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Abstract. Since the appearance of public-key cryptography in the seminal Diffie-
Hellman paper, many new schemes have been proposed and many have been broken.
Thus, the simple fact that a cryptographic algorithm withstands cryptanalytic attacks
for several years is often considered as a kind of validation procedure. A much more
convincing line of research has tried to provide “provable” security for cryptographic
protocols. Unfortunately, in many cases, provable security is at the cost of a consider-
able loss in terms of efficiency. Another way to achieve some kind of provable security
is to identify concrete cryptographic objects such as hash functions with ideal random
objects and to use arguments from relativized complexity theory. The model underlying
this approach is often called the “random oracle model.” We use the word “arguments”
for security results proved in this model. As usual, these arguments are relative to well-
established hard algorithmic problems such as factorization or the discrete logarithm.

In this paper we offer security arguments for a large class of known signature schemes.
Moreover, we give for the first time an argument for a very slight variation of the well-
known El Gamal signature scheme. In spite of the existential forgery of the original
scheme, we prove that our variant resists existential forgeries even against an adaptively
chosen-message attack. This is provided that the discrete logarithm problem is hard to
solve.

Next, we study the security of blind signatures which are the most important ingre-
dient for anonymity in off-line electronic cash systems. We first define an appropriate
notion of security related to the setting of electronic cash. We then propose new schemes
for which one can provide security arguments.

Keywords: Cryptography, Digital signatures, Blind signatures, Security arguments,
Existential forgery, One-more forgery, Forking lemma.
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Introduction

Since the beginning of public-key cryptography with the Diffie-Hellman pa-
per [16], many new schemes have been proposed and many have been broken.
Thus, the simple fact that a cryptographic algorithm withstands cryptanalytic
attacks for several years is often considered as a kind of validation procedure.
In this approach, cryptanalysis is viewed as a heuristic measure of the strength
of a new proposal.

A completely different paradigm is provided by the concept of “provable” se-
curity. A significant line of research has tried to provide proofs in the asymptotic
framework of complexity theory. Stated in a more accurate way, this approach
proposes computational reductions to well established problems, such as factor-
ization, RSA [49], the discrete logarithm problem or any N P-complete prob-
lem [24]. Of course, these are not absolute proofs since cryptography ultimately
relies on the existence of one-way functions and the P versus NP question.
Moreover, in many cases, provable security is at the cost of an important loss in
terms of efficiency [29],[27],[28],[1].

Recently, the scope of these methods has been considerably widened by us-
ing a model where concrete cryptographic objects, such as hash functions, are
identified with ideal random objects, the so-called “random oracle model” for-
malized by Bellare and Rogaway [2]. In this model, DES [34] is viewed as a
random permutation and SHA [36] as a random function with the appropriate
range.

Using this model, we offer security arguments for a large class of digital sig-
natures. Moreover, we give, for the first time, an argument for a very slight
variation of the well-known El Gamal signature scheme [17]. In spite of the exis-
tential forgery of the original scheme, we prove that our variant resists existen-
tial forgeries even against an adaptively chosen-message attack. This is provided
that the discrete logarithm problem is hard to solve. Furthermore, we study the
security of blind signatures, especially for their application in electronic cash
systems: we first define adequate security notions for blind signatures, then we
propose the first schemes for which security arguments can be given.

We now briefly describe the organization of our paper. We first define the
so-called “random oracle model” and explain why such a theoretical model can
help in proving the validity of the design of a cryptographic scheme. We then
recall the definition of a signature scheme together with the various attacks
and forgeries that we consider. Also, we present the notion of blind signatures
and its use for anonymity (and even revokable anonymity) in electronic cash
schemes. Next, we consider the attacks that are relevant in the context of digital
payments.

In Section 2, we propose schemes for which one can provide security argu-
ments. In order to simplify the proofs, we first explain our generic technique,
the “oracle replay attack” and we present a simple probabilistic lemma, the
“splitting lemma.” In Section 3, we prove two fundamental “forking lemma’s”
for digital signatures and blind signatures. They are our main ingredient for
providing security arguments for many schemes.
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1. Definitions

1.1.  The Random Oracle Model

Many cryptographic schemes use a hash function f (such as the Message Digest
family MD4 [47], MD5 [48], and derived functions SHA-1 [36], HAVAL [40],
RIPEMD [46], or RIPEMD-160 [5]). This use of hash functions was originally
motivated by the wish to sign long messages with a single short signature. In
order to achieve nonrepudiation, a minimal requirement on the hash function is
to ask that it is impossible for the signer to find two different messages providing
the same hash value, this property is called collision freeness.

It was later realized that hash functions were an essential ingredient for the
security of signature schemes. In order actually to obtain security arguments,
while keeping the efficiency of the designs that use hash functions, several authors
(e.g. [21], [2],[3], [43], [42] and [44]) have suggested using the hypothesis that f is
actually a random function. We follow this suggestion by using the corresponding
model, called the “random oracle model.” In this model the hash function can
be seen as an oracle which produces a truly random value for each new query.
Of course, if the same query is asked twice, identical answers are obtained. This
is precisely the context of relativized complexity theory with “oracles,” hence
the name. It is argued that proofs in this model ensure security of the overall
design of a signature scheme provided that the hash function has no weakness.

In the following we replace any hash function by a random oracle which out-
puts k-bit long elements, where k is a security parameter of the cryptographic
scheme. In other words, k denotes both the security parameter of the crypto-
graphic (signature) scheme and the length of the output of the random oracle.
Roughly speaking, the security level is 2%,

1.2.  Digital Signature Schemes

We now turn to digital signature schemes, the electronic version of handwritten
signatures for digital documents: a user’s signature on a message m is a string
which depends on m, on public and secret data specific to the user and—possibly—
on randomly chosen data, in such a way that anyone can check the validity of
the signature by using public data only. The user’s public data are called the
public key, whereas his secret data are called the secret key. Obviously we would
like to prevent the forgery of a user’s signature without knowledge of his secret
key. In this section, we give a more precise definition of signature schemes and
of the possible attacks against them. These definitions are based on [28].

Definition 1. A signature scheme is defined by the following (see Fig. 1):

— The key generation algorithm G. On input 1%, where k is the security pa-
rameter, the algorithm G produces a pair (K, K) of matching public and
secret keys. We denote by n the length of the public key. Algorithm G is
probabilistic (with random tape w).

— The signing algorithm 3. Given a message m and a pair of matching public
and secret keys (K}, Ks), 2 produces a signature . The signing algorithm
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Fig. 1. Signature schemes.

might be probabilistic (with random tape w), and in some schemes it might
receive other inputs as well.

— The verification algorithm V. Given a signature o, a message m and a public
key K, V tests whether o is a valid signature of m with respect to K. In
general, the verification algorithm need not be probabilistic.

1.2.1.  Examples

As shown in the Diffie-Hellman paper [16], the trapdoor permutation paradigm
allows us to create signatures in the public key setting. Two years later, Rivest et
al. [49] proposed the first signature scheme based on the RSA trapdoor function:

The RSA Signature. In the RSA context the generation algorithm produces
a large composite number N = pgq, a public key e, and a secret key d such
that e-d =1 mod ¢(N). The signature of a message m is the eth root of m,
o=m"¢=m?mod N.

The RSA scheme is not secure by itself since it is subject to existential forgery.
In other words, it is easy to create a valid message-signature pair, without any
help of the signer, using the public verification relation m = ¢¢ mod N. In many
cases, this is not really dangerous because the resulting message is not intelligible
or does not have the proper redundancy. Still such an RSA signature does not
prove by itself the identity of the sender.

In 1986 a new paradigm for signature schemes was introduced. It is derived
from fair zero-knowledge identification protocols involving a prover and a ver-
ifier [26], and uses hash functions in order to create a kind of virtual verifier.
In [21], Fiat and Shamir proposed a zero-knowledge identification protocol based
on the hardness of extracting square roots. They also described the correspond-
ing signature scheme and outlined its security. Similar security results for other
signature schemes like Schnorr’s [50], [51] are considered folklore results but have
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never appeared in print. We refer the reader to the literature for the precise de-
scription of those schemes, and we only recall the Schnorr signature:

The Schnorr Signature. The generation algorithm produces two large primes p
and ¢, such that ¢ > 2% where k is the security parameter, and ¢|p — 1, as
well as an element g of Zj of order ¢. It also creates a pair of keys, = € Zj
and y = ¢7* mod p. The signer publishes y and keeps x secret. The signa-
ture of a message m is a triple (r,e,s), where r = g mod p, with a random
K € Z;, the “challenge” e = H(m,r) mod ¢ and s = K + ex mod ¢. It satis-
fies r = ¢°y® mod p with e = H(m,r), or simply e = H(m, g°y° mod p), which
is checked by the verifying algorithm.

1.2.2.  Generic Digital Signature Schemes

In this paper we consider signature schemes which, given the input message m,
produce triples (o1, h, 09) where o7 randomly takes its values in a large set, h is
the hash value of (m,o01) and oy only depends on oy, the message m, and h.
In particular, we can remark that each signature is independent of the previ-
ous ones. More precisely, in the proof of resistance against the strongest at-
tacks, we assume that no o, can appear with probability greater than 2/2*%
where k is the security parameter. This assumption is satisfied in the Schnorr
signature scheme: o; = ¢ mod p for a randomly chosen K in Zy; since g is
of order ¢, and k < logq, the probability for o; to get a specific value is less
than 1/(q — 1) < 2/2*. In the same way, the Fiat-Shamir [21] scheme and many
others also satisfy this assumption.

In some cases, in order to optimize the size of signatures, o; or h can be
omitted, since they can be correctly recovered during the verification process.
For notational purposes we ignore these possible optimizations and keep oy, h
as parts of the signature.

