) \ L(k)) respectively. Next, we specify a witness set W(k) ⊆ {0, 1}poly(k) and
a NP-relation R(k) ⊆ X(k) ×W(k) such that x ∈ L(k) if and only if there exists a witness w ∈
W(k) such that (x ,w) ∈ R(k). Then, we say that a family of subset membership problems is hard
if (X(k),L(k),D(L(k)),D(X(k) \ L(k)),W(k),R(k)) instances can be efficiently generated, that a
member element x ∈ L(k) can be efficiently sampled according to D(L(k)) along with a witness
w ∈W(k) to the fact that (x ,w) ∈ R(k), that non-member elements x ∈ X(k)\L(k) can be efficiently
sampled according to D(X(k)\L(k)), and that the distributions of member and non-member elements
cannot be efficiently distinguished. The definition of hard partitioned subset membership problem is
an extension of the one given above in which the set X(k) is partitioned in disjoint subsets X(k, i) for
some index i ∈ {1, . . . , l} and for which for all i it remains hard to distinguish an element x ∈ L(k, i)
chosen according to a distribution D(L(k, i)) from an element x ∈ X(k, i) \ L(k, i) chosen according
to a distribution D(X(k, i) \ L(k, i)).

Hard partitioned subset membership problems from labeled encryption. The families
of hard partitioned subset membership problems in which we are interested are those based on
LPKE-IND-CCA-secure labeled encryption schemes. More precisely, let LPKE = (LKG,Enc,Dec)
be a LPKE-IND-CCA-secure labeled encryption scheme and let pk be a public key outputted by the
LKG algorithm for a given security parameter k. Let Enc(pk) denote an efficiently recognizable super-
set of the space of all ciphertexts that may be outputted by the encryption algorithm Enc when the
public key is pk and let L and M denote efficiently recognizable supersets of the label and message
spaces. Using these sets, we can define a family of hard partitioned subset membership problems as
follows. First, we define the sets X and L for the family of hard subset membership problems as
X(pk) = Enc(pk) × L ×M and L(pk) = {(c, l ,m) | ∃r s.t. c = Enc(pk , l ,m; r)}. Next, we define the
partitioning of the sets X and L with respect to the message and label used in the encryption as
X(pk , l ,m) = Enc(pk) × l × m and L(pk , l ,m) = {(c, l ,m) | ∃r s.t. c = Enc(pk , l ,m; r)}. The distri-
bution D(L(pk , l ,m)) can then be defined by choosing a random r ∈ R and outputting the triple
(Enc(pk , l ,m; r), l ,m) with r as a witness. Likewise, the distribution D(X(pk , l ,m) \ L(pk , l ,m)) can
be defined by choosing a random r ∈ R and outputting the triple (Enc(pk , l ,m ′; r), l ,m), where m ′ is
a dummy message different from m but of the same length. Finally, we define the witness set W(pk)
to be r and the NP-relation R(pk) in a natural way. It is easy to see that the hardness of distinguish-
ing non-members from members follows from the LPKE-IND-CCA security of the labeled encryption
scheme.

Smooth projective hash functions. Let HLPKE(pk) = (X(pk),L(pk),D(X(pk , l ,m) \ L(pk , l ,
m)),D(L(pk , l ,m)),W(pk),R(pk)) be a family of hard (partitioned) subset membership problems
based on a LPKE-IND-CCA-secure labeled encryption scheme LPKE with security parameter k. A
family of smooth projective hash functions HASH (pk) = (HashKG,ProjKG,Hash,ProjHash) associated

with HLPKE consists of four algorithms. Via hk
$
← HashKG(pk), the randomized key-generation

algorithm produces hash keys hk ∈ HK(pk), where k ∈ N is a security parameter and pk is the public

key of a labeled encryption scheme LPKE . Via phk
$
← ProjKG(hk , l , c), the randomized key projection

algorithm produces projected hash keys phk ∈ PHK(pk) for a hash key hk with respect to label l and
ciphertext c. Via g ← Hash(hk , c, l ,m), the hashing algorithm computes the hash value g ∈ G(pk)
of (c, l ,m) using the hash key hk . Via g ← ProjHash(phk , c, l ,m; r), the projected hashing algorithm
computes the hash value g ∈ G(pk) of (c, l ,m) using the projected hash key phk and a witness r to
the fact that c is a valid encryption of message m with respect to the public-key pk and label l .

Properties. The properties of smooth projective hash functions in which we are interested are cor-
rectness, smoothness, and pseudorandomness.

7

Correctness. Let LPKE be a labeled encryption scheme and let pk be a public key outputted by
the LKG algorithm for a given security parameter k. Let c = Enc(pk , l ,m; r) be the ciphertext for a
message m with respect to public key pk and label l computed using r as the randomness. Then, for

any hash key hk ∈ HK(pk) and projected hash key phk
$
← ProjKG(hk , l , c), the values Hash(hk , c, l ,

m) and ProjHash(phk , c, l ,m, r) are the same.

Smoothness. Let hk ∈ HK(pk) be a hash key and let phk ∈ PHK(pk) be a projected hash key for
hk with respect to l and c. Then, for every triple (c, l ,m) for which c is not a valid encryption of
message m with respect to the public-key pk and label l (i.e., (c, l ,m) ∈ X(pk , l ,m)\L(pk , l ,m)), the
hash value g = Hash(hk , c, l ,m) is statistically close to uniform in G and independent of the values
(phk , c, l ,m).

Pseudorandomness. Let LPKE be a LPKE-IND-CCA-secure labeled encryption scheme, let pk

be a public key outputted by the LKG algorithm for a given security parameter k, and let (l ,m) ∈
L ×M be a message-label pair. Then, for uniformly chosen hash key hk ∈ HK(pk) and randomness

r ∈ R(pk), the distributions {c = Enc(pk , l ,m; r), l ,m, phk
$
← ProjKG(hk , l , c), g ← Hash(hk , c, l ,m)}

and {c = Enc(pk , l ,m; r), l ,m, phk
$
← ProjKG(hk , l , c), g

$
← G} are computationally indistinguishable.

More formally, let LPKE = (LKG,Enc,Dec) be a LPKE-IND-CCA-secure labeled encryption
scheme, pk be a public key outputted by the LKG algorithm for a given security parameter k, and let
HLPKE = (X(pk),L(pk),D(X(pk , l ,m) \ L(pk , l ,m)),D(L(pk , l ,m)),W(pk),R(pk)) be a family of
hard (partitioned) subset membership problems based on LPKE . To any adversary D, consider the

experiments Exp
hash-prf-real
HASH ,D

(k) and Exp
hash-prf-random
HASH ,D

(k), defined as follows.

Exp
hash-prf-real
HASH ,D

(k)

(pk , sk)
$

← LKG(1k)
EncList← ∅

b ← DEnc(·,·),Hash(·,·,·)(pk)
return b

Oracle Enc(l ,m)

c
$

← Enc(pk , l ,m)
EncList← EncList ∪ {(l ,m, c)}
return c

Oracle Hash(l ,m, c)

if (l ,m, c) 6∈ EncList

then return ⊥

hk
$

← HashKG(pk)

phk
$

← ProjKG(hk , l , c)

g ← Hash(hk , l ,m, c)

return (phk , g)

Exp
hash-prf-random

HASH ,D
(k)

(pk , sk)
$

← LKG(1k)
EncList← ∅

b ← DEnc(·,·),Hash(·,·,·)(pk)
return b

Oracle Enc(l ,m)

c
$

← Enc(pk , l ,m)
EncList← EncList ∪ {(l ,m, c)}
return c

Oracle Hash(l ,m, c)

if (l ,m, c) 6∈ EncList

then return ⊥

hk
$

← HashKG(pk)

phk
$

← ProjKG(hk , l , c)

g
$

← G

return (phk , g)

Then, for every (non-uniform) PTAs D, the advantage Adv
hash-prf
HASH ,D

(k) = Pr
[

Exp
hash-prf-real
LPKE ,D (k) = 1

]

− Pr
[

Exp
hash-prf-random
LPKE ,D (k) = 1

]

is a negligible function in k.

Examples. To provide the reader with an idea of how efficient smooth projective hash functions are,
we recall here the example given in [23] based on the Cramer-Shoup encryption scheme [18].