1.2.3. Attacks

We focus on two specific kinds of attacks against signature schemes: the no-
message attack and the known-message attack. In the first scenario, the attacker
only knows the public key of the signer. In the second one, the attacker has
access to a list of message-signature pairs. According to the way this list was
created, we distinguish four subclasses of known-message attacks:

— The plain known-message attack: the attacker has access to a list of signed
messages, but he has not chosen them.

— The generic chosen-message attack: the attacker can choose the list of mes-
sages to be signed. However this choice must be made before accessing the
public key of the signer. We call this attack “generic” because the choice is
independent of the signer.

— The oriented chosen-message attack: as above, the attacker chooses the list
of messages to be signed, but the choice is made once the public key of the
signer has been obtained. This attack is oriented against a specific signer.
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Fig. 2. Attacks.

— The adaptively chosen-message attack: having knowledge of the public key of
the signer, the attacker can ask the signer to sign any message that he wants.
He can then adapt his queries according to previous message-signature pairs.

In the following we only consider the two extreme scenarios, the no-message
attack and the adaptively chosen-message attack (see Fig. 2).

1.2.4.  Forgeries
We now classify the expected results of an attack:

— Disclosing the secret key of the signer. It is the most serious attack. This
attack is termed total break.

— Constructing an efficient algorithm which is able to sign any message. This
is called universal forgery.

— Providing a new message-signature pair. This is called existential forgery.
In many cases this attack is not dangerous, because the output message
is likely to be meaningless. Nevertheless, a signature scheme which is not
existentially unforgeable does not guarantee by itself the identity of the
signer. For example, it cannot be used to certify randomly looking elements,
such as keys.

Definition 2. (Secure Signature Scheme). A signature scheme is secure if an ex-
istential forgery is computationally impossible, even under an adaptively chosen-
message attack.

The first secure signature scheme was proposed by Goldwasser et al. [27] in
1984. It uses the notion of claw-free permutations pairs: informally, these are
permutations fp and f; over a common domain for which it is computation-
ally infeasible to find a triple (z,y, z) such that fo(x) = fi(y) = z. Furthermore,
Goldwasser et al. proved that such “claw-free” permutations pairs exist if fac-
toring is hard (see [27] and [28] for details).
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1.3.  Blind Signatures

After this brief outline of signature schemes, we review another cryptographic
primitive: blind signatures. We first motivate their use and give some well-known
examples. We then define specific security properties of blind signatures related
to the setting of electronic cash.

1.3.1.  Motivation: Electronic Cash

As early as 1982, Chaum’s [13] pioneering work aimed at creating an electronic
version of money. To achieve this goal, he introduced the notions of “coins”
and “randomized blind signatures” (or simply “blind signatures”). He claimed
that this was the only way to ensure the required anonymity: in real life, a coin
cannot be easily traced from the bank to the shop, furthermore, two spendings
of a same user cannot be linked together. These are two main properties of real
coins that Chaum wanted to mimic: untraceability and unlinkability.

He proposed to define an electronic coin as a number with a certificate (a
signature) produced by the bank; it is withdrawn from the bank, spent by the
user, and deposited by the shop (see Fig. 3).

On-line electronic cash. In his first scheme, Chaum used blind signatures for
the production of coins. The user makes the bank blindly sign a coin. Then the
user is in possession of a valid coin that the bank itself cannot recognize nor link
with the user. When the user spends the coin, the shop immediately returns it
to the bank. If the coin has already been spent, the bank detects the fact and
informs the shop so that it refuses payment. It is an “on-line” context: there is
a continuous communication between the shop and the bank in order to verify
the validity of coins. In order to define the scheme, Chaum introduced the first
blind signature scheme, based on the RSA hypothesis. It is a by now classical
transformation of the original RSA signature scheme [49]:

The Blind RSA Signature. The bank has a large composite number N = pq,
a public key e, and a related secret key d. It also uses a public hash function H.
In order to get the signature of a random number p, the user “blinds” it with
a random value 7 mod N, and sends m = H(p)r® mod N to the signer. The
latter returns a signature o’ of m such that ¢’ = m = r*H(p) mod N. Then the
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user can “unblind” this signature computing ¢ = ¢'r~! mod N. A coin is any
pair (p, o) which satisfies ¢ = H(p) mod N.

In this scheme all coins have the same value, but in a real system different
denominations might be encoded by different exponents e.

Off-line electronic cash and the “cut-and-choose” methodology. In an “off-line”
context we cannot prevent a user from spending a coin twice or even more, since
the detection is made too late to refuse payment. This fraud is called “double-
spending.” We only can hope that the double-spender will be discovered later
and punished. Chaum et al. [14] were able to build such schemes by introducing
the identity of the user in the coin in such a way that it remains concealed,
unless double-spending happens. Once, blind signatures were a critical point for
anonymity, and, as before, the authors used the blind RSA signature, together
with the “cut-and-choose” technique: in their proposition, a coin is a kind of
list of k£ blind signatures, each having an embedded copy of the identity of the
user. To be sure that double-spending will reveal the real identity of the user,
the bank would like to verify that the signatures actually have the requested
format, which would revoke anonymity. Then the bank helps the user to get
2k signatures, randomly chooses k of them, and verifies the inner structure of
the selected signatures. Since these signatures are no longer anonymous, the user
throws them away and constructs the coin with the k other ones. The probability
for a cheater to be finally in possession of a fraudulous coin is about 272,

The main drawback of the “cut-and-choose” technique is that the coins are
very large, as well as the amount of computations. In 1993 Ferguson [20] and
Brands [7] proposed new schemes without “cut-and-choose.” The first one uses
once again the blind RSA signature, whereas Brands’ scheme uses a new blind
signature derived from the Schnorr signature scheme [50], [51]:

The Blind Schnorr Signature. The generation algorithm produces two large
prime integers p and ¢ such that ¢[p —1 as well as an element g of Z7 of or-
der ¢. It also creates a pair of keys, (z,y), where x € Z, is the secret one, and
y = ¢ * mod p is the public one. The signer publishes y. In order to get the
signature of a secret message m, the user asks the signer to initiate a com-
munication. He chooses a random K € Zj, computes and sends the “commit-
ment” 7 = g% mod p. The user then blinds this value with two random elements
o, € Z,, into 7' =rg=y~? mod p, computes the value ¢ = H(m,r’) mod ¢
and sends the “challenge” e = ¢’ + 3 mod ¢ to the signer who returns the value s
such that ¢®y® = r mod p. Finally, the user computes s’ = s — a mod ¢. This
way, the pair (¢, s') is a valid Schnorr signature of m since it satisfies ¢’ = H(m, g°y¢ mod p).

In both schemes Ferguson and Brands managed to hide the identity of the
user in a much more efficient way than the “cut-and-choose” methodology.
Again, the identity is revealed after double-spending. Those blind signatures
which hide a specific structure, such as the identity, are called “restrictive blind
signatures” [11], [9], [8], [45]. Many extensions [19], [6], [10] have been proposed,
followed by some attacks [8], [11] and repairs [9], [52]. All of them use blind
signatures, and the security of the proposed schemes is totally dependent on the
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security of the blind signatures they use. Surprisingly, no security proofs have
been proposed so far for blind signatures.

Revokable Anonymity A few years ago [57], an undesirable feature of total
anonymity in transactions was considered: perfect crimes (anonymous crimes
without leaving any traces and consequently without any risk of being suspected
later). Accordingly, a new line of research in electronic cash has investigated “re-
vokable anonymity” [12], [22], [31] which proposes anonymity unless a Trusted
Third Party (TTP) partially revokes it for some established reasons or in view
of an obvious fraud (e.g. in case of double-spending). Again, those new schemes
rely on the security of blind signature schemes.

1.3.2.  Security

As far as we know, no formal notion of security has ever been studied, or proved,
in the context of blind signatures. However, it is a critical point in electronic cash
systems. In the context of blind signatures, the previous definitions of security
are no longer significant. In fact, existential forgery is somehow the basis for blind
signatures. Nevertheless, a fundamental property for electronic cash systems is
the guarantee that a user cannot forge more coins than the bank gives him. In
other words, with ¢ blind signatures of the Bank, the user must not be able
to create more than ¢ coins. This form of security was more or less informally
assumed in connection with several schemes, for example in [10], or under the
“unexpandability” property of [23].

Definition 3 (The (¢, ¢ + 1)-Forgery). For any integer ¢, an (¢, { + 1)-forgery
comes from an attacker that produces ¢ + 1 signatures after ¢ interactions with
the signer 3.

Definition 4 (The “One-More” Forgery). For some integer ¢, polynomial
in the security parameter k, an attacker can obtain ¢ + 1 valid signatures after
fewer than ¢ interactions with the signer. In other words, a “one-more forgery”
is an (¢, £ + 1)-forgery for some polynomially bounded integer /.

Definition 5 (The Strong “One-More” Forgery). An (¢,{ + 1)-forgery for
a polylogarithmically bounded integer ¢ (i.e., for some constant «, ¢ < (log k)?,
where k is the security parameter) is called a strong “one-more” forgery.

As usual, several scenarios can be envisioned. We focus on two kinds of
attacks which naturally come from the use of blind signatures in electronic cash :

— The sequential attack (see Fig. 4): the attacker interacts sequentially with
the signer. This attack can be performed by a user who withdraws coins,
one after the other.

It is clear that, in practical situations, many users might be allowed to with-
draw money at the same time. The following attack must then be considered.

— The parallel attack (see Fig. 5): the attacker interacts ¢ times in parallel with
the signer. This attack is stronger. Indeed, the attacker can initiate new
interactions with the signer before previous ones have ended. This attack
can be performed by a group of users who withdraw many coins at the same
time.
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2. Preliminaries

2.1.  Complexity Theory and “Oracle Replay Attack”

In this paper we offer several security arguments for digital signatures and blind
signatures. All our results are given in the context of complexity theory. Hence,
any participant is modeled by a probabilistic polynomial time Turing machine.
Our paradigm is to use a supposedly efficient attacker in order to solve a difficult
algorithmic problem. This goes through a generic reduction technique (see Fig. 6)
which we call the oracle replay attack (see Fig. 7): by a polynomial replay of
the attack with different random oracles (the Q;’s are the queries and the p;’s
are the answers), we make the attacker successfully forge signatures which are
suitably related. More precisely, we want to obtain two signatures (o1, h, 03) and
(o7, 1, 0%) of an identical message m such that o, = o, but h # h’. We then
extract the solution of a difficult problem from the ability to forge such pairs.
In the reductions, an important problem is to simulate properly the interactions
that the attacker should have with other entities (with the random oracle f and
particularly with the signer X'). Those simulations should be indistinguishable
from real interactions from the point of view of the attacker despite the obvious
fact that no secret key is available.

2.2.  Distinguishability of Distributions of Probability

As explained above, in our reductions, we have to provide indistinguishable sim-
ulations: the communication tapes between the attacker and the simulator and
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between the attacker and the signer (for example) will have to follow indistin-
guishable distributions of probability. In this subsection we define two notions
of indistinguishability.

Recall that a function f(k) is negligible in k if, for every polynomial p, f(k)
is smaller than 1/|p(k)|, for k large enough; otherwise, it is nonnegligible.

Definition 6. Let 6° and §! be two distributions of probability. A distinguisher
D is a probabilistic polynomial time Turing machine, with random tape w, which,
on input p, answers 0 or 1.

The advantage of D with respect to two distributions 6 and ¢! is defined as

Adv(D,8°,6") =1 x| E [D(w,p)— E [D(w,p)].

pES pESt
It is easy to derive the following equality:
Pr [D(w,p) =c| =3+ Adu(D,°,5").
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So, if this advantage is negligible, the answer of the distinguisher looks like the
result of flipping a coin.
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Fig. 7. The oracle replay attack.
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Two distributions §° and 6' are polynomially indistinguishable if there does
not exist any distinguisher D with a nonnegligible advantage.
Two distributions 6% and &' are statistically indistinguishable if

Pr [x = y] — Pr [z = y]| is negligible.

zed0 xedt

Remark 1. 1t is clear that if two distributions are statistically indistinguishable,
they are polynomaially indistinguishable.

2.3.  The Splitting Lemma

Throughout this paper we repeatedly use the “Splitting Lemma” below. It trans-
lates the fact that when a subset A is “large” in a product space X x Y, it has
many “large” sections.

Lemma 1. (The Splitting Lemma). Let A C X XY such that Pr[(z,y) € A] > e.
For any o < ¢, define

y'ey

B:{(:c,y)eXxY

Pr[(z,y) € Al > e — a} and B = (X x Y)\B,

then the following statements hold:

(i) Pr[B] > a
(ii) ¥(x,y) € B,Pryey[(z,y) € A] > ¢ — a.
(i11) Pr[B|A] > a/e.

Proof. In order to prove statement i), we argue by contradiction.
Assume that Pr[B] < a. Then

e < Pr[B]-Pr[A|B]+Pr[B]-Pr[A|B] < a-1+1-(¢ —a) = ¢.

This implies a contradiction, hence the result.
Statement (ii) is a straightforward consequence of the definition.
We finally turn to the last assertion, using Bayes’ law:

Pr[B| Al =1— Pr[B| A
=1-Pr[A|B]-Pr[B]/Pr[A] > 1 — (e —a)/e = a/e.

3. Security Arguments for Digital Signatures

This section is devoted to digital signatures and extends our previous results
on their security [43]. Recall that an identification scheme [21] is an interactive
protocol which involves a prover and a verifier. The prover tries to convince the
verifier of his knowledge of a secret related to his identity. More specifically, a
three-pass honest-verifier zero-knowledge identification protocol is an identifica-
tion scheme with three interactions between the prover and the verifier, which
leaks no information about the secret provided the verifier plays honestly, namely
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randomly choosing his queries. The three interactions correspond to three mes-
sages: the “commitment” a sent by the prover, the “challenge” e randomly chosen
by the verifier, and the “answer” r of the prover. The verifier finally accepts the
proof if and only if this triple satisfies a test V(a,e,r) = 1. As described by
Fiat and Shamir [21], any three-pass honest-verifier zero-knowledge identifica-
tion protocol can be turned into a generic digital signature scheme: let (a,e,r)
be a round of the identification protocol, we get a digital signature scheme by
replacing the query of the verifier, which is a random value e, by the hash value
of the message m to be signed together with the commitment a which is bound
not to change, namely, e = f(m, a), where f is the hash function. If the identifi-
cation protocol needs several sequential iterations in order to reach an adequate
level of security, then, in the signature setting, one parallelizes the protocol. Ac-
cordingly, a signature of a message m is a triple (o1, h, 03), where o represents
all successive “commitments” of the parallelized protocol, h = f(m, o) and
0o represents all successive “answers” of the parallelized protocol. It satisfies a
test V' (o1, h,02) = 1 as described above in the generic digital signature schemes
section (see Section 1.2.2.). For example, the Schnorr signature scheme is pre-
cisely the result of the above transformation applied to the Schnorr identification
protocol.

In what follows, we assume that f outputs k-bit long elements, where k is
the security parameter of the signature scheme, as described above.

We first prove the security of a generic digital signature scheme against no-
message attacks. As an application, we directly obtain the security of the Schnorr
signature scheme. Next, we extend our result to the adaptively chosen-message
context. We close the section with a study of the El Gamal signature scheme [17]:
in spite of the existential forgery of the original scheme, we present a slight
variation which is existentially unforgeable under an adaptively chosen-message
attack. This is provided that the discrete logarithm problem is hard to solve.

3.1. No-Message Attacks

In this part we consider the no-message scenario. We propose a generic result
and we apply our technique to the Schnorr signature scheme.

3.1.1. Generic Results

Lemma 2. Let (G, X, V) be a generic digital signature scheme with security
parameter k. Let A be a probabilistic polynomial time Turing machine whose
input only consists of public data and which can ask ) queries to the random
oracle, with Q > 0. We assume that, within the time bound T, A produces,
with probability € > 7Q/2%, a wvalid signature (m, o1, h,09). Then, within time
T < 16QT /e, and with probability ' > %, a replay of this machine outputs two
valid signatures (m, o1, h,09) and (m, o1, ', dl) such that h # h'.

Proof. We start with a no-message attacker A, which is a probabilistic polyno-
mial time Turing machine with random tape w. During the attack, this machine
asks a polynomial number of questions to the random oracle f. We may assume
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that these questions are distinct: for instance, A can store questions and answers
in a table. Let Q1,..., Qg be the @ distinct questions and let p = (p1,..., pg)
be the list of the ) answers of f. It is clear that a random choice of f exactly
corresponds to a random choice of p. Then, for a random choice of (w, f), with
probability €, A outputs a valid signature (m, oy, h,03). Since f is a random
oracle, it is easy to see that the probability for i to be equal to f(m, 1) is less
than 1/2%, unless it has been asked during the attack. So, it is likely that the
question (m,oq) is actually asked during a successful attack. Accordingly, we
define Ind(w, f) to be the index of this question: (m,o;) = Q Indiw.p) (we let
Ind(w, f) = oo if the question is never asked). We then define the sets

S={(w, f)| A/ (w) succeeds & Ind(w, f) # oo},
and S; = {(w, f) | A/ (w) succeeds & Ind(w, f) =4} for i€ {l,...,Q}.

We call § the set of the successful pairs (w, f), and we note that the set
{Silie{l,...,Q}} is a partition of S. With those definitions, we find a lower
bound for the probability of success, v = Pr[S] > ¢ —1/2F > 6¢/7. Let I be
the set consisting of the most likely indices i, I = {i| Pr[S;|S] > 1/2Q}. The
following lemma claims that, in case of success, the index lies in I with proba-
bility at least %

Lemma 3. Pr[/nd(w, f) € I |S] > 3.

Proof. By definition of the sets S;, Pr[Ind(w, f) € I'| 8] = >_,.; Pr[S; | S]. This
probability is equal to 1 — Zz‘g ; Pr[S; | S]. Since the complement of I contains
fewer than @ elements, this probability is at least 1 — @ x 1/2Q > % O

We now run the attacker 2/e times with random w and random f. Since
v = Pr[S] > 6¢/7, with probability greater than 1 — (1 — 6¢/7)%/, we get at least
one pair (w, f) in S. It is easily seen that this probability is lower bounded by
1—e12/7 > %'

We now apply the Splitting-lemma (lemma 1) for each integer i € I: we
denote by f; the restriction of f to queries of index strictly less than 7. Since
Pr[S;] > v/2Q), there exists a subset (2; of executions such that,

for any (wuf) € in PI‘f/[((x),f,) S Sz|fz/ = fl] = V/4Q

Since all the subsets S; are disjoint,
Pﬁ[(fli €el)(w,f)e2,nS;|S5]
=Pr [ J2nS)|S| =D Priins;|S]
iel iel
—ZPr(Z\S] Pr[S;|S] > (ZPrS|S> 2> 1.
i€l iel

We let 3 denote the index Ind(w, f) corresponding to the successful pair.
With probability at least %, 3 € I and (w, f) € Sg N 5. Consequently, with
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probability greater than %, the 2 /e attacks have provided a successful pair (w, f),
with § = Ind(w, f) € I and (w, f) € Sg. Furthermore, if we replay the attack,
with fixed w but randomly chosen oracle f’ such that fj = fs, we know that

Pryf(w, f') € Sg| f = fs] > v/4Q. Then

Pf’}“[(% f') € Sg and ps # pjs | f5 = f5]
2 Pri(w, f') € Ss| f5 = fol = Drlos = ps] 2 v/4Q — 1/2F > £/14Q,

where pg = f(Qp) and pj; = f'(Qp). We us replay the attack 14Q) /¢ times with
a new random oracle f’ such that fj = fs. With probability greater than %, we
get another success.