The labeled version of the Cramer-Shoup scheme works as follows. Let G be a cyclic group of prime
order q where q is large. The key generation algorithm chooses two additional random generators g1,
g2 in G, a universal one-way hash function H, and random values z, z̃1, z̃2, ẑ1, ẑ2 in Zq with z 6= 0.

The secret key is set to (z, z̃1, z̃2, ẑ1, ẑ2) and the public key is defined to be (h, h̃, ĥ, g1, g2,H), where
h = gz

1 , h̃ = gz̃1
1 gz̃2

2 , and ĥ = gẑ1
1 gẑ2

2 . To encrypt a message m ∈ G with respect to label l, the sender

chooses r ∈ Zq , and computes u1 = gr
1 , u2 = gr

2 , e = hr ·m, θ = H(l, u1, u2, e) and v = (h̃ĥθ)r. The

8

ciphertext is c = (u1, u2, e, v). To decrypt a ciphertext c = (u1, u2, e, v) with respect to label l, the
receiver computes θ = H(l, u1, u2, e) and tests if v equals uz̃1+θẑ1

1 uz̃2+θẑ2
2 . If equality does not hold, it

outputs ⊥; otherwise, it outputs m = eu−z
1 .

The smooth projective hashing for the labeled Cramer-Shoup encryption scheme is then defined as
follows. The hash key generation algorithm HashKG simply sets the key hk to be the tuple (a1, a2, a3, a4)
where each ai is a random value in Zq. The key projection function ProjKG, on input (hk , l , c), first

computes θ = H(l, u1, u2, e) and outputs phk = ga1
1 ga2

2 ha3(h̃ĥθ)a4 . The hash function Hash on input
(hk , c, l ,m) outputs ua1

1 ua2
2 (e/m)a3va4 . The projective hash function ProjHash on input (phk , c, l ,m,

r) simply outputs phk r.

4 A scalable password-based group key exchange protocol

In this section, we finally present our password-based group key exchange protocol. Our protocol is
an extension of the Gennaro-Lindell password-based key exchange protocol [23] to the group setting
and uses ideas similar to those used in the Burmester-Desmedt group key exchange protocol [17].
The Gennaro-Lindell protocol itself is an abstraction of the password-based key exchange protocol
of Katz, Ostrovsky, and Yung [27,28]. Like the Gennaro-Lindell protocol, our protocol is built in a
modular way from four cryptographic primitives: a LPKE-IND-CCA-secure labeled encryption scheme,
a signature scheme, a family of smooth projective hash functions, and a family of universal hash
functions. Thus, our protocol enjoys efficient instantiations based on the decisional Diffie-Hellman,
quadratic residuosity, and N -residuosity assumptions (see [23]). Like the Burmester-Desmedt group
key exchange protocol, our protocol only requires a constant number of rounds and low per-user
computation.

As done in the Gennaro-Lindell protocol, we also assume the existence of a mechanism to allow
parties involved in the protocol to differentiate between concurrent executions as well as identify the
other parties with which they are interacting. As in their case, this requirement is only needed for the
correct operation of the protocol. No security requirement is imposed on this mechanism.

4.1 Protocol Description

Overview. As in the Burmester-Desmedt protocol, our protocol assumes a ring structure for the
users so that we can refer to the predecessor and successor of a user. Moreover, we associate each user
with an index i between 1 and n, where n is the size of the group. After deciding on the order of the
users, our protocol works as follows. First, each user in the group executes two correlated instances
of the Gennaro-Lindell protocol, one with his predecessor and one with his successor so each user
can authenticate his neighbors (this accounts for the first 3 rounds of the protocol). However, instead
of generating a single session key in each of these instances, we modify the original Gennaro-Lindell
protocol so that two independent session keys are generated in each session (this requires an extra
hash key and an extra projection key per user). We then use the first one of these as a test key to
authenticate the neighbor with whom that key is shared and we use the other one to help in the
computation of the group session key, which is defined as the product of these latter keys. To do
so, we add one more round of communication like in the Burmester-Desmedt protocol, so that each
user computes and broadcasts the ratio of the session keys that he shares with his predecessor and
successor. After this round, each user is capable of computing the group session key. However, to
ensure that all users agree on the same key, a final round of signatures is added to the protocol to
make sure that all users compute the group session key based on the same transcript. The key used
to verify the signature of a user is the same one transmitted by that user in the first round of the
Gennaro-Lindell protocol.

For a pictorial description of the our protocol, please refer to Fig. 1. The formal description follows.

9

Description. Let LPKE = (LKG,Enc,Dec) be a labeled encryption scheme, let SIG = (SKG,Sign,
Ver) be a signature scheme, and let HASH (pk) = (HashKG,ProjKG,Hash,ProjHash) be a family smooth
projective hash functions based on LPKE . Let UH : G 7→ {0, 1}2l and UH′ : G 7→ {0, 1}l be two
universal hash functions chosen uniformly at random from the families UH and UH ′ and let UH1(g)
and UH2(g) refer to the first and second halves of UH(g). Let U1, . . . , Un be the users wishing to
establish a common secret key and let pw be their joint password chosen uniformly at random from
a dictionary Dict of size N . We assume pw either lies in the message space M of LPKE or can be
easily mapped to it. Our protocol has a total of five rounds of communication and works as follows.

Initialization. A trusted server runs the key generation algorithm LKG on input 1k, where k ∈ N is
a security parameter, to obtain a pair (pk , sk) of secret and public keys and publishes the public key
pk along with randomly selected universal hash function UH and UH′ from the families UH and UH ′.

Round 1. In this first round, each player Ui for i = 1, . . . , n starts by setting the partner identifier
pidi to {U1, . . . , Un}. Then, each player Ui generates a pair (sk i, vk i) of secret and public keys for
a signature scheme and a label li = vk i ‖U1 ‖ . . . ‖Un. Next, each player encrypts the joint group
password pw using the encryption algorithm Enc with respect to the public key pk and label li using
rRi as the randomness. Let cRi denote the resulting ciphertext (i.e., cRi = Enc(pk , li, pw; rRi)). At the end
of this round, each player Ui broadcasts the pair (li, c

R

i).

Round 2. In this second round, each player Ui for i = 1, . . . , n encrypts once more the joint group
password pw using the encryption algorithm Enc with respect to the public key pk and label li using
rLi as the randomness. Let cLi denote the resulting ciphertext (i.e., cLi = Enc(pk , li, pw; rLi)). Next, each
player Ui chooses a hash key hkLi uniformly at random from HK(pk) for the smooth projective hash
function and then generates a projection key phkLi for it with respect to the pair (cRi−1, li−1). That is,

phk L

i
$
← ProjKG(hkLi , li−1, c

R

i−1). Here and in other parts of the protocol, the indices are taken modulo
n. At the end of this round, each player Ui broadcasts the pair (cLi , phk L

i).

Round 3. In this round, player Ui first chooses two new hash keys hk i and hkRi uniformly at random
from HK(pk) for the smooth projective hash function. Next, player Ui generates two projection keys
phk i and phkRi for the hash keys hk i and hkRi , both with respect to the pair (cLi+1, li+1). That is, phk i
$
← ProjKG(hk i, li+1, c

L

i+1) and phkRi
$
← ProjKG(hk R

i , li+1, c
L

i+1). Then, player Ui computes a test master

key X R

i = K L

i+1 · K
R

i for its successor, where K L

i , Hash(hk L

i , c
R

i−1, li−1, pw) and K R

i , Hash(hkRi , c
L

i+1,
li+1, pw). Note that player Ui can compute K R

i using hkRi and K L

i+1 using phk L

i+1 and the witness rRi
to the fact that cRi is a valid encryption of pw with respect to pk and li. Finally, player Ui computes
a test key testRi = UH1(X

R

i), sets T R

i = Ui ‖Ui+1 ‖ c
R

i ‖ c
L

i+1 ‖ phk i ‖ phk
R

i ‖ phk
L

i+1 ‖ test
R

i , and computes
a signature σR

i on T R

i using sk i. At the end of this round, player Ui broadcasts the tuple (phk i, phk
R

i ,
testRi , σ

R

i).