Finally, after less than 2/e + 14@Q) /< repetitions of the attack, with probability
greater than % X % > %, we have obtained two valid signatures (m, o1, h, 02) and
(m/, o, 1, o) with Qg = (m,01) = (m/, 0]) and distinct challenges h = f(Qp) #
f(Qp) =N. O

The careful reader has noticed that the mechanics of our reduction depend
on some parameters related to the attacker A, namely, its probability of suc-
cess € and the number () of queries to the random oracle. This induces a lack of
uniformity. In order to overcome this problem, we can use the reduction tech-
nique presented in our previous Eurocrypt 96 paper [43]. Unfortunately, the
probability of success of the resulting reduction is much smaller: the expected
time of success is of the order of Q*/e® instead of Q/e. Accordingly, we end up
extremely far from any form of the “exact security” concept [3].

It is better to see the resulting machine M as an expected polynomial time
Turing machine:

1. M initializes j = 0;
2. M runs A until it outputs a successful pair (w, f) € S and denotes by N;
the number of calls to A to obtain this success, and by 3 the index Ind(w, f);

3. M replays, at most 140N;a7 times, A with fixed w and random [’ such that
f5 = fs, where a = 8
4. M increments j and returns to 2, until it gets a successful forking.

For any execution of M, we denote by J the last value of j and by N the
total number of calls to A. We want to compute the expectation of N. Since
v ="Pr[S], and N; > 1, then Pr[N; > 1/5v] > 3. We define ¢ = [log, Q], so

that, 140N;a7 > 28Q/e for any j > ¢, whenever N; > 1/5v. Therefore, for

any j > ¢, when we have a first success in §, with probability greater than i,

the index § = Ind(w, f) is in the set [ and (w, f) € Sz N (25. Furthermore, with
probability greater than %, N; > 1/5v. Therefore, with the same conditions as

before, that is € > 7Q/2*, the probability of getting a successful fork after at
6

most 28(Q) /¢ iterations at step 3 is greater than =

For any t > /¢, the probability for J to be greater or equal to ¢ is less than

(1— % x 2 x 8¢ which is less than 4'~*, with v = &. Furthermore,
EIN|J=1 < 3 (E[N;] + 140E[N;]o’) < ML g < 11 .o
= ; o — ol < —— .

- ! / T v = T v a—1

.

[en]

j=
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— Signature
— Initialization (security parameter k)| _ g <7 :
P, q, two large primes such that = gK mod p
ql(p—1) —e= f(m,r)
27 <g<2 ~s=K+xemodq

g, element of Z of order ¢
f, hash function

secret key x € Zj
public key y = g~

—or=7rand o2 = s
— Verification

—e = f(m,r)

L g°y® mod p

x

mod p

Fig. 8. The Schnorr signature scheme.

So, the expectation of N is E[N] =", E[N | J =t] - Pr[J = t] and then is

at+1

141
< — PrjJ >t
< - th:(a—l)x r[J > t]

165 t=(—1 at+1 atJrl
< . t—/4
< () ()
t=0 t>0
165 aftt 1
< . . t
— e a-—1 [a—lJrzt:(a’y)]

165 afft 1 1
< . . + .
T e a-1 a—1 1—ay

Using the definition of ¢ and the values of o and 7, we obtain

165 64 84480
E[N]§?~7Q-(7+49): : ©

Hence the following theorem.

Theorem 1. (The Forking Lemma). Let (G, X, V) be a generic digital signa-
ture scheme with security parameter k. Let A be a probabilistic polynomial time
Turing machine whose input only consists of public data. We denote by Q) the
number of queries that A can ask to the random oracle. Assume that, within time
bound T, A produces, with probability e > 7Q /2%, a valid signature (m, oy, h, 03).
Then there is another machine which has control over A and produces two
valid signatures (m, oy, h,09) and (m,oq,h',0h) such that h # h', in expected
time T" < 84480T'Q)/«.

3.1.2.  The Schnorr Digital Signature Scheme

We now apply the previous result in the simple setting of the Schnorr signature
scheme (see Fig. 8).

Firstly, we briefly describe the protocol. For any security parameter k, an
authority chooses two large prime integers p and ¢, such that 28! < g < 2%
holds and ¢ divides p — 1 as well as an element g from Zj of order ¢q. The
triple (p, ¢, g) is published together with a public hash function f whose output
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domain is identified to Z7. The security parameter k is then equal to [logq],
whereas the size of the public key, denoted by n, is equal to [log p]. Furthermore,
we assume that k> logn. Any user randomly chooses his secret key z in Z7,
and publishes y = ¢~* mod p.

In order to sign a message m, the user chooses a random element K in Z; and
computes the commitment 7 = g mod p. He gets the challenge e = f(m,r) and
computes s = K + ze mod ¢q. The signature is the triple (r, e, s), which satisfies

the tests r — g°y° mod p and e - f(m,r).

Theorem 2. Assume that, within a time bound T, an attacker A performs an
existential forgery under a no-message attack against the Schnorr signature, with
probability € > 7Q)/q. We denote by Q the number of queries that A can ask to
the random oracle. Then the discrete logarithm in subgroups of prime order can
be solved in expected time less than 84480QT /¢.

Proof. As we have previously seen, this scheme satisfies all the required prop-
erties of a generic signature scheme. From the Forking Lemma (Theorem 1),
after a polynomial replay of the attacker A, we obtain two valid signatures
(m,r,e,s) and (m,r, €', s") with e # ¢/. Then we have the following equalities
r = g¢*y® mod p and r = ¢*y° mod p, from which we obtain the discrete loga-
rithm log, y = (s — s') /(¢ — e) mod g. 0

3.2.  Adaptively Chosen-Message Attacks

We now focus on the adaptively chosen-message scenario. As in the previous
section, we first give a generic result and we apply the technique to the Schnorr
signature scheme.

3.2.1. Generic Results

As was previously observed, in a no-message scenario, only the least powerful
kind of adversaries is assumed to attack the signature scheme. For many ap-
plications, resistance to this type attack is not considered sufficient. If we want
to assess the “security” of a signature scheme, we should prove its resistance
against adaptively chosen-message attacks. In such a scenario, the attacker uses
the signer as an oracle, and asks any signature he wants. If it is possible to
simulate the signer X' by a simulator & who does not know the secret key (see
Fig. 9), then we can make the attacker and the simulator collude in order to
break the signature scheme, and, the same way as before, we can obtain two
distinct signatures with a suitable relation.

Lemma 4. Let A be a probabilistic polynomial time Turing machine whose in-
put only consists of public data. We denote respectively by () and R the number of
queries that A can ask to the random oracle and the number of queries that A can
ask to the signer. Assume that, within a time bound T, A produces, with prob-
ability e > 10(R + 1)(R+ Q) /2%, a wvalid signature (m, o1, h,09). If the triples
(01, h,09) can be simulated without knowing the secret key, with an indistinguish-
able distribution probability, then, a replay of the attacker A, where interactions
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attacker II + signer (X) attacker Il 4 simulator (S)

mi o h® o)

Q
m
P

Kp ¥

and we suppose f(m;,o®) = h® Vi

Fig. 9. Adaptively chosen message scenario.

with the signer are simulated, oulputs two wvalid signatures (m, oy, h,o9) and
(m, oy, 0h) such that h # K, within time T" < 23QT /¢ and with probability
g > 1

=9

Proof. As in the previous proof, we let 9y, ..., Qg denote the () distinct queries
to the random oracle, p1, ..., pg the respective answers, and my, ..., mg the
R queries (possibly all the same) to the signing oracle. Using the simulator, we
can simulate the answers of the signer without knowledge of the secret key. For
a message m,;, the simulator answers a triple (aii), R, aéi)). Then, the attacker
assumes that f(m;, aii)) = h® and stores it. The previous proof can be exactly
mimicked, except for the problem added by the simulations: there is some risk
of “collisions” of queries, or supposed queries, to the random oracle. Recall that
in the definition of generic digital agnature schemes, we made the assumption
that the probability for a “commitment” 01 ) to be output by the signing oracle
is less than 2/2%. Then, two kinds of collisions can appear:

— A pair (m;, JY)) that the simulator outputs also appears in the list of ques-
tions asked to the random oracle by the attacker (some question Q;). The
probability of such an event is less than QR x 2/2% < ¢/5.

— A pair (my, ()) that the simulator outputs is exactly similar to another

pair produced by this simulator (some question (m;, oy ol )). The probability
of such an event is less than R?/2 x 2/2% < ¢/10.

Altogether, the probability of collisions is less than 3¢/10. Therefore,

Pr[A succeeds and no-collisions|

w?f
> P;[A succeeds| — Pft[collisions] > e(1-2) > 7¢/10.
This is clearly greater than 7Q/2*. We can then apply the previous Forking

Lemma (lemma 2). Such a replay succeeds with probability ¢’ > %, within time
T <16QT x 10/7e < 23QT/e. 0
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Theorem 3 (The Forking Lemma). Let A be a probabilistic polynomial time
Turing machine whose input only consists of public data. We denote respectively
by Q@ and R the number of queries that A can ask to the random oracle and
the number of queries that A can ask to the signer. Assume that, within a time
bound T, A produces, with probability e > 10(R + 1)(R + Q) /2%, a valid signa-
ture (m, o1, h, 09). If the triples (o1, h,os) can be simulated without knowing the
secret key, with an indistinguishable distribution probability, then there is another
machine which has control over the machine obtained from A replacing interac-
tion with the signer by simulation and produces two valid signatures (m, o1, h, o2)
and (m, o1, b, 0b) such that h # h' in expected time T' < 120686QT /<.

Proof. The collusion of the attacker A and the simulator S defines a machine B
which performs a no-message attack. An execution of B is successful if it outputs
a forgery, and if there is no collisions of queries to the random oracle during the
process. Then, within a time bound 7', B has a probability of success greater
than 7¢/10 > 7Q/2*. Using Theorem 1, within an expected number of steps
bounded by 84480 /(7¢/10), one can provide two valid signatures. 0

3.2.2.  Application to the Schnorr Digital Signature Scheme

Theorem 4. Let A be an attacker which performs, within a time bound T,
an existential forgery under an adaptively chosen-message attack against the
Schnorr signature, with probability €. We denote respectively by (Q and R the
number of queries that A can ask to the random oracle and the number of queries
that A can ask to the signing oracle. Assume that e > 10(R+ 1)(R+ Q)/q, then
the discrete logarithm in subgroups of prime order can be solved within expected
time less than 120686Q7T /.

Proof. We only have to prove that the triples (r, e, s) produced by the signer
and the random oracle can be simulated without the knowledge of the signer’s
secret. Once this is done, the result directly follows from Theorem 3, using the
same proof as for Theorem 2.

Lemma 5. The following distributions are the same:

* KerZ
K:RZZ(] €ERqu
b=« (res) c A and 0 =< (r,e,s) s=K
r=g" modp r = gy mod p
s =K + xe mod q r%qumodp

Proof. First we choose a triple (¢, 3,7) from the set of the signatures: let € € Z,
v € Z, and 3 € Z, such that g7y’ = ¢ # 1 mod p. We then compute the proba-
bility of appearance of this triple following each distribution of probabilities:

ngg;e:ﬁ - 1
Ktze=v | q(¢g—1)

T#lmodp]

Prl(ress) = (.00 = B |

K#£0,e
Pr((r,e,s) = (¢,3,7)] = Pr [ e=r=g"y
5 re|le=0;s=K=xv
1
a(g—1)
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O

From the above, the following simulator S produces triples (r,e, s) with an
identical distribution from those produced by the signer. In order to sign the
message m, S randomly chooses e € Z, and K €g Z,, and sets r = ¢®y° mod p
and s = K. In the (unlikely) situation where » = 1 mod p, we discard the results
and restart the simulation. Then it returns the triple (r, e, s). O

3.2.3.  Further Results

It is clear that identical results can be obtained for any signature scheme which
is the transformation of a honest-verifier zero-knowledge identification protocol,
and a fortiori of the parallelization of a zero-knowledge identification protocol
(Fiat-Shamir [21], Guillou-Quisquater [30], the Permuted Kernel Problem [53],
the Syndrome Decoding problem [54], the Constrained Linear Equations [55], the
Permuted Perceptrons Problem [41], etc.). In fact, the zero-knowledge property
is exactly what we need for our notion of simulation. For each of these schemes,
existential forgery under an adaptively chosen-message attack in the random or-
acle model is equivalent to the mathematical problem on which the identification
scheme relies. Furthermore, our results may also provide security arguments for
other schemes. In the following section we study a signature scheme of the El
Gamal type.

3.3.  Application to the El Gamal Signature Scheme

The original El Gamal signature scheme [17] was proposed in 1985 but its se-
curity was never proved equivalent to the discrete logarithm problem nor to the
Diffie-Hellman problem. As will be seen, the Forking Lemma provides a security
argument for a very slight variant of this scheme.

3.3.1.  The Original Scheme

Description of the original scheme. We begin with a description of the original
scheme [17], where k denotes, as usual, the security parameter:

— The key generation algorithm: it chooses a random large prime p, of length n
polynomial in k, and a generator g of Z;, both public. Then, for a random
secret key x € Z,_1), it computes the public key y = ¢g* mod p.

— The signature algorithm: in order to sign a message m, one generates a
pair (r, s) such that ¢ = y"r® mod p. To achieve this aim, one has to choose
a random K € prq)v to compute the exponentiation r = g% mod p and
finally to solve the linear equation m = zr+ Ks mod (p—1). The algorithm
finally outputs (r, s).

— The verification algorithm checks both 1 < r < p and g™ = y"r® mod p.
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Security. As already seen in the original paper, one cannot show that the scheme
is fully secure because it is subject to existential forgery.

Theorem 5. The original El Gamal signature scheme is existentially forgeable.

Proof. This is a well-known result, but we describe two levels of forgeries:

1. The one-parameter forgery: let e €g Z,_1), if we let r = g°y mod p and
s =—rmod p—1, it is easy to see that (r,s) is a valid signature for the
message m = es mod p — 1.

2. The two-parameter forgery: let e €r Zg_1) and v €p Z?pfl), if we let
r=g¢%" mod p and s = —rv~! mod p — 1, then (r,s) is a valid signature
for the message m = es mod p — 1.

(]

We now slightly modify the original scheme by using a hash function.

3.3.2.  The Modified El Gamal Signature Scheme — MEG

In this variant we replace m by the hash value of the entire part of the compu-
tation bound not to change, once the commitment has been computed, namely
f(m,r), where f is a public hash function which outputs k-bit long elements.

Definition 7. Let « be a fixed real. An a-hard prime number p is such that
the factorization of p — 1 yields p — 1 = ¢R with ¢ prime and R < |p|®, where
|p| denotes the length of the integer p.

Remark 2. Those prime moduli are precisely those used for cryptographic ap-
plications of the discrete logarithm problem.

We describe the Modified El Gamal Signature Scheme:

— The key generation algorithm: it chooses a random large a-hard prime p,
greater than 2%, of length n polynomial in k. It also randomly chooses a
generator g of Z;. They are both published. Then, for a random secret key
T € Zp-1), it computes the public key y = g mod p.

— The signature algorithm: in order to sign a message m, one generates a
pair (r,s) such that ¢g/™" = ¢"r* mod p. To achieve this aim, one gener-
ates K and r the same way as before and solves the linear equation

f(m,r) =ar + Ks mod (p —1).
The algorithm outputs (r, f(m,r),s).

— The verification algorithm checks the signature equation with the obvious

changes due to the hash function.

3.3.3.  Security Results

In this section we see that the above modification allows us to offer security
arguments for the resulting scheme even against an adaptively chosen-message
attack, at least for a large variety of moduli.



22 David Pointcheval and Jacques Stern

Security against a no-message attack. Firstly, we study the resistance of the
MEG signature scheme against no-message attacks.

Theorem 6. Consider a no-message attack in the random oracle model against
the MEG signature scheme using a-hard prime moduli. Probabilities are taken
over the common generator g, random tapes, random oracles and the public
key y. If an existential forgery has nonnegligible probability of success, then the
discrete logarithm problem with a-hard prime moduli can be solved in polynomial

time for any pair (g,vy).

Proof. Using the Forking Lemma (Theorem 1), we get two valid signatures
(m,r,h,s) and (m,r, k', s') such that ¢" = r*y” mod p and ¢" = r*'y" mod p.
Hence, we get ¢"' "¢ = y"'=5) mod p and ¢" " = = mod p.

Since g is a generator of Zj, there exist ¢ and x such that g = r mod p and

g® = y mod p. Therefore,

hs' —h's = xr(s' — s) mod p — 1, (1)
h' —h=t(s—s") mod p— 1. (2)

Since h and h' come from “oracle replay”, we may further assume that h — b’ is
prime to ¢, so that ged(s — s, q) = 1. Nevertheless, we cannot make any further
assumption for r, and accordingly, two cases appear:

case 1: r is prime to ¢. In this case, (1) provides the ¢ modular part of z,
= (hs' = NWs)(r(s—s'))"! mod q. With an exhaustive search over the R mod-

ular part of x, we can find an x which satisfies y = ¢ mod p.

case 2: otherwise, v = bq with b small. In this case, (2) provides the ¢ modular
part of ¢, t = (h — 1)(s —s')~! mod ¢q. With an exhaustive search over the R
modular part of ¢, we can find a t which satisfies bg = ¢g* mod p. We note that ¢
is prime to q.

At this point, we have a probabilistic polynomial time Turing machine M
which, on input (g,y), outputs, with nonnegligible probability, x € Z,_1) such
that y = ¢* mod p (case 1) or b € Zg and t € Z,_1) such that bg = ¢g* mod p
(case 2). Probabilities are taken over g, y, and the random tapes of M. Using
the Splitting-Lemma (Lemma 1), let G be a nonnegligible set of g’s such that
whenever g € G, the set of y’s which provides the above witnesses is nonnegligi-
ble. To make things precise, we consider both probabilities to be greater than e,
where ¢ is the inverse of some polynomial. Let G o4 be the set of g € G which
lead to the first case with probability greater than or equal to £/2. Let Gpq be
the set of g € G which lead to the second case with probability greater than /2.
We know that G is the union G gooq U Gpad.

If G jooq has probability greater than €/2, then we have a probabilistic polyno-
mial time Turing machine which can compute, for a nonnegligible part of (g, y),
the discrete logarithm of y relative to g.