Round 4. In this round, each player Ui first verifies if the signature σR

i−1 on the transcript T R

i−1 is
correct using vk i−1. If this check fails, then player Ui halts and sets acci = false. Otherwise, player Ui

computes the values K L

i and K R

i−1, using the hash key hkLi and the projection key phk R

i−1 along with
the witness rLi to the fact that cLi is a valid encryption of pw with respect to pk and li. That is, K L

i =
Hash(hk L

i , c
R

i−1, li−1, pw) and K R

i−1 = ProjHash(phk R

i−1, c
L

i , li, pw, rLi). Next, player Ui computes the test
master key X L

i = K L

i · K
R

i−1 for its predecessor and verifies if testRi−1 = UH1(X
L

i). Once again, if this
test fails, then player Ui halts and sets acci = false. If this test succeeds, then player Ui computes a test
key testLi = UH2(X

L

i) for its predecessor and an auxiliary key Xi = Ki/Ki−1, where Ki , Hash(hk i,
cLi+1, li+1, pw). More precisely, player Ui computes the value Ki using the hash key hk i and the value
Ki−1 using the projection key phk i−1 along with the witness rLi to the fact that cLi is a valid encryption
of pw with respect to pk and li. Finally, each player Ui broadcasts the pair (Xi, test

L

i).

10

Round 5. First, each player Ui checks whether testLi+1 = UH2(X
R

i) and whether
∏n

l=1 Xl = 1. If any
of these tests fails, then player Ui halts and sets acci = false. Otherwise, each player Ui sets Tj = vk j ‖
Uj ‖ cj ‖ phk j ‖ phk

L

j ‖ phk
R

j ‖Xj ‖X
L

j for j = 1, . . . , n and T = T1 ‖ . . . ‖Tn and then signs it using sk i

to obtain σi. Finally, each player Ui broadcasts σi.

Finalization. Each player Ui checks for j 6= i whether σj is a valid signature on T with respect to
vk j. If any of these checks fails, then player Ui halts and sets acci = false. Otherwise, player Ui sets
acci = true and computes the master key MSK =

∏n
j=1 Kj = K n

i ·X
n−1
i+1 ·X

n−2
i+2 · . . . ·X

2
i+n−3 ·Xi+n−1,

and the session key SK = UH′(MSK). Each player Ui also sets the session identifier sidi to T .

Observation. Let Ki , Hash(hk i, c
L

i+1, li+1, pw), K R

i , Hash(hkRi , c
L

i+1, li+1, pw), and K L

i , Hash(hk L

i ,
cRi−1, li−1, pw) denote temporary keys. In a normal execution of the protocol, the temporary keys Ki

and K R

i are known to both player Ui (who knows hk i and hkRi) and his successor Ui+1 (who knows
phk i, phkRi , and the witness rLi+1 to the fact that cLi+1 is a valid encryption of pw with respect to
pk and li+1). Likewise, the temporary key K L

i is known to both player Ui (who knows hkLi) and his
predecessor Ui−1 (who knows phk R

i and the witness rRi−1 to the fact that cRi−1 is a valid encryption of
pw with respect to pk and li−1).

4.2 Correctness and Security

Correctness. In an honest execution of the protocol, it is easy to verify that all participants in
the protocol will terminate by accepting and computing the same values for the partner identifier,
session identifiers, and the session key. The session key in this case is equal to

∏n
j=1 Hash(hk j, cj+1,

lj+1, pw) =
∏n

j=1 Kj.

Security. As the following theorem shows, the GPAKE protocol described above and in Fig. 1 is a
secure password-based authenticated group key exchange protocol as long as the primitives on which
the protocol is based meet the appropriate security notion described in the theorem.

Theorem 1 Let LPKE be a labeled encryption secure against chosen-ciphertext attacks, let HASH be

a family of smooth projective hash functions, let UH and UH ′ be families of universal hash functions,

and let SIG be a signature scheme that is unforgeable against chosen-message attacks. Let GPAKE
denote the protocol built from these primitives as described above and let A be an adversary against

GPAKE . Then, the advantage function Advake-ind
GPAKE ,A(k) is only negligibly larger than O(q/N), where

q denotes the maximum number of different protocol instances to which A has asked Send queries and

N is the dictionary size.

The proof of Theorem 1 is in Appendix A. In it, we actually show that the security of our protocol
is only negligibly larger than (qsend-1 + qsend-2)/N , where qsend-1 and qsend-2 represent the maximum
number of Send queries that the adversary can ask with respect to the first and second round of
communication and N is dictionary size. Even though we believe this security level is good enough for
groups of small to medium sizes, it may not be sufficient in cases where the number of users in a group
is large and the dictionary size is small. In the latter case, it would be desirable to have a scheme
whose security is only negligibly larger than the number of sessions (and not protocol instances) over
the size of the dictionary. Unfortunately, the latter cannot be achieved by our protocol as it is possible
for an active adversary to test in the same session a number of passwords that is linear in the total
number of users, for instance by playing the role of every other user.

4.3 Efficiency

Our protocol is quite efficient, only requiring a small amount of computation by each user. In what
concerns encryption and hash computations, each user only has to perform 2 encryptions, 3 projection

11

key generations, 3 hash computations, 3 projected hash computations, and 5 universal hash compu-
tations. The most expensive part of our protocol, which is linear in the group size, is the number of
signature verifications and the master session key computation. While the latter computation can be
improved by using algorithms for multi-exponentiations, the former can be improved by using two-time
signature schemes.

It is worth mentioning here that, as done by Katz et al. [26] in the case of the KOY protocol [27],
one could also improve the efficiency of our protocol by using two different encryption schemes in
the computation of the ciphertexts cRi and cLi broadcasted in the first and second rounds. While
the computation of the ciphertexts cRi would require a CCA-secure labeled encryption scheme, the
computation of the ciphertexts cLi would only require a CPA-secure encryption scheme. To show
that this would actually be the case, one would need to modify the proofs of lemmas 10 and 14 in
Appendix A. In the case of the proof of Lemma 10 (which would rely on the CPA-secure encryption
scheme), the decryption oracle can be avoided by using the secret key for the CCA-secure labeled
encryption scheme to check the validity of a ciphertext cRi . In the case of the proof of Lemma 14
(which would rely on the CCA-secure labeled encryption scheme), one would only need the decryption
oracle to check the validity of a ciphertext cRi , since the validity of a ciphertext cLi would be checked
using the secret key for the CPA-secure encryption scheme.

4.4 Future Work

One issue not addressed in the current paper is whether our protocol remains secure in the presence
of Corrupt queries, through which the adversary can learn the values of the long-term secret keys held
by a user.

Acknowledgements

The authors were supported in part by the European Commission through the IST Program under
Contract IST-2002-507932 ECRYPT and by France Telecom R&D as part of the contract CIDRE,
between France Telecom R&D and École normale supérieure.

References

1. M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval. Password-based group key exchange in a constant
number of rounds. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, PKC 2006, volume 3958 of LNCS,
pages 427–442. Springer-Verlag, Berlin, Germany, Apr. 2006. 2

2. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security proofs and improve-
ments. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274. Springer-Verlag, Berlin,
Germany, May 2000. 5

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks. In
B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer-Verlag, Berlin, Germany,
May 2000. 1, 2, 3

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In ACM

CCS 93, pages 62–73. ACM Press, Nov. 1993. 2
5. M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R. Stinson, editor, CRYPTO’93,

volume 773 of LNCS, pages 232–249. Springer-Verlag, Berlin, Germany, Aug. 1994. 1
6. M. Bellare and P. Rogaway. Provably secure session key distribution — the three party case. In 28th ACM STOC,

pages 57–66. ACM Press, May 1996. 1
7. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure against dictionary attacks.

In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE Computer Society Press, May 1992. 2
8. J.-M. Bohli, M. I. G. Vasco, and R. Steinwandt. Password-authenticated constant-round group key establishment

with a common reference string. Cryptology ePrint Archive, Report 2006/214, 2006. http://eprint.iacr.org/. 2
9. V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated key exchange using Diffie-Hellman.