Otherwise, bad ¢’s are in proportion greater than /2. Since the set of pos-
sible b’s is polynomial, we get a fixed b and a nonnegligible subset Gjpaq(b) of
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bad ¢’s such that, with nonnegligible probability, M(g,y) outputs integers b
and ¢ such that bg = ¢g* mod p. Let g € Gpeq(b) and y be any number. Running
M(g, z), for random z, we get, with nonnegligible probability, some ¢ such that
g' = bg mod p. Running M (yg*, 2'), for random ¢ and 2’, we get, with nonneg-
ligible probability, yg’ € Gpea(b) and some ' such that (yg*)" = bg = ¢* mod p.
Hence, xt' =t — ¢t' mod (p — 1). Since t’ is prime to ¢, we get x mod q. After
polynomially many trials over the R modular part of x, we find the logarithm
of y. Then we have another probabilistic polynomial time Turing machine M’
which can compute for a nonnegligible part of (g,y), the discrete logarithm of y
relative to g.

Now, we fix g and y. Running the machine on (¢*, y¢*) with random u and v,
we obtain, with nonnegligible probability, an x such that yg” = ¢"* mod p, hence
we get y = ¢"*~¥ mod p. This finally contradicts the intractability assumption.

O

Security against an adaptively chosen-message attack. We now prove a more sur-
prising theorem about the security against adaptively chosen-message attacks.
As we have seen before, the only thing we have to show is how the signer can
be simulated.

Lemma 6. For a-hard prime numbers, the signer can be simulated with an
indistinguishable distribution.

Proof. A key ingredient of the proof is as follows: values returned by the random
oracle can be freely computed and have no correlation with messages whose
signature is requested.

In this proof, we identify the output set H of random oracles with the set
{0,...,2F — 1} and we assume that the generation algorithm, on the security
parameter k, outputs p and ¢ such that ¢R > 2¥ > ¢.

First, one can remark that we can easily compute x mod R, since R is poly-
nomially bounded. Then, using the two-parameter forgery for the ¢ modular
part, and the z mod R value for the other part, we can obtain an indistinguish-
able simulation: we first randomly choose e € Z, and v € Z;. We then randomly
choose £ € Z%. We let r = (g%y™) x g% mod p.

Therefore, one may remark that r is a generator of Zy if and only if ged(e R+
2R 4+ ¢l,p — 1) = 1. Since ¢ € Z7%, this greatest common divisor is equal to
ged(e + av, q) - ged(¢, R) and so equals 1 with overwhelming probability. We
start the simulation again in the (unlikely) situation where r is not a gener-
ator of Zs. Our approach corresponds to dealing separately with the forgery
in the two subgroups respectively generated by g and ¢?. Mimicking the two-
parameter forgery in the subgroup generated by g, we want h and s to satisfy
h = xr + R(e + zv)s mod q. Then we can set s = —r(Rv)~! mod ¢ and h =
—erv™! mod ¢. For the R modular part, we randomly choose h mod R until
h € H (in a first step, h is uniformly distributed in Z,g, then h is uniformly
distributed in H) and we compute s = (h — rz)(¢f)~! mod R. Then the triple
(r,h, s) satisfies g" = y"r® mod p, therefore it is a valid signature of a message
m as soon as h = f(m,r).
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Let (r,h,s) € Zy x H X Z,-1y such that ¢" = r*y" mod p and r is a gen-
erator of Zy. Then there exists a unique exponent K prime to ¢ such that
r = g% mod p. So, exactly one execution of the signature algorithm can pro-
duce this triple. Trying to output this signature through our simulation yields
the following system of equations where v and e are the unknowns:

hv 4+ re =0 mod g,
2v+e= KR! mod q.

If h # xr mod ¢, the determinant is nonzero modulo ¢ so that there is
exactly one solution and therefore one way for S to generate such a signature.
In the other case, 7* = ¢"~*" mod p, so that s = 0 mod ¢. Furthermore, the first
equation can be written r(zv + e) = rK = 0 mod ¢, so that r = 0 mod ¢. Since
h = xr mod ¢, h = 0 mod ¢q. Consequently, S can generate such a signature only
if r=h=s=0mod ¢q. In this case the system admits ¢ — 1 solutions.

Since our simulation only outputs r which are generators, the latter case
contributes to the overall distance by some term bounded by R/2* which is less
than n***!/2" a negligible value, where n = |p|. 0

Theorem 3 is then applicable, therefore we can state:

Theorem 7. Consider an adaptively chosen-message attack in the random ora-
cle model against MEG using a-hard prime moduli. Probabilities are taken over
the common generator g, random tapes, random oracles and the public key y.
If an existential forgery of this scheme has nonnegligible probability of success,
then the discrete logarithm problem with a-hard prime moduli can be solved in
polynomial time for any pair (g,y).

3.3.4. Remarks

We conclude the section by the following two remarks.

FExact security. Because of the intricate reduction, we do not try to compute the
complexity nor the expected time of the resulting discrete logarithm algorithm
exactly. In any case, this reduction is rather inefficient and we cannot infer from
it any form of “exact security” [3]. Accordingly, it cannot be used practically
to infer the security of the MEG signature scheme. Nevertheless, it is the first
security argument for a variant of the well-known El Gamal signature scheme
and, as such, validates the design of this scheme.

The Bleichenbacher attack. At Eurocrypt 96, Bleichenbacher presented an at-
tack [4] against the original El Gamal signature scheme which is also applicable
to our variant. However as explained in [56], the apparent contradiction between
our security arguments and this attack vanishes since our arguments are correct
for almost all choices of the parameters whereas Bleichenbacher uses very spe-
cific values. More precisely, the MEG is secure provided not only the keys but
also the generator g of Z; are chosen at random. Otherwise, there is some danger
that a trapdoor has been added. Thus, a reasonable requirement would be that
the authority issues some sort of proof that ¢ has been fairly generated, as was
suggested for the modulus p of the Digital Signature Standard [35].
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4. Security Arguments for Blind Signatures

This last section investigates the possibility of designing provably secure blind
signature schemes. As in the previous section, we present a generic lemma pro-
viding security arguments for blind signature schemes. This extends our previous
results of [42].

We first describe a general format of the schemes to which those proofs apply.
We then propose several schemes for which one can provide security arguments
relative to the discrete logarithm problem or to RSA.

4.1.  Witness Indistinguishability

Previous methods of proofs used to establish security arguments for signature
schemes no longer work since, during the collusion between the signer, the at-
tacker and the random oracle, we lose control over the value that the signer
receives: it no longer comes from the random oracle, but from the attacker. As
a consequence, the signer cannot be simulated without the secret key, otherwise
the signature scheme would be universally forgeable.

In order to overcome this problem, we use the concept of the “witness indis-
tinguishable” proofs. This notion was defined by Feige and Shamir in [18] for
the purpose of identification. In such a proof system:

¢

— Many secret keys are associated to a same public key.

— The views of two proofs using two distinct secret keys (witnesses) associated
to a same public key are indistinguishable, even from the point of view of
the verifier.

— The knowledge of two distinct secret keys associated to a same public one
provides the solution of a difficult problem.

For example, in the Fiat-Shamir protocol [21], the verifier cannot distinguish
which square root the prover uses, and with probability %, two distinct square
roots provide the factorization of the modulus. Okamoto, in [37], proposed a
witness indistinguishable adaptation of both the Schnorr [50] and the Guillou-
Quisquater [30] identification schemes.

As was already remarked, the technical difficulty to be overcome comes from
the fact that, in the colluding step, we can no longer simulate the signer without
the secret key. We use a scheme which admits more than one secret key for a
given public key. This makes the collusion possible and we constrain the attacker
to output a different secret key.

Our candidate scheme is one of the schemes designed by Okamoto in [37]. For
the reader’s convenience, Okamoto’s adaptation of the Schnorr scheme appears
in Fig. 10.

4.2.  The Okamoto-Schnorr Blind Signature Scheme

The scheme uses two large primes p and g such that ¢ | (p — 1), and two elements
g,h € Zy of order g. The authority chooses a secret key (r,s) € (Z;)2 and pub-
lishes the public key, y = ¢7"h™° mod p. We assume that the function f outputs
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Prover | Verifier

p and ¢ are prime integers such that ¢|(p — 1)
g and h are elements of Zj, of order ¢
secret : r,s € Zg
public: y = ¢ "h™% mod p
t,u €Zyq

a=g'h* mod p _

S/
R =1t+ cr mod q ¢ 2

S =wu+cs mod q

a= EpSy° mod p

Fig. 10. The Okamoto adaptation of the Schnorr identification scheme

elements in Z, and that [logq| = k, where k is, as usual, the security parame-
ter. The protocol (Fig. 11) by which the user obtains a blind signature of the
message m is as follows:

‘ Authority | User

p and ¢ are prime integers such that ¢|(p — 1)
g and h are elements of Zj, of order ¢
secret : 7,5 € Zyg
public: y =g~ "h™% mod p

t,u€Zyq
a=g'h* mod p -
B,7,0 € Zq
a = ag®h7y® mod p
e= f(m,a)

=¢— 8 mod
R=t+er mod q e=e mod.q

S =wu-+esmod ¢q

a= g"*h5y® mod p

p =R+ [ mod ¢

oc=S5+vmod q
Then a = g?h?y® mod p

Fig. 11. The Okamoto-Schnorr blind signature scheme

— The authority chooses (t,u) € (Z)?, computes and sends the commitment,
a = g'h* mod p.

— The user chooses 3,7, € Z, and blinds a into a = ag?h?y° mod p. He com-
putes the challenge ¢ = f(m, «) and sends e = € — § mod ¢ to the authority.

— The authority computes R =t + er mod ¢ and S = u + es mod ¢, and sends
the pair (R, S) which satisfies a = ¢"h%y® mod p;

— the user computes p = R+ 3 mod ¢ and ¢ =S + v mod q.
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Authority: (r,s), 2
CLIJ [ag el[thSl.“ 64 lRLSZ mi,Q1, 01,01
A: . * * -—= Q5= (M4,
Oracle f Q1 R1 Qs QoRa Qs = (mi, )
e@] lRé’ S, : M+ 6P 1IPe+1, 0041
, e { Q; = (my, )
Oracle f QQR/Q i
o ! N !

Fig. 12. Forking Lemma.

Straightforward computations show that a = ¢g”h%y® mod p, with € = f(m, a).
Security arguments follow from the theorem below.

Lemma 7. Consider the Okamoto-Schnorr blind signature scheme in the ran-
dom oracle model. Let A be a probabilistic polynomial time Turing machine
whose input only consists of public data. We denote respectively by QQ and ¢
the number of queries that A can ask to the random oracle and the number of
queries that A can ask to the authority, with Q,¢ > 1. Assume that, within the
time bound T, A produces, with probability e > 4Q*"/q, an (¢, ¢+ 1)-forgery.
Then, within time T' < 97Q0?T /e, and with probability €' > 1/96¢, a polynomial
replay of this machine provides the discrete logarithm of h relative to g.

Proof. We first give an outline of the proof. Then we describe the reduction we
use. Finally, we evaluate the probability of success and the cost of the reduction.

Outline We start with an (¢, ¢ + 1)-attacker A, which is a probabilistic polyno-
mial time Turing machine with random tape w. During the attack, this machine
asks a polynomial number () of queries which we assume to be distinct: Oy,
..., Qg. Furthermore, A performs /¢ interactions with the authority, denoted
by (a;,e;, R;,S;) for ¢ € {1,...,¢}. Finally, with probability ¢, A returns ¢ + 1
valid signatures, (m;, oy, e;, p;i,04) for i =1,...,0 4 1. These signatures satisfy
the required equations with €; = f(m;, a;).

The public data consist of two large primes p and ¢ such that ¢ | (p — 1) and
two elements, g and h, of Zy of order g. The authority possesses a secret key
(r, s) associated to public key y = ¢7"h~* mod p, and a random tape (2.

Through a collusion (presented in Fig. 12) of the authority and the at-
tacker, we want to compute the discrete logarithm of h relative to g. We use
the oracle replay technique that was previously formalized. We hope that, af-
ter polynomially many replays of A, we obtain two distinct representations of
some q; relative to g and h. From a; = ¢®h® = ¢°h? mod p with a # ¢ we get
log, h = (a—c)(d—b)"" mod q.

Cleaning up notations. In the collusion, the pair (r,s) is the secret key used
by the authority and the random tape {2 of the authority determines the pairs
(t;,u;) such that a; = g'*h% mod p for ¢ = 1,...,¢. Note that the distribution
of (r,s,y) where r and s are random and y = ¢~"h~® mod p is equal to the
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distribution of (r,s,y) where r, y are random and s is the unique element in
Zj; such that y = ¢g~"h™* mod p. Accordingly, we replace (r,s) by (r,y) and,
similarly, each (¢;,u;) by (¢, a;).

In the following, we group (w, y, a1, . . ., ag) under variable v, and 7 represents
the (-tuple (t1,...,t,).

As observed in the previous section, if a query has not been asked during the
attack, then the probability for one ¢; to be equal to f(m;, a;) is less than 1/q.
Thus, with probability p > ¢ — (£ +1)/q > 3Q*"!/q, the machine A performs
a forgery with all the outputs (m;, ;) asked to the random oracle during the
attack, and, accordingly, we define Ind; to be the index j such that Q; = (m;, a;).

Finally, we denote by S the set of all successful data, i.e. quadruples (v, r, 7, f)
such that the attack succeeds and every index Ind; is well-defined. Then, we have

Pryﬂ"ﬂ',f[(y7 r,T, f) < S] =p Z 3Q£+1/q.

Reduction. The reduction is as follows:

1. We first run the attack with random v, r, 7, and f until we obtain a success,
or at most 1/¢ times.
In case of success, we denote respectively by Q and { the number of queries
that A has asked to the random oracle and the number of interactions that
A has had with the authority, then A outputs ¢ + 1 valid signatures. Note
that Q < Q and ¢ < /.
2. Fori=1,...,0+1:
we let 7 = Ind;(v,r,7, f) and run the attack, with identical v,r, 7, but
a different oracle f’ such that the j — 1 first answers are unchanged, i.e.
f; = fj, until we obtain again a success with Ind;(v,r, 7, f') = j, or at most
48Q¢ /< times.

We expect that, with nonnegligible probability, both successes output a common
«; coming from the jth oracle query having two distinct representations relative
to g and h.

Success of the Reduction After 1/e repetitions of the attack, with probabil-
ity greater than one half, we have had at least one success (v,r,7,f) € S.
Therefore, for all i € {1,..., 0+ 1}, a; = gPih%y® = gPi"ih7% % mod p. We
randomly choose ¢ € {1,...,¢+ 1}. Then we replay with identical v,r, 7, but
a different oracle f’ such that the j — 1 first answers are unchanged, where
Jj = Ind;(v,r, 7, f). We will prove that we obtain a new representation of «;:

a; = ¢" SRS T mod p o with ) — rel # p; — re; mod g.

The main question we have to study is whether or not the random variable
Xi = pi — T€; is sensitive to queries asked at steps 7, 7 + 1, etc. We expect that
the answer is yes. A way to grasp the question is to consider the most likely value
taken by this random variable when (v, 7, 7) and the j — 1 first answers of f are
fixed. We are thus led to consider two functions ¢; ;(v,r, 7, f) and Ci(v,r, T, f)
which we now define. Set

((1/, r, T, ') € 8) & ([ndi(y, r,T, f) = j)

Nijw,r,7, f,c) =Pr
i ) f! & (Xi(’f, r, T, f) = c)
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where f; denotes, as above, the restriction of f to queries of index strictly
less than j. Let ¢; j(v,r, 7, f) be any value ¢ such that A, ;(v,r, 7, f,c) is maxi-
mal. Furthermore, let C;(v,r, 7, f) = ¢ Indy(wrr, f)(u, r, T, f). Accordingly, we de-
fine a partition of S: the “good” subset G whose elements satisfy, for all i,
Xi(v,r, 7, f) = Ci(v,r, 7, f), and the “bad” B its complement in S. The aim of
the following is to prove that, with non-negligible probability, the success ob-
tained at the first step of the reduction lies in B.

In order to prove this fact, we define the following transformation.

Definition 8. We denote by @ the transformation which maps any quadruple
(v,r,7, f) to (v,r+ 1,7 —e, f), where T —e = (t; —e1,...,ts — ).

This transformation has useful properties (see Fig. 13).

Lemma 8. Both executions corresponding to (v,r,7, f) and &(v,r, T, f) are to-
tally identical with respect to the view of the attacker. Especially, outputs are the
same.

Proof. Let (v,r, 7, f) be an input for the collusion. Replay with " = + 1 and
7' =7 — e, the same v and the same oracle f. The answers of the oracle are
unchanged and the interactions with the authority become

Ri(r' th,e;) =t +r'e; = (t; —e;) + (r + 1)e; = t; + re; = Ri(r, ti, €;).
Thus, everything remains the same. O
Corollary 1. @ is a one-to-one mapping from S onto S.

The following lemma shows that @ sends the set G into B, except for a negligible
part.

Lemma 9. For fized (v,r,7),
1;1"[((’/7 r7, f)€G) & (P(v,r, 7, f) € G)] < Q™ /q.

Proof. In order to prove this statement, we argue by contradiction. Assume that
there exists a triplet (v, r,7) for which the above probability is strictly greater

r+1

Fig. 13. Properties of .
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than Q“*!/q. Then there exist an £+ 1-tuple (u1,...,ues1) € {1,...,Q}* and
an (-tuple (é1,...,¢&) € (Z,)" such that

Py ((v,r,7,f) € G) & (P(v,r,7,f) €G)
| & (Vi) Indi(v,r, 1, ) = u;) & (Vi) e; = &)

Thus, there exist an index 7 and two oracles f and f’ which provide distinct
answers for the w;ith query, i.e., f(Q,,) # f'(Qu,), and are such that answers
to queries not of the form Q Ind, are similar. We denote by ¢ the smallest such
index, and j = Ind;(v,r, 7, f) = Indj(v, 7,7, f') = u;. Then f; = f; and &; # €.
Furthermore, we have (v,r, 7, f) € G, ®(v,r, 7, f) € G. Similarly, (v,r, 1, f') € G,
&(v,r, 7, f') € G. Because of the property of @ (see lemma 8), and by definition
of the subset G,

> ]_/qéJrl.

cij(v,r, 1, f) = pi(v,r, 1, f) —re; = pi(@(v,r, 7, f)) —re;
=c¢jv,r+lL,r—e f)+((r+1)—r)-¢
Ci,j(”? T, f/> = pi(”? T, f/> - 7’8; = pz<@(V, T, f,>> - 7’8;
=c¢jvr+l,7—€, f)+((r+1)—r)-
The equality f; = f; implies ¢;;(v,r, 7, f) = ¢;j(v,r,7, f'). Since we have as-
sumed (ey,...,ep) = (€},...,¢€;) = (é1,...,€), then

cilvir+lLm—e f)=cv,r+1,7—¢, f).
Thus &; = €}, which contradicts the hypothesis. O

We can partition the set G into two subsets: the subset G, whose elements have
their image by @ in G, and its complement G, whose elements have their image
by @ in B. From the previous theorem, and since @ is a bijection from & into S,
Pr[G] = Pr[G,] + Pr[Gy] < Q"' /q + Pr[B]. Then B is a nonnegligible set since

Q1 Qi+t P
Pr[B] > Pr[S] — Pr[B] — >_(_ >>_,
r[B] = Pr[S] — Pr[B] ] Uy =
where p has been defined as Pr[S].
With this lower bound on the size of B, we complete the evaluation of the
probability of success of the reduction.
First, for any ¢ and j, we define

B, ={(v,r,7,f) e B&C; # x;} and B,; ={(v,r,7,f) € B;&Ind; = j}.