In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 156–171. Springer-Verlag, Berlin, Germany,
May 2000. 2

http://eprint.iacr.org/

12

User Ui

pidi = {U1, . . . , Un}

(sk i, vki)
$
← SKG(1k)

li = vk i ‖U1 ‖ . . . ‖Un

cRi = Enc(pk , li, pw; rRi)

li, cR
i−−−−−−−−→

hkL

i

$
← HK(pk)

phk L

i

$
← ProjKG(hk L

i , li−1, cRi−1)
cLi = Enc(pk , li, pw; rLi)

phkL

i
, cL

i−−−−−−−−→

hk i, hkR

i

$
← HK(pk)

phk i
$
← ProjKG(hk i, li+1, cLi+1)

phk R

i

$
← ProjKG(hk R

i , li+1, cLi+1)

K L

i+1 = ProjHash(phk L

i+1, cRi , li, pw, rRi)

K R

i = Hash(hkR

i , c
L

i+1, li+1, pw)

X R

i = K L

i+1 ·K
R

i

testRi = UH1(X R

i)
σR

i = Sign(sk i,T R

i)

phki, phkR
i
, testR

i
, σR

i−−−−−−−−−−−−−→

if Ver(vk i−1,T R

i−1, σR

i−1) = 0 then acci = false

K L

i = Hash(hk L

i , c
R

i−1, li−1, pw)

K R

i−1 = ProjHash(phk R

i−1, cLi , li, pw, rLi)

X L

i = K L

i ·K
R

i−1
if testRi−1 6= UH1(X L

i) then acci = false

testLi = UH2(X L

i)
Ki = Hash(hk i, c

L

i+1, li+1, pw)
Ki−1 = ProjHash(phk i−1, cLi , li, pw, rLi)
Xi = Ki/Ki−1

Xi, testL
i−−−−−−−−→

if testLi+1 6= UH2(X R

i) then acci = false

if
Qn

l=1 Xl 6= 1 then acci = false

T = T1 ‖ . . . ‖Tn

σi = Sign(sk i,T)

σi−−−−−−−−→

for j = 1, . . . , i− 1, i + 1, . . . , n
if Ver(vk j ,T , σj) = 0 then acci = false

MSK = Kn
i ·

Qn−1
j=1 X

n−j
i+j

SK = UH′(MSK)
acci = true

sidi = T

Fig. 1. An honest execution of the password-authenticated group key exchange protocol by player Ui

in a group {U1, . . . , Un}, where T R

i = Ui ‖Ui+1 ‖ c
R

i ‖ c
L

i+1 ‖ phk i ‖ phk
R

i ‖ phk
L

i+1 ‖ test
R

i and Ti = vk i ‖
Ui ‖ ci ‖ phk i ‖ phk

L

i ‖ phk
R

i ‖Xi ‖X
L

i for i = 1, . . . , n.

10. E. Bresson, O. Chevassut, and D. Pointcheval. Provably authenticated group Diffie-Hellman key exchange – the
dynamic case. In C. Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 290–309. Springer-Verlag,
Berlin, Germany, Dec. 2001. 1

11. E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman key exchange secure against dictionary attacks.
In Y. Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 497–514. Springer-Verlag, Berlin, Germany,
Dec. 2002. 2

12. E. Bresson, O. Chevassut, and D. Pointcheval. Security proofs for an efficient password-based key exchange. In
ACM CCS 03, pages 241–250. ACM Press, Oct. 2003. 2

13. E. Bresson, O. Chevassut, and D. Pointcheval. New security results on encrypted key exchange. In F. Bao, R. Deng,
and J. Zhou, editors, PKC 2004, volume 2947 of LNCS, pages 145–158. Springer-Verlag, Berlin, Germany, Mar.

13

2004. 2
14. E. Bresson, O. Chevassut, and D. Pointcheval. A security solution for IEEE 802.11’s ad-hoc mode: Password

authentication and group Diffie-Hellman key exchange. International Journal of Wireless and Mobile Computing,
2005. To appear. 2, 3

15. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably authenticated group Diffie-Hellman key
exchange. In ACM CCS 01, pages 255–264. ACM Press, Nov. 2001. 1

16. M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system (extended abstract). In
A. D. Santis, editor, EUROCRYPT’94, volume 950 of LNCS, pages 275–286. Springer-Verlag, Berlin, Germany, May
1994. 1, 2

17. M. Burmester and Y. Desmedt. A secure and scalable group key exchange system. Information Processing Letters,
94(3):137–143, May 2005. 1, 2, 8

18. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext
attack. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25. Springer-Verlag, Berlin, Germany,
Aug. 1998. 2, 7

19. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key
encryption. In L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer-Verlag,
Berlin, Germany, Apr. / May 2002. 2, 5

20. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive
chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. 2

21. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, 22(6):644–
654, 1976. 1

22. R. Dutta and R. Barua. Password-based encrypted group key agreement. International Journal of Network Security,
3(1):30–41, July 2006. http://isrc.nchu.edu.tw/ijns . 2

23. R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange. In E. Biham, ed-
itor, EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543. Springer-Verlag, Berlin, Germany, May 2003.
http://eprint.iacr.org/2003/032.ps.gz. 2, 5, 7, 8

24. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988. 4

25. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM

Journal on Computing, 28(4):1364–1396, 1999. 4
26. J. Katz, P. D. MacKenzie, G. Taban, and V. D. Gligor. Two-server password-only authenticated key exchange. In

J. Ioannidis, A. Keromytis, and M. Yung, editors, ACNS 05, volume 3531 of LNCS, pages 1–16. Springer-Verlag,
Berlin, Germany, June 2005. 11

27. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using human-memorable pass-
words. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 475–494. Springer-Verlag, Berlin,
Germany, May 2001. 2, 8, 11

28. J. Katz, R. Ostrovsky, and M. Yung. Forward secrecy in password-only key exchange protocols. In S. Cimato,
C. Galdi, and G. Persiano, editors, SCN 02, volume 2576 of LNCS, pages 29–44. Springer-Verlag, Berlin, Germany,
Sept. 2002. 8

29. J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In D. Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 110–125. Springer-Verlag, Berlin, Germany, Aug. 2003. 1, 3, 15

30. H.-J. Kim, S.-M. Lee, and D. H. Lee. Constant-round authenticated group key exchange for dynamic groups. In
P. J. Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 245–259. Springer-Verlag, Berlin, Germany, Dec.
2004. 2

31. V. Shoup. ISO 18033-2: An emerging standard for public-key encryption. http://shoup.net/iso/std6.pdf, Dec.
2004. Final Committee Draft. 4

32. M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups. IEEE Transactions on Parallel

and Distributed Systems, 11(8):769–780, Aug. 2000. 2

A Proof of Theorem 1

Notation. Before proceeding with the proof of Theorem 1, we define some basic notation and ter-
minology that will be used in the proof. We start by classifying the Send queries into 6 categories,
depending on the stage of the protocol to which the query is associated.

– Send0. This query has the form (U
〈j〉
i , {U1, . . . , Un}) and denotes the initial Send query made to

user instance U
〈j〉
i when executing the protocol in a group G = {U1, . . . , Un} that contains user

Ui. The output of this query is the pair (li, c
R

i) that user instance U
〈j〉
i generates in the first round

of communication.

http://isrc.nchu.edu.tw/ijns
http://eprint.iacr.org/2003/032.ps.gz
http://shoup.net/iso/std6.pdf

14

– Send1. This query has the form (U
〈j〉
i , {(l1, c

R

1), . . . , (ln, cRn)}, {U1, . . . , Un}) and denotes the second

Send query to user instance U
〈j〉
i . It returns the tuple (phk L

i , c
L

i) that instance U
〈j〉
i would generate

on input {(l1, c
R

1), . . . , (ln, cRn)}.

– Send2. This query has the form (U
〈j〉
i , {(phk L

1, c
L

1), . . . , (phk L

n, cLn)}, {U1, . . . , Un}) and denotes the

third Send query to user instance U
〈j〉
i . It returns the tuple (phk i, phk

R

i , test
R

i , σ
R

i) that instance

U
〈j〉
i would generate on input {(phk L

1, c
L

1), . . . , (phk L

n, cLn)}.

– Send3. This query has the form (U
〈j〉
i , {(phk 1, phk

R

1, test
R

1, σ
R

1), . . . , (phkn, phkRn, testRn, σR

n)}, {U1, . . . ,

Un}) denotes the fourth Send query to user instance U
〈j〉
i . It returns the pair (Xi, test

L

i) that

instance U
〈j〉
i would generate on input {(phk 1, phk

R

1, test
R

1, σ
R

1), . . . , (phkn, phk R

n, testRn, σR

n)}.

– Send4. This query has the form (U
〈j〉
i , {(X1, test

L

1), . . . , (Xn, testLn)}, {U1, . . . , Un}) denotes the fifth

Send query to user instance U
〈j〉
i . It returns the signature σi that instance U

〈j〉
i would generate on

input {(X1, test
L

1), . . . , (Xn, testLn)}.