Then, we can remark that 3'=' "' Pr[B;] > Pr[Ui=t*'B;] = Pr[B] > p/3. There-
fore, there exists ¢ € {1,...,¢ + 1} such that Pr[B;] > p/3(¢+ 1). In the follow-
ing, we assume that ¢ has been chosen so that this inequality holds.

We now define the set J; = {j| Pr[B; ;| B:] > 1/2Q}. As in a previous situ-
ation (lemma 3), we observe that

Pr lU Bﬁj | Bz

j€J;

| —

For any j € J;, Pr[B; ] > p/6(¢ + 1)Q, so the Splitting-Lemma (Lemma 1)
ensures that there exists a subset (2; ; such that
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— for any (v,r, 7, f) € 2,

1;,1"[(7/7 T, f/) < Bl}j | f]/ = f]] = P/12(€ + 1)@7

= Pr[2i;1Bi;] = 5.

Since all the subsets B; ; are disjoint, for any fixed 7,

Pr [3] € Jz : (V, rT, f) € Qi,j N Bi,j |S] = Z PI‘[QZ‘J N Bi,j |S]

v,r, T, f ¢
1L _]EJZ

=Y Pr[Qi;|Bij]- PrBi, | B] - Pr(B; | 5]

JEJi

> (Z Pr[B; | Bi]) /6(€+1) > 1/12(0 + 1).

VISEE

Globally, the first step provides a tuple (v, r, 7, f) in S such that for some 4,
(v,r, 7, f) € £2,; N B; ;, where we note j = Ind;, with probability greater than
1/12(¢+ 1) > 1/244. Assume that we know this index i. We denote by d the value
Xi(v,r, 7, f) and by ¢ the value C;(v,r, T, f). Then two cases appear relatively to
the value \; ;(v, 7,7, f,d):

L I N (v,r,7, f,d) > p/24Q(¢ + 1), then, by definition of C;, we know that
P;.,r [(V7T77_7f/) € S&XZ‘(V,T,T,f,) #d&]ndi(l/,T,T,f) :J‘fj, = fj]

> N (v, T, fe) > p/24Q(¢ + 1).

2. otherwise,
P;.,r [(V7T77_7f/) GS&Xi(V7T7T7f,) #d&]ndi(l/,T,T,f) :J‘f;:fj]

= Pf’/r ((v,r, 7, f) € S& Ind;(v,r, 7, f) = j‘fj/ = fi] = XNij(v,r, 7, f.d)
> Prl(v, 1,7, ') € Bug | = £j) = M7, . )
> p/24Q(0 +1).

Both cases lead to

(l/,’f‘,’?',f/) €S
]i‘)’r &Xi<V7T7T7f/)§éd f;:f]
& Indi(v,r,7,f) = j

P
= 24Q(0+1)

Thus, after at most 48Q)¢/e replays with the same keys and random tapes but
another random oracle f’ such that f; = f;, we obtain, with probability at least
%, a new success with Ind;(v,r, 7, f') = j and x;(v, 7,7, f') # d. Then both exe-
cutions provide two different representations of «; relative to g and h.
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Cost of the reduction. After at most (1 4 48QF - (£ + 1)) /e < 97Q¢? /¢ iterations
of A, the probability of success is greater than % x 1/240 x % and so is upper
bounded by 1/96¢, where ¢ is the probability of success of an (¢, ¢ + 1)-forgery
and (@) is the number of queries asked to the random oracle. O

As for the security of signatures (Theorem 1), we can present an expected
polynomial time Turing machine M:

1. M initializes r = 0;

2. M runs A until it outputs a successful tuple (v,r, 7, f) € S and denotes by
N, the number of calls to A to obtain this success, and by ¢, the number of
interactions with the signer during this success;

3. fori=1,...,0,+ 1, M replays, at most 120/V,.a” times, the machine A with
fixed (v,7,7) and random f’ such that f; = f;, where j = Ind;(v,r,7, f) and
a =1+ 1/54k;

4. M increments r and returns to 2, until it gets a successful forking.

For any execution of M, we denote by J the last value of  and by NV the total
number of calls to .A. We want to compute the expectation of N. Since p = Pr[S],
and N, > 1, then Pr[N; > 1/5p] > 3. We define L = [log, Q(¢ + 1)], so that,
120N,.a" > 24Q(¢ + 1)/p for any r > L, whenever N, > 1/5p. Therefore, for any
r > L, when we get a success (v, r, T, f) at the first step, with probability greater
than 1/12(¢+1), there exists i € {1, ..., ¢, + 1} such that 8 = Ind;(v,r, T, f) € J;
and (v, 7,7, f) € 25N Sip Furthermore with probability greater than 2, N, >
1/5p. Therefore, with the same conditions as before, that is € > 4@“1 / q, the
probability of getting a successful fork after at most 24Q(€ + 1)/p iterations at
step 3 is greater than 2. Then, for any t greater than L, the probability for J
to be greater or equal to t is less than (1 — 1/12(¢ + 1) x 3 x 2)t=L. Therefore,

5
this probability is less than v*~%, with v =1 — 1/27(¢ + 1). Furthermore,

r=t

E[N|J:t]§Z<E[N]+120E[ -+ Da )
r=0
_L21e+ ”J 121£+1) ottt
< Za < X

Since £ > 4Q""! /q, we get £+ 1 < k, and therefore ay < 1 — 1/54k. Finally, the
expectation of IV is

162(0+1) okt ( 1 1 )<162(£+ 1)

E[N] <
15 a—1 €

BTkQ(¢+1)-108k.
Oz—1+1—ory Q+1)-108

Hence the following theorem:

Theorem 8. (Forking Lemma). Consider the Okamoto-Schnorr blind signature
scheme in the random oracle model. Let A be a probabilistic polynomial time
Turing machine whose input only consists of public data. We denote respectively
by Q and ¢ the number of queries that A can ask to the random oracle and
the number of queries that A can ask to the authority. Assume that, with a
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time bound T, A performs, with probability ¢ > 4Q**'/q, an (¢, ¢+ 1)-forgery.
Then there is another machine which has control over A and solves the discrete
logarithm of h relative to g in expected time T' < 10°(¢ + 1)2k*QT /¢,

Authority ‘ | User

N = pg and X\ prime and prime with ¢(NV)
a € Zy of order greater than A
secret r€{0,...,A—1}
s EZLy
public v =a""s"*[N]
tef0,...,A—1}

u €Ly
T
z = a'u[N] ———  a,v€{0,...,A—1}
BEZLN
2’ = za®BM[N]
d = f(m,z)
€{0,...,A—1}
& /
y =14 cr mod A — c=c —~ mod A\
w:t:—m;%)\ Y,z
z = a"us’[N] ——— ¢y =y+amod A
w=y+a+l
w'=c —c+ A

Then 2’ = a¥ 2 v [N]

Fig. 14. The Okamoto—Guillou-Quisquater blind signature scheme

These proofs can be easily modified to cover other schemes that come from
witness indistinguishable protocols. Especially, the Okamoto version of the Guil-
lou-Quisquater identification scheme provides a provably secure blind signature
scheme (see Fig. 14) relative to the security of RSA. Furthermore, the authors
have presented [44] blind signature schemes derived from the Fiat-Shamir identi-
fication scheme [21] and from the Ong-Schnorr identification scheme [38], which
are clearly witness indistinguishable. The resulting schemes admit security ar-
guments relative to factorization.

4.3. Remarks

Our result appears to be the first security result which paves the way toward
provably secure electronic cash systems by providing candidates for secure blind
signatures. However, it leaves an open problem: the complexity of our reduction
is polynomial in the size of the key but not in ¢. Our theorem only provides
security arguments against strong “one-more” forgeries. In fact, the reduction
requires € > 4Q**!/q, which implies a polylogarithmically bounded number of
interactions with the authority. We were unable to achieve polynomial time both
in ¢ and the size of the keys.
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Juels et al. [32] gave a positive answer to the question using the provably
secure signature scheme of Naor and Yung [33] and the Two-Party Completeness
Theorem [25]. Nevertheless, their construction is theoretical and the problem of
having a practical scheme is still open.

Conclusion

As explained in the Introduction, there were several proposals for provably secure
signature schemes. However, in all cases, the security was at the cost of a con-
siderable loss in terms of efficiency. Concerning blind signatures, Damgard [15],
Pfitzmann and Waidner [39] and more recently at Crypto '97, Juels et al. [32]
have presented some blind signature schemes with a complexity-based proof of
security. Again, the security is at the cost of inefficiency.

In the weaker setting offered by the random oracle model, we have provided
security arguments for practical and even efficient digital signature schemes and
blind signature schemes. On the ground of our reductions, one can justify realistic
parameters, even if they are not optimal. Further improvements are expected
particularly in the case of blind signatures where it should be possible to obtain
a reduction polynomial in the size of the keys and in the number of interactions
with the signer.

In any case, the arguments in this paper, based on the random oracle model,
are a quite strong indication that the overall design of the corresponding schemes
is presumably correct.
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