– Send5(U
〈j〉
i , {σ1, . . . , σn}, {U1, . . . , Un}). This denotes the last Send query to user instance U

〈j〉
i .

This query forces instance U
〈j〉
i to either halt and reject (setting acc

j
i = false) or to halt, accept

(setting acc
j
i = true), and compute a session key. It has no output.

We say a message is t-oracle-generated if that message has been generated by an oracle in round t

of some session. We say that a ciphertext-label pair (cR, l = vk ‖U1 ‖ . . . ‖Un) is valid for U
〈j〉
i if cR

is a valid encryption of the password pwG with respect to the public key pk and the label l , and pid
j
i

= G = {U1, . . . , Un}.

Proof of Theorem 1. LetA be an adversary against our password-based group key exchange protocol
GPAKE . The goal of proof is to show that the advantage of A in breaking the semantic security of
GPAKE is only negligibly better than qsend-1 +qsend-2 over the size of the dictionary. To do so, our proof
uses a sequence of hybrid experiments, the first of which corresponds to the actual attack. For each
hybrid experiment Hybn, we define an event Succn corresponding to the case in which the adversary
A correctly guesses the bit b involved in the Test query. Likewise, we also define the corresponding
advantage of the adversary A in each of these experiments to be Advake-ind

GPAKE ,A,Hybn
(k) = 2·Pr [Succn]

− 1.

Hybrid experiment Hyb0. This first experiment corresponds to a real attack, in which all the
parameters, such as the public parameters in the common reference string and the passwords associated
with each group of users, are chosen as in the actual scheme. By definition, the advantage of an
adversary A in guessing the bit b involved in the Test query in this experiment is exactly the same as
in the real attack.

Advake-ind
GPAKE ,A,Hyb0

(k) , Advake-ind
GPAKE ,A(k) (1)

Hybrid experiment Hyb1. In this experiment, we change the simulation of the Execute oracle so
that the values Ki, K L

i , and K R

i for i = 1, . . . , n are chosen uniformly at random from G, where n
is the size of the group G. As the lemma below shows, the difference in the advantage between the
current experiment and previous one is a negligible function of the security parameter. This is due to
pseudorandomness property of the smooth projective hash function.

Lemma 2
∣

∣Advake-ind
GPAKE ,A,Hyb1

(k)−Advake-ind
GPAKE ,A,Hyb0

(k)
∣

∣ ≤ neg(k).

Proof. To prove this lemma, we show how to construct an adversary D against the pseudorandomness
property of the smooth projective hash function from an adversary A capable of distinguishing the
current experiment from the previous one.

To do so, we recall that the adversary D is given a public key pk for a labeled encryption scheme
and access to two oracles: Enc(·, ·) and Hash(·, ·, ·). The oracle Enc(·, ·) receives as input a message m

15

and a label l and outputs a ciphertext c, which is an encryption of message m with respect to the public
key pk and the label l . The oracle Hash(·, ·, ·) receives as input a label l , a message m, and a ciphertext
c. If the ciphertext c is not the result of a previous query (l ,m) to the oracle Enc, then it outputs ⊥.

Otherwise, the oracle Hash computes a hash key hk via hk
$
← HashKG(pk) and a projection hash key

phk as phk
$
← ProjKG(hk , l , c). Then, Hash computes the output g of the hash function in one of two

ways depending on the experiment in which it is. In experiment Exp
hash-prf-real
HASH ,D

(k), Hash sets g to

Hash(hk , l ,m, c) . In experiment Exp
hash-prf-random
HASH ,D

(k), it sets g to a random value in G. Finally, Hash

outputs (phk , g). The goal of adversary D is to tell the exact experiment with which he is dealing.
By the pseudorandomness property of a smooth projective hash function, no adversary D should be
able to distinguish the experiment Exp

hash-prf-random
HASH ,D

(k) from the experiment Exp
hash-prf-real
HASH ,D

(k) with

non-negligible probability.

We construct an adversary D as follows. First, D uses pk to initialize the common reference string
exactly as in the experiment Hyb0. Then, whenever A asks a Send or Execute query with respect to
a group G for which no password has been defined, then D chooses a password pwG for that group
uniformly at random from the dictionary Dict. Then, D continues to simulate all of A’s oracles exactly
as in experiment Hyb0 except when computing the values cRi , cLi , phk i, phkLi , phk R

i , Ki, K L

i , and K R

i

in a Execute query for a group G. To compute the latter values, D makes uses of its Enc and Hash

oracles. That is, D first computes cRi = Enc(li, pwG) and cLi = Enc(li, pwG) for i = 1, . . . , |G|. Next,
D queries its oracle Hash three times for each i in {1, . . . , |G|} on inputs (li−1, c

R

i−1), (li+1, c
L

i+1),
and (li+1, c

L

i+1), to obtain respectively the values (phk L

i ,K
L

i), (phk R

i ,K
R

i), and (phk i,Ki). Finally, D
continues the simulation of the Execute query using the values above exactly as in the experiment
Hyb0. At the end of the simulation, D outputs the same guess as A.

One can easily see that, whenever D is in experiment Exp
hash-prf-real
HASH ,D

(k), then its simulation of

the Execute oracle is performed exactly as in experiment Hyb0. Moreover, whenever D is in ex-
periment Exp

hash-prf-random
HASH ,D

(k), then its simulation of the Execute oracle is performed exactly as in

experiment Hyb1. Thus, the probability that D distinguishes between experiments Exp
hash-prf-real
HASH ,D

(k)

and Exp
hash-prf-random
HASH ,D

(k) is exactly Advake-ind
GPAKE ,A,Hyb1

(k) − Advake-ind
GPAKE ,A,Hyb0

(k). Thus, the proof

of Lemma 2 follows from the pseudorandomness property of the family of smooth projective hash
functions.

Hybrid experiment Hyb2. In this experiment, we change again the simulation of the Execute oracle
so that the master key MSK i computed by each player in an Execute query is chosen uniformly at
random from the group G. As the lemma below shows, the difference in the advantage between the
current experiment and previous one is a negligible function of the security parameter. The arguments
used to prove this lemma are in fact information theoretic.

Lemma 3 Advake-ind
GPAKE ,A,Hyb2

(k) = Advake-ind
GPAKE ,A,Hyb1

(k).

Proof. The proof of Lemma 3 uses an argument similar to the one used by Katz and Yung in their
proof of Burmester-Desmedt protocol [29]. First, we note that in the simulation of Execute oracle in
experiment Hyb1, the values Ki for i = 1, . . . , |G| are all chosen at random in G. Second, let g denote
a generator for G. We note that, from the transcript T that the adversary receives as output for an
Execute query, the values Ki are constrained by the following |G| equations.

logg X1 = logg K1 − logg K|G|

...

logg X|G| = logg K|G| − logg K|G|−1.

16

Of these equations, only |G| − 1 are linearly independent. Finally, the master key computed by the
players defines an additional equation

logg MSK =

|G|
∑

i=1

logg Ki.

Since the last equation is linearly independent of the previous ones, the master secret key MSK i that
each player in the group G computes in an Execute query is independent of the transcript T that the
adversary A sees. Thus, no computationally unbounded adversary A can tell experiment Hyb2 apart
from Hyb1. As a result, for any A, Advake-ind

GPAKE ,A,Hyb2
(k) = Advake-ind

GPAKE ,A,Hyb1
(k).

Hybrid experiment Hyb3. In this experiment, we change once more the simulation of the Execute

oracle so that the session key SK i computed by each player in an Execute query is chosen uniformly
at random in {0, 1}l . As the lemma below shows, the difference in the advantage between the current
experiment and previous one is a negligible function of the security parameter. The proof of Lemma 4
follows easily from the properties of the family of universal hash functions UH ′, which guarantees
that its output is statistically close to uniform in {0, 1}l when given a random value in G as input.

Lemma 4
∣

∣Advake-ind
GPAKE ,A,Hyb3

(k)−Advake-ind
GPAKE ,A,Hyb2

(k)
∣

∣ ≤ neg(k).

Hybrid experiment Hyb4. In this experiment, we change one last time the simulation of the Execute

oracle so that the password pwG associated with a group G is no longer used. More specifically, when
simulating an Execute query, the ciphertexts cRi and cLi that each player Ui ∈ G computes becomes
the encryption of a dummy password pw′G 6= pwG. As the lemma below shows, the difference in the
advantage between the current experiment and previous one is a negligible function of the security
parameter. The proof of Lemma 5 follows from the semantic security of the labeled encryption scheme
LPKE .

Lemma 5
∣

∣Advake-ind
GPAKE ,A,Hyb4

(k)−Advake-ind
GPAKE ,A,Hyb3

(k)
∣

∣ ≤ neg(k).

Proof. To prove this lemma, we show how to construct an adversary D against the chosen-ciphertext
indistinguishability of LPKE from an adversary A capable of distinguishing the current experiment
from the previous one. We recall that the adversary D is given a public key pk for the labeled encryption
scheme and access to two oracles: the Left-or-Right encryption oracle Enc(·, ·, ·) and a decryption
oracle Dec(·, ·). The latter, however, is not needed in this part of the proof.

We construct an adversary D as follows. First, D uses pk to initialize the common reference string
exactly as in the experiment Hyb3. Then, whenever A asks a Send or Execute query with respect
to a group G for which no password has been defined, then D first chooses a password pwG for that
group uniformly at random from the dictionary Dict. At this time, D also chooses a dummy password
pw′G 6= pwG of the appropriate length. Next, D continues to simulate all of A’s oracles exactly as in
experiment Hyb3 except when computing the ciphertext values cRi and cLi in a Execute query for a user
group G. To compute the latter values, D makes uses of its Left-or-Right encryption oracle Enc. More
precisely, D computes cRi = Enc(li, pwG , pw

′
G) and cLi = Enc(li, pwG , pw

′
G) for i = 1, . . . , |G|. Finally,

D continues the simulation of the remaining part of the Execute query exactly as in the experiment
Hyb3, choosing the session key SK i of each player Ui and the intermediate values K L

i , K R

i , and Ki

uniformly at random in their respective groups. At the end of the simulation, D outputs the same
guess as A.

One can easily see that, whenever D is in experiment Exp
lpke-ind-cca-0
LPKE ,D (k), then its simulation of

the Execute oracle is performed exactly as in experiment Hyb3, since in this case the Left-or-Right
encryption oracle Enc always returns the encryption of the actual password. Moreover, whenever D

17

is in experiment Exp
lpke-ind-cca-1
LPKE ,D (k), then its simulation of the Execute oracle is performed exactly

as in experiment Hyb4, since in this case the Left-or-Right encryption oracle Enc always returns the
encryption of a dummy password. Thus, the probability that D distinguishes between experiments
Exp

lpke-ind-cca-1
LPKE ,D (k) and Exp

lpke-ind-cca-0
LPKE ,D (k) is exactly Advake-ind

GPAKE ,A,Hyb4
(k) − Advake-ind

GPAKE ,A,Hyb3
(k).

Thus, the proof of Lemma 5 follows from the chosen-ciphertext indistinguishability of LPKE .

Hybrid experiment Hyb5. In this new experiment, we change the simulation of the Send oracle of

an instance U
〈j〉
i whenever the latter receives an 1-oracle-generated ciphertext cRi−1 (the one that

should have been created by its predecessor) in Send1 query. Let U
〈j′〉
i′ be the instance that created

this ciphertext (note that i′ may or may not be equal to i − 1). More precisely, if the instance U
〈j〉
i

does not reject after a Send3 query (by setting acc
j
i = false), then the values Ki−1 and K R

i−1 are

chosen uniformly at random from G. Remember from the protocol that instance U
〈j〉
i halts and sets

acc
j
i = false whenever the signature σR

i−1 on the transcript T R

i−1 with respect to vk i−1 is not valid or
the test session key testRi−1 is not correct. Furthermore, if i′ = i− 1 and the values cRi−1 and cLi seen by

instances U
〈j〉
i and U

〈j′〉
i′ are the same, then the values Ki′ and K L

i′ for instance U
〈j′〉
i′ are also chosen

uniformly at random. As the lemma below shows, the difference in the advantage between the current
experiment and previous one is a negligible function of the security parameter. The proof of Lemma 6
follows from the security properties of the smooth projective hash function family HASH .

Lemma 6
∣

∣Advake-ind
GPAKE ,A,Hyb5

(k)−Advake-ind
GPAKE ,A,Hyb4

(k)
∣

∣ ≤ neg(k).

Proof. The proof of Lemma 6 has two cases depending on whether or not the 1-oracle-generated

ciphertext cRi−1 is valid for U
〈j〉
i . We observe here that ciphertext cRi−1 is valid for U

〈j〉
i if it has been

created by an instance U
〈j′〉
i′ , forwarded to instance U

〈j〉
i , and it holds that pid

j′

i′ = pid
j
i and i′ = i− 1.

cRi−1 is invalid for U
〈j〉
i . The proof in this case follows easily from the smoothness property of the

family of smooth projective hash functions, which says that if cRi−1 is not a valid encryption of the
password pwG with respect to the public-key pk and label li−1, then the hash value K L

i = Hash(hk L

i ,
cRi−1, li−1, pw) is statistically close to uniform in G. Likewise, the master key X L

i = K L

i ·K
R

i−1 used to
check the test session key of its predecessor is also statistically close to uniform in G. As a result,

except with negligible probability, the instance U
〈j〉
i will halt and reject (by setting acc

j
i = false) after

receiving the test value testRi−1. Hence, the difference in the advantage between the current experiment
and previous one due to this case is a negligible function of the security parameter.

cRi−1 is valid for U
〈j〉
i . The proof of this case follows from pseudorandomness property of the family

of smooth projective hash functions. To prove so, we show how to construct an adversary D against
the pseudorandomness property of the family HASH from an adversary A capable of distinguishing

the current experiment from the previous one when cRi−1 is valid for U
〈j〉
i .

We construct an adversary D as follows. First, D uses pk to initialize the common reference string
exactly as in the experiment Hyb4. Then, whenever A asks a Send or Execute query with respect to
a group G for which no password has been defined, then D chooses a password pwG for that group
uniformly at random from the dictionary Dict. Then, D continues to simulate all of A’s oracles exactly

as in experiment Hyb4 except when an instance U
〈j〉
i receives a valid 1-oracle-generated ciphertext

cRi−1 from an instance U
〈j′〉
i−1 . In the latter, instead of computing the ciphertext cLi as in the original

protocol, D obtains cLi by making a call to its Enc oracle using the label li and password pwG as the

input. Then, if the adversary A correctly forwards the ciphertext cLi to instance U
〈j′〉
i−1 in a Send2 query,

then D makes two calls to his Hash oracle using cLi and label li as input to obtain respectively the
values (phk L

i−1,K
L

i−1), and (phk i−1,Ki−1) instead of computing these values by itself. D also uses the
value K L

i−1 and Ki−1 to compute testRi−1 in round 3 and the value X L

i−1 in round 4. Next, if instance

18

U
〈j〉
i receives the projection keys phk L

i−1 and phk i−1 in a Send2 query that D obtained from the Hash

oracle, then D also uses the values K L

i−1 and Ki−1 to compute X L

i and Xi. If instance U
〈j〉
i does not

receive the projection keys phk L

i and phk i in a Send2 query, then it halts and sets acc
j
i = false. Apart

from these changes, no other modification is made to the simulation. At the end of the simulation, D
outputs the same guess as A.

To analyze the success probability of D, first notice that if instance U
〈j〉
i receives projection keys

phk L

i−1 and phk i−1 different from those outputted by the Hash oracle, then U
〈j〉
i rejects with over-

whelming probability due to the security of the signature scheme SIG . This is because the case we

are considering is the one in which the ciphertext cRi−1 is 1-oracle-generated and valid for U
〈j〉
i .

Thus, the only way for A to send projections keys phk L

i−1 and phk i−1 different from those computed

by instance U
〈j′〉
i−1 is for the latter to forge the signature σR

i−1. A formal reduction to the security of the
signature scheme SIG in this case is straight-forward and omitted here.

Next, notice that, whenever D is in experiment Exp
hash-prf-real
HASH ,D

(k), then its simulation of the Send

oracle is performed exactly as in experiment Hyb4. This is because in this case, whenever an instance

U
〈j〉
i receives a valid 1-oracle-generated ciphertext cRi−1, the values for Ki−1 and K R

i−1 that U
〈j〉
i

computes come from the Hash oracle and are thus correct. Moreover, if both U
〈j〉
i and U

〈j′〉
i−1 see the same

transcript T R

i−1, then U
〈j′〉
i−1 also computes the same values for Ki−1 and K R

i−1 (except when A succeeds

in forging a signature). Finally, notice that, whenever D is in experiment Exp
hash-prf-random
HASH ,D

(k), then

its simulation of the Send oracle is performed almost exactly as in experiment Hyb5 since the values

for Ki−1 and K R

i−1 that U
〈j〉
i computes when receiving a valid 1-oracle-generated ciphertext cRi−1

are random in this case. The only difference occurs when A succeeds in forging the signature σR

i−1

of instance U
〈j′〉
i−1 . Thus, the probability that D distinguishes between experiments Exp

hash-prf-real
HASH ,D

(k)

and Exp
hash-prf-random
HASH ,D

(k) is negligibly close to Advake-ind
GPAKE ,A,Hyb5

(k) −Advake-ind
GPAKE ,A,Hyb4

(k). Hence,

the difference in the advantage between the current experiment and previous one due to this case is a
negligible function of the security parameter.

Since in both cases, the difference in the advantage between the current experiment and previous
one is a negligible function of the security parameter, the proof of Lemma 6 follows.

Hybrid experiment Hyb6. In this new experiment, we change once again the simulation of the Send

oracle of an instance U
〈j〉
i whenever the latter receives an 1-oracle-generated ciphertext cRi−1 in a

Send1 query so that U
〈j〉
i computes the ciphertext cLi using a dummy password pw′G that is different

from the password pwG associated with the group G. As the lemma below shows, the difference in the
advantage between the current experiment and previous one is a negligible function of the security
parameter. The proof of Lemma 7 follows from the chosen-plaintext security of the labeled encryption
scheme LPKE .

Lemma 7
∣

∣Advake-ind
GPAKE ,A,Hyb6

(k)−Advake-ind
GPAKE ,A,Hyb5

(k)
∣

∣ ≤ neg(k).

Proof. The proof of this lemma is similar to that of Lemma 5 and follows easily from the chosen-
plaintext security of the labeled encryption scheme LPKE . To construct the adversary D for LPKE
from an adversary A capable of distinguishing the current experiment from the previous one, we pro-
ceed as follows. First, D uses pk to initialize the common reference string exactly as in the experiment
Hyb5. Then, whenever A asks a Send0 or Execute query with respect to a group G for which no
password has been defined, then D first chooses a password pwG for that group uniformly at random
from the dictionary Dict as well as a dummy password pw′G 6= pwG of the appropriate length. also
chooses a dummy password pw′G 6= pwG of the appropriate length. Next, D continues to simulate all

of A’s oracles exactly as in experiment Hyb5 except when A makes a Send1 query to an U
〈j〉
i using

19

a 1-oracle-generated value for the ciphertext cRi−1. To simulate the latter query, D computes cLi as
Enc(li, pwG , pw

′
G) with the help of its Left-or-Right encryption oracle Enc. One should note here that

this change is only possible because the values Ki−1 and K R

i−1 that U
〈j〉
i may need to compute in the

sessions are chosen at random from G since the previous experiment. No other change is made to the
simulation. At the end of the simulation, D outputs the same guess as A.

One can easily see that, whenever D is in experiment Exp
lpke-ind-cca-0
LPKE ,D (k), then its simulation of the

Send1 oracle is performed exactly as in experiment Hyb5, since Enc always returns the encryption
of the actual password in this case. Moreover, whenever D is in experiment Exp

lpke-ind-cca-1
LPKE ,D (k), then

its simulation of the Send1 oracle is performed exactly as in experiment Hyb6, since Enc always
returns the encryption of a dummy password in this case. Thus, the probability that D distinguishes
between experiments Exp

lpke-ind-cca-1
LPKE ,D (k) and Exp

lpke-ind-cca-0
LPKE ,D (k) is exactly Advake-ind

GPAKE ,A,Hyb6
(k) −

Advake-ind
GPAKE ,A,Hyb5

(k). Thus, the Lemma 7 follows from the chosen-ciphertext indistinguishability of
LPKE .

Hybrid experiment Hyb7. In this experiment, we change the simulation so that, whenever an

instance U
〈j〉
i receives a valid adversarially-generated ciphertext cRi−1 in a Send1 query, we halt the

simulation and consider the adversary A successful. No other change is made to simulation. Clearly, if
such ciphertext cRi−1 is never sent by A, then the current and the previous experiments are identical. On
the other hand, if the adversary A does happen to send such a valid ciphertext, then A is considered
successful. Therefore, as the following lemma states, the advantage of A in the current experiment is
greater or equal to that in the previous experiment.

Lemma 8 Advake-ind
GPAKE ,A,Hyb6

(k) ≤ Advake-ind
GPAKE ,A,Hyb7

(k).

Hybrid experiment Hyb8. In this experiment, we change the simulation so that, whenever an

instance U
〈j〉
i receives a invalid adversarially-generated ciphertext cRi−1 in a Send1 query, then

U
〈j〉
i always chooses the value K L

i uniformly at random from G. Moreover, it always halts and rejects

(by setting acc
j
i = false) after receiving a Send3 query from A. Everything else remains the same.

As the following lemma shows, the difference in the advantage between the current experiment and
previous one is a negligible function of the security parameter.

Lemma 9
∣

∣Advake-ind
GPAKE ,A,Hyb8

(k)−Advake-ind
GPAKE ,A,Hyb7

(k)
∣

∣ ≤ neg(k).

Proof. The proof of Lemma 9 follows easily from the smoothness property of smooth projective hash
function family HASH , which says that if cRi−1 is not a valid encryption of the password pwG with
respect to the public-key pk and label li−1, then the hash value K L

i = Hash(hk L

i , c
R

i−1, li−1, pw) is
statistically close to uniform in G. Likewise, the master key X L

i = K L

i · K
R

i−1 used to check the test
session key of its predecessor is also statistically close to uniform in G. As a result, except with

negligible probability, the instance U
〈j〉
i will halt and reject (by setting acc

j
i = false) after receiving the

test value testRi−1. Hence, the difference in the advantage between the current experiment and previous
one due to this case is a negligible function of the security parameter.

Hybrid experiment Hyb9. In this experiment, we change once again the simulation of the Send

oracle of an instance U
〈j〉
i whenever the latter receives a invalid adversarially-generated ciphertext

cRi−1 in a Send1 query so that the latter computes the ciphertext cLi using dummy password pw′G that
is different from the pwG associated the group G. Everything else remains the same. As the following
lemma shows, the difference in the advantage between the current experiment and previous one is
a negligible function of the security parameter. The proof of Lemma 10 follows from the semantic
security of the labeled encryption scheme LPKE .

20

Lemma 10
∣

∣Advake-ind
GPAKE ,A,Hyb9

(k)−Advake-ind
GPAKE ,A,Hyb8

(k)
∣

∣ ≤ neg(k).

Proof. The proof of this lemma is similar to that of Lemma 7 and follows easily from the chosen-
ciphertext security of the labeled encryption scheme LPKE . As in that case, we are only able to

make this change to the simulation because instance U
〈j〉
i always chooses the value K L

i uniformly

at random from G and because it always halts and rejects (by setting acc
j
i = false) after receiving

a Send3 query from D. The only difference between the proof of Lemma 7 and the present one is
that here we need to make use of the decryption oracle for LPKE to find out if cRi−1 is a valid
encryption of the group password pwG with respect to the public key pk and the label li−1. This is
because the ciphertext cRi−1 is generated by the adversary in this case. Like in the proof of Lemma 7,

the probability that D distinguishes between experiments Exp
lpke-ind-cca-1
LPKE ,D (k) and Exp

lpke-ind-cca-0
LPKE ,D (k)

is exactly Advake-ind
GPAKE ,A,Hyb9

(k) − Advake-ind
GPAKE ,A,Hyb8

(k). Thus, Lemma 10 follows from the chosen-
ciphertext indistinguishability of LPKE .

Hybrid experiment Hyb10. In this new experiment, we change the simulation of the Send2 oracle

of an instance U
〈j〉
i so that, whenever the latter receives an 2-oracle-generated ciphertext cLi+1,

the values Ki and K R

i are chosen uniformly at random from G. As the lemma below shows, the
difference in the advantage between the current experiment and previous one is a negligible function
of the security parameter. The proof of Lemma 11 is omitted here since it follows easily from the
smoothness property of smooth projective hash function family HASH as, since the previous any
2-oracle-generated ciphertext cLi+1 is always an encryption of a dummy password in this case and
hence not valid.

Lemma 11
∣

∣Advake-ind
GPAKE ,A,Hyb10

(k)−Advake-ind
GPAKE ,A,Hyb9

(k)
∣

∣ ≤ neg(k).

Hybrid experiment Hyb11. In this experiment, we change the simulation of the Send2 oracle of an

instance U
〈j〉
i so that, whenever an instance U

〈j〉
i receives a valid adversarially-generated ciphertext

cLi+1 in a Send2 query, we halt the simulation and consider the adversary A successful. No other change
is made to simulation. Clearly, if such ciphertext cLi+1 is never sent by A, then the current and the
previous experiments are identical. On the other hand, if the adversary A does happen to send such
a valid ciphertext, then A is considered successful. Therefore, as the following lemma states, the
advantage of A in the current experiment is greater or equal to that in the previous experiment.

Lemma 12 Advake-ind
GPAKE ,A,Hyb10

(k) ≤ Advake-ind
GPAKE ,A,Hyb11

(k).

Hybrid experiment Hyb12. In this experiment, we change once again the simulation of the Send2

oracle of an instance U
〈j〉
i so that, whenever an instance U

〈j〉
i receives a invalid adversarially-

generated ciphertext cLi+1 in a Send2 query, then U
〈j〉
i always chooses the values K R

i and Ki uniformly

at random from G. Moreover, it always halts and rejects (by setting acc
j
i = false) after receiving a

Send4 query from A. Everything else remains the same. As the following lemma shows, the difference
in the advantage between the current experiment and previous one is a negligible function of the
security parameter.

Lemma 13
∣

∣Advake-ind
GPAKE ,A,Hyb12

(k)−Advake-ind
GPAKE ,A,Hyb11

(k)
∣

∣ ≤ neg(k).

Proof. As in the proof of Lemma 9, Lemma 13 follows easily from the smoothness property of smooth
projective hash function family HASH , which says that if cLi+1 is not a valid encryption of the password
pwG with respect to the public-key pk and label li+1, then the hash values K R

i = Hash(hkRi , c
L

i+1, li+1,
pwG) and Ki = Hash(hk i, c

L

i+1, li+1, pwG) are statistically close to uniform in G. Likewise, the master

21

key X R

i = K R

i · K
L

i+1 used to check the test session key of its successor is also statistically close to

uniform in G. As a result, except with negligible probability, the instance U
〈j〉
i will halt and reject

(by setting acc
j
i = false) after receiving the test value testLi+1. Hence, the difference in the advantage

between the current experiment and previous one due to this case is a negligible function of the security
parameter.

Hybrid experiment Hyb13. In this experiment, we change the simulation of the Send0 oracle of

an instance U
〈j〉
i so that the latter computes the ciphertext cRi using dummy password pw′G that is

different from the pwG associated the group G. Everything else remains the same. As the following
lemma shows, the difference in the advantage between the current experiment and previous one is
a negligible function of the security parameter. The proof of Lemma 14 follows from the semantic
security of the labeled encryption scheme LPKE .

Lemma 14
∣

∣Advake-ind
GPAKE ,A,Hyb13

(k)−Advake-ind
GPAKE ,A,Hyb12

(k)
∣

∣ ≤ neg(k).

Proof. The proof of this lemma is similar to that of Lemma 10 and follows easily from the chosen-
ciphertext security of the labeled encryption scheme LPKE . As in that case, we are only able to

make this change because at this point instance U
〈j〉
i no longer needs to know the randomness rRi

used to create the ciphertext cRi to be able to compute the test master key X R

i since the latter is
always a random value in G (this is because K R

i is always chosen uniformly at random from G). As in
the proof of Lemma 10, we also need access to a decryption oracle for LPKE to be to verify whether
adversarially-generated ciphertexts cRi−1 and cLi+1 are valid encryptions of the group password pwG ,
the first with respect to the pair (pk , li−1) and the second with respect to the pair (pk , li+1). Like in

the proof of Lemma 10, the probability that D distinguishes between experiments Exp
lpke-ind-cca-1
LPKE ,D (k)

and Exp
lpke-ind-cca-0
LPKE ,D (k) is exactly Advake-ind

GPAKE ,A,Hyb13
(k) − Advake-ind

GPAKE ,A,Hyb12
(k). Thus, Lemma 14

follows from the chosen-ciphertext indistinguishability of LPKE .

Hybrid experiment Hyb14. In this experiment, we change the simulation of the Send5 oracle so

that the master key MSK computed by an instance U
〈j〉
i is chosen uniformly at random from the group

G whenever U
〈j〉
i accepts (by setting acc

j
i = true). As the lemma below shows, the difference in the

advantage between the current experiment and previous one is a negligible function of the security
parameter.

Lemma 15
∣

∣Advake-ind
GPAKE ,A,Hyb14

(k)−Advake-ind
GPAKE ,A,Hyb13

(k)
∣

∣ ≤ neg(k).

Proof. The proof of Lemma 15 follows from the unforgeability of the signature scheme SIG and uses
arguments similar to those in the proof of Lemma 3. To prove this, first, we note that an instance

U
〈j〉
i that accepts only does so after verifying that the instances of users Ui−1 and Ui+1 in G that are

next to it actually know the correct password (this is done in rounds 3 and 4) and after verifying the
correctness of all the signatures that it receives in the last round of communication. Thus, whenever an

instance U
〈j〉
i does not halt and reject, it must be the case that its neighbors are in fact oracle instances

not played by the adversary (since we always halt the simulation when the adversary produces a valid

ciphertext). Moreover, the keys Ki and Ki−1 computed by instance U
〈j〉
i and by its predecessor are

chosen at random from G. Second, we note that in all sessions in which the adversary plays an active
role, with very overwhelming probability, he causes all the oracles instances in that session to halt and
reject. While the instances that are next to A reject in round 3 or 4 because A has sent an invalid
ciphertext in one of the first two rounds, the other ones reject with overwhelming probability because
A does not succeed in forging the signatures of those instances that have rejected before the last round
of communication (this requires a formal reduction to the security of the signature scheme SIG , which

22

is straight-forward and omitted here). This holds because the signature of a user always guarantees
the validity of the verification keys associated with his successor and predecessor. Thus, attacks in
which the adversary sends different verification keys to different users will always cause at least one
of signatures in the ensemble to be invalid.

Putting everything together, we can conclude that, whenever an instance U
〈j〉
i accepts, its session

partners are in fact oracle instances not played by the adversary and that all keys Kt for t = 1, . . . , |G|
are random values in G. As a result, the values Xt for t = 1, . . . , |G| outputted by the Send4 oracles
define exactly |G| equations, of which |G|−1 are linearly independent, as in the proof of Lemma 3. Since
in round 5, each instance broadcasts its own signature of the transcript, it must be the case that, if

U
〈j〉
i accepts after a Send5 query, with high probability it has received the correct values Xt computed

by each partner instance of Ut in that session. If that is not the case, then it is straight-forward to
build an adversary capable of breaking the security of the signature scheme SIG . Finally, since the

master key computed by instance U
〈j〉
i defines an additional equation, which is linearly independent

of the other |G| − 1 equations that were defined by the values X1, . . . ,X|G|, its value is independent
of the transcript T that the adversary A sees. It follows that the difference in the advantage between
the current experiment and previous one is a negligible function of the security parameter.

To conclude the proof, we first notice that, since the session keys of all accepting instances are
chosen at random and since all session partners that accept end up computing the same session key
(due to the security of the signature scheme SIG), the advantage of A in the current experiment is
0 when A does not generate a valid ciphertext round 1 or 2. Second, in the current experiment, all
oracle instances are simulated using dummy passwords, A’s view of the protocol is independent of the
passwords that are chosen for each group of users. Finally, since each ciphertext uniquely defines a
password, we have that the probability that any given adversarially generated ciphertext is valid is at
most 1/N , where N is the size of the dictionary. As the number of adversarially generated ciphertexts
is bounded by qsend-1 + qsend-2 , the advantage of A in the current experiment is only negligibly larger
than (qsend-1 + qsend-2)/N .

Lemma 16 Advake-ind
GPAKE ,A,Hyb14

(k) ≤ (qsend-1 + qsend-2)/N + neg(k).

By combining all the lemmas above, one easily obtains the announced result in Theorem 1.

	A Scalable Password-based Group Key Exchange Protocol in the Standard Model

